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The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental prob-
lem in many-body physics. The interest in this field has been renewed due to recent ground-breaking
experiments with ultra-cold Fermi gases [1–5]. Optical creation of an exciton or a polariton in a
two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field
due to an interplay between cavity-coupling favoring ultra-low mass polariton formation [6] and
exciton-electron interactions leading to polaron or trion formation [7, 8]. Here, we present cav-
ity spectroscopy of gate-tunable monolayer MoSe2 [9] exhibiting strongly bound trion and polaron
resonances, as well as non-perturbative coupling to a single microcavity mode [10, 11]. As the
electron density is increased, the oscillator strength determined from the polariton splitting is grad-
ually transferred from the higher-energy repulsive-exciton-polaron resonance to the lower-energy
attractive-polaron manifold. Simultaneous observation of polariton formation in both attractive
and repulsive branches indicate a new regime of polaron physics where the polariton impurity mass
is much smaller than that of the electrons. Our findings shed new light on optical response of
semiconductors in the presence of free carriers by identifying the Fermi polaron nature of exci-
tonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi
mixtures [12, 13].

Transition metal dichalcogenide (TMD) monolayers
represent a new class of two dimensional (2D) semicon-
ductors exhibiting features such as strong Coulomb in-
teractions [14], locking of spin and valley degrees of free-
dom due to large spin-orbit coupling [9] and finite elec-
tron/exciton Berry curvature with novel transport and
optical signatures [15, 16]. Unlike quantum wells or two-
dimensional electron systems (2DES) in III-V semicon-
ductors, TMD monolayers exhibit an ultra-large exci-
ton binding energy Eexc of order 0.5 eV [14] and strong
trion peaks in photoluminescence (PL) that are red-
shifted from the exciton line by ET ∼ 30 meV [9, 17].
These features provide a unique opportunity to investi-
gate many-body physics associated with trion [18] forma-
tion as well as coupling of excitons to a 2DES [19] and to
cavity photons [20, 21], provided that the experimental
set-up allows for varying the electron density ne and light
matter coupling strength gc.

Here, we carry out an investigation of Fermi po-
larons [1] in a charge-tunable MoSe2 monolayer embed-
ded in an open microcavity structure (Fig. 1a-b). Since
Eexc is much larger than all other relevant energy scales,
such as the normal mode splitting (2gc), ET and the
Fermi energy (EF ), an optically generated exciton in
a TMD monolayer can be considered as a robust mo-
bile bosonic impurity embedded in a fermionic reservoir
(Fig. 1c). The Hamiltonian describing the system is

H = ωcc
†
0c0 +

∑
k

ωX(k)x†kxk + gc(c
†
0x0 + h.c.)

+
∑
k

εke
†
kek +

∑
k,k′,q

Vq(x†k+qe
†
k′−qek′xk + h.c.) ,(1)

where the first line describes the coupling of 2D exci-
tons, described by the exciton annihilation operator xk
and dispersion ωX(k) = −Eexc + k2/2mexc, to a zero-
dimensional (0D) cavity mode c0 whose resonance fre-
quency ωc can be tuned by applying a voltage (up) to
a piezoelectric actuator that changes the cavity length.
This part of the Hamiltonian corresponds to the elemen-
tary building block of the recent ground-breaking exper-
iments based on coupled 0D-polariton systems [22]. The
second line of the Hamiltonian describes the Feshbach-
like physics associated with the bound-molecular (trion)
channel and the corresponding effective interactions be-
tween the excitons and the electrons [1]. Provided that
the exciton-electron coupling can be treated as an attrac-
tive contact interaction, ET directly determines the inter-
action strength Vq = V0 [23]. The Hamiltonian of Eq. (1)
therefore combines the physics of cavity-polaritons with
that of Fermi polarons.

The Fermi polaron problem describes the screening of
a mobile impurity via generation of particle-hole pairs
across the Fermi surface (Fig. 1c). When the impu-
rity is a fermion with different spin, this problem cor-
responds to the highly polarized limit of a strongly in-
teracting Fermi system [1]. The corresponding systems
exhibit a wealth of complex phenomena, such as the
elusive Fulde-Ferrell-Larkin-Ovchinikov pairing mecha-
nism, the Chandrasekar-Clogston limit of BCS supercon-
ductivity and itinerant ferromagnetism [24]. While the
cavity spectroscopy we implement to study the exciton-
2DES problem in the weak coupling regime is analo-
gous to the rf spectroscopy of impurities in degenerate
Fermi gases [2], the strong coupling regime of the TMD-
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monolayer-microcavity system represents a new frontier
for quantum impurity physics. More specifically, since
the exciton-polariton dispersion can be tuned by chang-
ing ωc(up)−Eexc to yield an effective polariton mass that
is (up to) four orders of magnitude smaller than that of
the electron [6], the extension of our experiments to a 2D
cavity could realize a Fermi-polaron system with a tun-
able ultra-small mass impurity. We find that a theoret-
ical model based on a truncated basis approach (Chevy
ansatz) [25] treating the system as an excitonic Fermi
polaron captures the experimental signatures such as the
ne-dependent blueshift of the exciton resonance and the
oscillator strength transfer from the repulsive exciton po-
laron to the attractive polaron [7].

We embed a MoSe2/hBN/graphene heterostruc-
ture [26] inside an open optical cavity [27] consisting of
a flat dielectric mirror and a fiber-mirror with a radius
of curvature of 30µm (Fig. 1a). We use the graphene
layer as a top gate that controls the electron density in
the MoSe2 layer (Fig. 1b), allowing us to tune the Fermi
energy from EF = 0 to EF ≥ ET . The thickness of the
hBN layer is chosen to ensure that the MoSe2 is located
at an anti-node of the cavity, while the graphene mono-
layer is at a node where the intra-cavity field vanishes;
this choice ensures that the graphene absorption does
not lead to a deterioration of the cavity finesse which we
estimate to be F ∼ 200.

In order to characterize the elementary optical excita-
tions of the MoSe2 monolayer, we set the cavity length
to Lcav = 9.1µm and carry out spectroscopy in the
limit of weak (perturbative) coupling to the cavity mode.
Figure 2a depicts the cavity transmission spectrum in
this weak coupling regime obtained for Vg = −3 V:
the parallel diagonal lines correspond to transmission
maxima associated with neighboring axial modes of the
cavity. Zooming in to the central mode, we find that
the mode energy as well as its linewidth varies non-
trivially due to coupling to the MoSe2 excitations. We
plot the color-coded cavity line broadening (Fig. 2b) and
line-shift (Fig. 2c) as a function of Vg (vertical axis)
and the fundamental cavity mode frequency (horizontal
axis). Since the bare cavity linewidth (∼ 0.38 meV) is
much smaller than the spectral features associated with
exciton-polaron and trion resonances, the increase in cav-
ity linewidth, or shift in cavity resonance frequency al-
lows us to determine the imaginary (absorption) and real
(dispersion) parts of MoSe2 linear susceptibility (Fig. 2b-
c). We note that even for Lcav = 9.1µm, the exciton res-
onance is in the strong coupling regime for Vg < −10V,
albeit with a small normal mode splitting: in this limit,
highlighted by the dashed rectangle in Fig. 2b, it is not
possible to directly measure the cavity line broadening
(see Supplementary Information). As a finite electron
density ne is introduced by increasing Vg to −10 V, a
new absorption resonance (shaded blue curve), which is
red-detuned by ∼ 25 meV from the bare exciton reso-

nance, emerges (Fig. 2d). At the same time, the exciton
line blueshifts and broadens, thereby ensuring that the
coupling to the cavity mode is in the perturbative limit.
For Vg = 0 V, the exciton resonance sharply shifts to
higher energies as the lower-energy resonance becomes
prominent (Fig. 2e). Further increase in Vg leads to an
increasing energy of the redshifted resonance and an in-
discernible exciton feature (Fig. 2f). We observe that
for Vg > 20 V, the MoSe2 monolayer-induced cavity line
broadening exhibits a spectrally flat blue tail in absorp-
tion (Fig. 2g). Since the cavity line broadening (Fig. 2b)
and line-shift (Fig. 2c) data are connected by Kramers-
Kronig relations, we mainly refer to line broadening in
the following discussion.

We note that TMD monolayer PL at low ne is known to
exhibit sharp trion peaks [26]: photo-excited carriers pre-
dominantly relax to the lowest energy molecular (trion)
state, which in turn decays by spontaneous emission to an
excited state of the 2DES. We observe that in Figure 2e
the PL line (green curve) is only slightly redshifted with
respect to the peak in absorption. In contrast, increas-
ing Vg further results in a redshift of the PL peak while
the low-energy absorption peak experiences a blueshift
(Fig. 2f). Further increase in ne results in a large split-
ting exceeding 40 meV between the absorption and PL
peaks (Fig. 2g), suggesting that they are associated with
different elementary optical excitations.

We identify the emerging lower-energy resonance in ab-
sorption for Vg ≥ −10 V as stemming from attractive-
exciton-polarons (Fig. 1c). The observation of substan-
tial line broadening of the cavity mode indicate a siz-
able overlap between the ground state (with no optical
or electronic excitation above the Fermi sea) and the op-
tically excited state. These observations in turn render
it unlikely that the observed features are associated with
direct optical excitation of a trion. In contrast to the
latter, an attractive polaron has a finite amplitude for
having no electron-hole pair excitation across the Fermi
surface ensuring a sizable quasi-particle weight. The
strong ne-dependent blueshift of the exciton resonance
in turn indicates that it should be identified as the repul-
sive polaron – a metastable excitation of the interacting
electron-2DES system [3].

The most spectacular signature demonstrating the po-
laron nature of the absorption resonances is obtained
in the strong coupling regime of the interacting cavity-
exciton-electron system, which is reached by decreasing
the effective cavity length to ∼ 1.9µm. Figure 3a-c shows
the transmission spectrum as the cavity length is changed
by ∼ 100 nm at three different gate voltages. The obser-
vation of normal mode splitting when the cavity mode
is tuned into resonance with the lower-energy absorp-
tion resonance (Fig. 3b-c) demonstrates the large overlap
between the initial and final states of this optical tran-
sition which in turn proves that the resonance is asso-
ciated with the attractive-exciton-polaron. In contrast,
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the trion transition should have vanishing overlap with
the 2DES ground state and should not lead to strong
coupling to the cavity. We quantify the relative transi-
tion strength of the attractive polaron and trion transi-
tions in the discussion section where we detail the theo-
retical model we used. We also emphasize that the PL
spectrum, which we associate with trion emission, shows
no normal mode splitting for the parameters which yield
split attractive-polaron-polariton peaks in transmission
(Fig. 3f).

Figure 3d-f show cross sections through Figure 3a-c.
The simultaneous appearance of polaritons in both the
repulsive and attractive polaron branches (Fig. 3e) indi-
cate that our experiments make it possible to study a
new regime of polaron physics where an ultra-light po-
lariton impurity is dressed with electron-hole pair exci-
tations. An exciting future direction motivated by our
observations is the investigation of polaron formation on
polariton transport.

The emergence of the lower-energy resonance and the
gradual disappearance of the exciton resonance as ne is
increased has been previously predicted and identified
as oscillator strength transfer from the exciton to trion
[7, 21]. To investigate how strong coupling alters the
polaron formation and the associated oscillator strength
transfer, we measured the normal mode splitting over a
large range of Vg. Figure 4a shows, as a function of Vg,
the transmission spectrum of the MoSe2 monolayer when
the bare cavity mode is in resonance with the repulsive-
polaron (left) or the attractive-polaron. Increasing ne
results in decreasing (increasing) normal mode splitting
for the repulsive (attractive) polaron. However, the max-
imum splitting for the attractive-polaron obtained for
Vg ≈ −5 V is less than half as big as that of exciton
obtained in the absence of a 2DEG. Further increase in
Vg, or equivalently increase of ne, results in diminishing
normal mode splitting. In the latter limit, the optical os-
cillator strength is distributed over a broad energy range
of order EF , thereby suppressing the coupling to the nar-
row cavity mode.

For theoretical modeling we use the truncated ba-
sis method (see Supplementary Information), in which
the Hilbert space is restricted to include at most a sin-
gle electron-hole pair [28]. Although an impurity inside
a Fermi sea scatters an infinite number of electron-hole
pairs [29], this variational approach has been proven to
be surprisingly accurate for modeling cold-atom systems,
due to the destructive interference of higher order pro-
cesses [30, 31]. Since the screened interaction between
electrons and excitons is short ranged, we treat it as a
contact interaction. In contrast to the cold-atom sys-
tems, the TMD-exciton-electron system has two types
of excitons and Fermi seas distinguished by the valley
pseudospin degree-of-freedom [9]. However, because at
small Fermi-energies, the interaction between excitons
and electrons inside the same valley is suppressed due to

Pauli exclusion, we neglect it altogether and model our
system by a single excitonic impurity in K (-K) valley
interacting with electrons in the -K (K) valley. We re-
mark that electron-electron interactions can be neglected
if we truncate the Hilbert space to just one electron-hole
pair. We also take into account phase-space filling effects,
which decrease the binding energy of the exciton and re-
sult in a blueshift of all quasi-particle energies by 2EF .
This simple theoretical model captures some but not all
of the experimental observations in MoSe2. Finally, we
note that for WSe2 and WS2, phase space filling should
be absent and as a consequence the attractive (repulsive)
polaron will exhibit a red (blue) shift [19].

We present the theoretical results in the weak-coupling
regime in Figure 4b. As a function of EF all resonances
exhibit a blueshift in energy that stems from phase-space
filling. The exciton resonance, which dominates the spec-
trum for vanishing EF , exhibits a further blueshift with
increasing EF , justifying its identification as the repulsive
polaron. For EF > 0, a lower-energy attractive polaron
branch, with an energy comparable to the molecule/trion
energy, emerges [23]. In contrast to the experimental
results, our simple theoretical model shows an abrupt
turn-on of the blueshift of the repulsive polaron branch
for small EF : this discrepancy possibly stems from the
disorder in the flake that results in localized electronic
states below the conduction band edge. We also cap-
ture the quasi-particle weight transfer from the repulsive
polaron to the attractive polaron and the broadening of
the repulsive polaron. Our model also predicts a trion-
hole continuum of width 2/3EF , of very small weight.
Figure 4c shows that the quasi-particle weight of the
trion-hole continuum remains smaller than that of the
attractive polaron branch by a factor of 10, supporting
our claim that the polariton formation cannot be asso-
ciated with trions due to the small overlap between the
latter and the 2DES ground state + one cavity-photon.
In contrast to the negatively-charged trion, a Fermi po-
laron described by the Chevy ansatz corresponds to a
neutral excitation, consisting of a Fermi-sea electron-hole
pair bound to an exciton [28].

In our model, the k = 0 trion is always higher in energy
than the attractive polaron. An extended truncated basis
approach, which includes states containing a molecule ac-
companied by an electron-hole pair, can be used to show
that the k = 0 trion state should be lower in energy
for EF < 5 meV [23]. In contrast to the experimental
findings, we cannot capture correctly the broadening of
the attractive polaron, since we have not considered an
ansatz with an extra electron-hole pair. Figure 4d shows
the calculated spectral function in the strong-coupling
regime. We see that the polaron peaks become sharper
due to the coupling to the narrow cavity. We notice that
we capture the decrease (increase) in the light matter
coupling for the attractive (repulsive) polarons as EF in-
creases. However, our model does not predict the full dis-
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appearance of the repulsive (or attractive) polaron strong
coupling to the cavity. Theoretically, at EF = 30 meV
the normal mode splitting of the repulsive polaron is re-
duced to 7 meV while the normal mode splitting of the
attractive polaron is roughly 13 meV. The discrepancies
between the experimental data and the theoretical pre-
dictions may also stem from our approximation of a rigid
exciton: our model does not capture exchange and cor-
relation effects which are known to play a role in trion
formation [7].

Our experiments establish strongly bound excitons in
TMD monolayers, simultaneously embedded in a 2DES
and a microcavity, as a new paradigm for quantum impu-
rity and polaron physics. In stark contrast to prior work,
we identify the optical excitations that are accessible in
resonant spectroscopy as repulsive and attractive exciton
polarons and polaron-polaritons, which are simultane-
ously present for Fermi energies that are smaller than the
molecular (trion) binding energy. For EF exceeding the
conduction band spin-orbit coupling, TMD monolayers
exhibit both intra- and inter-valley trions that are cou-
pled by electron-hole exchange [32]: an interesting open
question is whether the Berry curvature of the corre-
sponding exchange coupled intra- and inter-valley attrac-
tive polarons leads to novel transport signatures. While
we report the measurement of the spectral function of the
interacting polariton-2DES system, we highlight that it is
possible to directly measure the nonequilibrium response
of the system in the time domain using ultrashort laser
pump-probe spectroscopy in the regime EF ≤ 10 meV.
Finally, another interesting extension of our work would
be the investigation of a Bose-polaron problem where an
optically injected -K valley polariton impurity interacts
with Bogoliubov excitations out of a polariton conden-
sate in the +K valley.
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FIG. 1. A MoSe2/hBN/graphene heterostructure in a fiber cavity. a, The sample consists of a 3µm by 5µm MoSe2
monolayer sandwiched between 10nm and 110nm thick hBN layers. A graphene layer on top completes the heterostructure
that allows for controlling the electron density in the MoSe2 monolayer by gating. The heterostructure is placed on top of a flat
dielectric mirror (DBR). The thicknesses of the hBN layers are chosen to ensure that the MoSe2 monolayer is at an antinode and
the graphene layer is at a node of the cavity formed by the bottom dielectric mirror and the top fiber mirror. The finesse of the
cavity is ∼ 200; the cavity length can be tuned from 1.9µm to 15µm. b, The optical microscope image of the heterostructure
where the overlap between the MoSe2 monolayer and the top graphene layer is identified. c, Due to exciton-electron interactions,
the exciton is surrounded by an electron screening cloud that leads to the formation of an attractive polaron (left panel). For a
repulsive polaron the electrons are pushed away from the exciton leading to a higher energy metastable excitation (right panel).
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FIG. 2. Cavity spectroscopy of the interacting exciton-electron system in the weak coupling regime. a, The
white light transmission spectrum of the fiber cavity incorporating the MoSe2/hBN/graphene heterostructure, as a function
of the piezo voltage (vertical scale) that is varied to tune the cavity frequency. Since the bare cavity linewidth of 0.3meV
is much smaller than all other energy scales, cavity transmission allows for identifying the linear optical response of the
heterostructure: Whenever the cavity mode is at a frequency absorbed by the MoSe2 flake, its linewidth increases. Consequently,
the MoSe2 absorption spectrum can be measured as a frequency dependent broadening of the cavity. The insert shows the cavity
transmission at Vg = −3 V and up = 20 V fitted with a lorentzian curve. b, The MoSe2 absorption spectrum determined by
measuring the enhancement of the cavity linewidth for each cavity frequency (horizontal axis) and gate voltage or equivalently
the Fermi energy (vertical axis). When the Fermi energy is below the conduction band minimum (EC , we choose EC = 0),
absorption is only observed at the bare exciton frequency. As electrons are introduced, the exciton resonance experiences a
sharp blueshift together with broadening. Concurrently, there is a new resonance emerging at ∼ 25 meV below the bare exciton
energy. These features are identified as the repulsive and attractive exciton-polaron resonances. For Vg < −10V,
the exciton and the cavity mode are in the strong-coupling regime (the region highlighted using the dashed rectangle) and it
is not possible to directly extract imaginary part of the MoSe2 linear susceptibility: in this regime, we measure and plot the
linewidth of the cavity-like polariton. c, The measured real part of the susceptibility of the MoSe2 flake as a function of the
cavity frequency (horizontal axis) and the gate voltage (vertical axis). The data presented here is connected to the absorption
data of Fig. 2b via Kramers-Kroenig relations. In the absence of the MoSe2 flake, there is an expected change of the cavity
resonance (peak in the spectrum of the transmitted light) with changing piezo voltage. In the presence of MoSe2, the index
of refraction seen by the photons is modified due to the real part of the MoSe2 susceptibility, thereby modifying the effective
cavity length and leading to a shift of the cavity resonance wavelength as compared to what we would have obtained in the
absence of MoSe2. d, Line-cut through the cavity line broadening data (blue shaded curve) for Vg = −10 V: both repulsive and
attractive polaron features are visible. We expect the trion and attractive-polaron energies to be comparable for this Vg. The
photoluminescence (PL) data is shown in green. e, Line-cut through the cavity line broadening and shift data for Vg = 0 V:
the line broadening/absorption data is dominated by the attractive polaron which is now blue-shifted with respect to the trion
PL. f, Line-cut through the cavity line broadening and shift data for Vg = 40 V: the PL and absorption peaks are separated
from each other by 40 meV suggesting that PL and absorption data stem from different quasiparticles, namely the trion and
the attractive polaron, respectively.
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FIG. 3. Cavity spectroscopy of the interacting exciton-electron system in the strong coupling regime. a, The
white light transmission spectrum as a function of the piezo voltage (vertical scale) for an average cavity length of 1.9µm. Due
to enhanced cavity electric field, the interaction between the cavity mode and MoSe2 resonances is directly observed in cavity
transmission spectra as anticrossings associated with polariton formation. For gate voltages where the MoSe2 monolayer is
devoid of electrons (Vg1) the spectrum shows a prominent anticrossing with a normal mode splitting of 16 meV. The elementary
optical excitations in this regime are bare exciton-polaritons without any polaron effect. The green area indicates values outside
the range of the colormap. b, White light transmission spectrum for Vg = Vg2 = −5 V, showing two anticrossings associated
with the formation of repulsive- and attractive-polaron-polaritons. The observation of anticrossings for both lower and
higher energy resonances proves that these originate from Fermi-polarons with a large quasiparticle weight. c,
White light spectrum for a higher gate voltage (Vg3), where only the attractive-polaron exhibits non-perturbative coupling to
the cavity mode. d Line-cut through the data in Fig. 3a for the piezo voltage up = 72 V shows the transmission spectrum (red
curve) at the resonance of the cavity with the exciton. e, Line-cut through the data in Fig. 3b for the piezo voltage up = 13 V
respectively up = 71 V. f Line-cut through the data in Fig. 3e for up = 21 V, corresponding to the case where the cavity
mode is resonant with the attractive polaron resonance. The photoluminescence spectrum in the strong coupling regime is also
plotted (green shaded curve).
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FIG. 4. Competition between repulsive and attractive polaron resonances. a, The white light transmission spectrum
of the fiber cavity incorporating the MoSe2/hBN/graphene heterostructure, as a function of the gate voltage (vertical scale) for
two different settings of the cavity length: the left (right) part shows the transmission when the cavity is tuned on resonance
with the repulsive (attractive) polaron. For each horizontal line, the cavity frequency is tuned so as to yield two polariton
modes with equal peak amplitude. As Vg is increased, the oscillator strength transfer from the repulsive to attractive branch
is clearly visible. While the normal mode splitting for the repulsive branch disappears for Vg ' −10 V, the collapse of the
splitting takes place at Vg = 25 V for the attractive branch. b, The spectral function calculated using the Chevy ansatz in the
weak coupling regime is in good qualitative agreement with the absorption spectra of Fig. 2b. c, The calculated quasi-particle
weights showing the oscillator strength transfer from the repulsive to the attractive polaron as the Fermi energy is increased.
The weight of the trion+hole continuum increases linearly with the Fermi energy but remains less than 0.1 even for Fermi
energies exceeding the trion binding energy. d, The spectral function calculated using the Chevy ansatz in the strong coupling
regime captures the oscillator strength transfer from the repulsive to attractive polaron depicted in Fig. 4a but fails to predict
the collapse of the normal mode splitting with increasing electron density.
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SUPPLEMENTARY MATERIALS: FERMI POLARON-POLARITONS IN CHARGE-TUNABLE
ATOMICALLY THIN SEMICONDUCTORS

THEORY

Although in the experiments we have a 0D cavity, these experiments can be extended to a system with a 2D cavity.
Therefore, in the theory section we will analyse the latter case. The 0D cavity case will appear as a special case
of our result. However, in considering a 2D cavity we show that ultra-low mass polarons can easily be obtained
experimentally by exchanging the 0D cavity with the 2D cavity.

We start from the following Hamiltonian:

H =
∑
k

ωC(k)c†kck +
∑
k

ωX(k)x†kxk +
∑
k

g(c†kxk + h.c.) +
∑
k

ε(k)e†kek +
∑
k,k′,q

Vqx
†
k+qe

†
k′−qek′xk (S1)

ωC(k) =
~k2

2mc
, ωX(k) =

~k2

2mexc
+ 2EF , ε

(e)
k =

~k2

2me
, (S2)

where c, x and e are the destruction operators of a cavity photon, an exciton and an electron respectively, while
mc,mexc and me are the masses of the cavity photon, the exciton and the electron. The third term corresponds to the
coupling between excitons and the cavity field, while the last term incorporates the interaction between the exciton
and the Fermi sea. Although we consider the exciton to be a rigid object, the interaction between the exciton and
the Fermi sea contains the effects due to electron exchange between the exciton and the Fermi sea. The 2EF term in
the exciton dispersion is due to phase space filling which results in an overall blueshift of the exciton line.

Chevy ansatz for the polaron

In order to analyze the problem we make a Chevy-type ansatz [S1] for the polaron state, which truncates the Hilbert
space to a single electron-hole pair:

|Ψ(p)〉 =

φ0xp + ϕ0cp +
∑
k,q

φk,qx
†
p+q−ke

†
keq +

∑
k,q

ϕk,qc
†
p+q−ke

†
keq

 |0〉, (S3)

where we defined the vacuum |0〉 as an undisturbed Fermi sea and no excitons in the system. This ansatz takes into
account the total momentum conservation in our system and describes a quasi particle of momentum p formed by the
superposition of a cavity photon and an exciton dressed by an electron-hole pair from the Fermi sea. To obtain the
ground-state we must minimize the quantity 〈Ψ(p)|E −H|Ψ(p)〉:

〈Ψ(p)|E −H|Ψ(p)〉 = E

|φ0|2 + |ϕ0|2 +
∑
k,q

|φk,q|2 +
∑
k,q

|ϕk,q|2
−H(p)

var (S4)

H(p)
var = 〈Ψ(p)|H|Ψ(p)〉 = ωX(p)|φ0|2 + ωC(p)|ϕ0|2 +

∑
k,q

EX(p, k, q)|φk,q|2 +
∑
k,q

EC(p, k, q)|ϕk,q|2

− g

φ∗0ϕ0 +
∑
k,q

φ∗k,qϕk,q + c.c.

+ |φ0|2
∑
q

V0 +
∑
k,q

[φ∗0φk,qVk−q + c.c.]

+
∑
k,q,k′

[
φ∗k,qφk′,qVk−k′ + c.c.

]
−
∑
k,q,q′

[
φ∗k,qφk,q′Vq−q′ + c.c.

]
,

(S5)

where EX(p, k, q) ≡ ωX(p+ q − k) + ε(k)− ε(q) and EC(p, k, q) ≡ ωC(p+ q − k) + ε(k)− ε(q). Each term in Hvar

corresponds to a physical process allowing the observation of the competition between different processes, in trying
to minimize Hvar subject to the normalization constraint. Minimizing the above equation, we obtain the following
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equations:

ωC(p)ϕ0 − gφ0 = Eϕ0 (S6)

EC(p, k, q)ϕk,q − gφk,q = Eφk,q (S7)

ωX(p)φ0 − gϕ0 +
∑
q

φ0V0 +
∑
k,q

φk,qVk−q = Eφ0 (S8)

EX(p, k, q)φk,q − gϕk,q + Vk−qφ0 +
∑
k′

Vk′−kφk′,q +
∑
q′

Vq′−qφk,q′ = Eφk,q. (S9)

Because the cavity coupling does not mix different momentum states, we can eliminate the first two equations and
obtain a set of two equations:(

ωX(p)− g2

ωC(p)

)
φ0 +

∑
q

φ0V0 +
∑
k,q

φk,qVk−q = Eφ0 (S10)

(
EX(p, k, q)− g2

EC(p, k, q)

)
φk,q + Vk−qφ0 +

∑
k′

Vk′−kφk′,q +
∑
q′

Vq′−qφk,q′ = Eφk,q. (S11)

Notice that the effect of the cavity is to renormalize the energies of many body states. The correction is recognized
as the exact self-energy due to interactions with the cavity field.

At this point it is straightforward to solve the problem by discretizing the momenta k, q and transforming the above
equations into a matrix equation.

However, we can make further analytical progress by making a few reasonable approximations. First of all, we
notice that the exciton-electron interaction is a Van-der-Waals interaction which decays as r−4 at large distances,
with a range given by the Bohr radius aB of the excition. Including the screening effects due to the electron system,
the interaction will become even shorter range. Therefore, at least for small Fermi energies (i.e. aBkF � 1) we can
approximate the interaction with a contact interaction which is constant Vk = V up to a cutoff Ω. Since in two
dimensions, an attractive potential always has a bound state of energy, in our case we denote it by −ET , we can
express the interaction strength as a function of the bound state energy and an ultraviolet cutoff:

1

V
= −

Ω∑
k=0

1

ET − ωX(0) + ωX(k) + ε(k)
. (S12)

Since the physics should not depend on the ultraviolet cutoff, in the end we will let Ω → ∞ and therefore V → 0.
As we will show a posteriori, φk,q ∼ 1/k2 for large k, which in turn implies that the last term on the left hand side
vanishes when V → 0. We will therefore proceed by neglecting this term.

We introduce the function χq = φ0 +
∑

k φk,q. In terms of this function:

φ0 =
V
∑

q χq

E − ωX(p) + g2

ωC(p)

(S13)

φk,q =
V χq

E − EX(p, k, q) + g2

EC(p,k,q)

. (S14)

Reintroducing the above into the definition of χq we can obtain the following self-consistent equation:

E = ωX(p) +
g2

E − ωC(p)
+
∑
q

[
Ω∑

k=0

1

ET − ωX(0) + ωX(k) + ε(k)
−

Ω∑
k=kF

1

E − EX(p, k, q) + g2

E−EC(p,k,q)

]−1

.(S15)

To gain further insight into the above equation we introduce the dispersion resulting from linearly coupling two
harmonic oscillator modes of energies EX(p, k, q) and EC(p, k, q) with a coupling strength gc. These resemble the
polariton modes:

ΩLP,UP (p, k, q) =
1

2

[
EX(p, k, q) + EC(p, k, q)±

√
(EX(p, k, q)− EC(p, k, q))

2
+ 4g2

c

]
. (S16)
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We also introduce the factors resembling the exciton fractions in polaritons. which show how much of the initial
modes is contained in the new modes:

|X(p, k, q)|2 =
1

2

1 +
EC(p, k, q)− EX(p, k, q)√

(EC(p, k, q)− EX(p, k, q))
2

+ 4g2
c

 . (S17)

With the above notation we can rewrite the self consistent equation as:

E − ωX(p) =
g2

E − ωC(p)

+
∑
q

[
Ω∑

k=0

1

ET − ωX(0) + ωX(k) + ε(k)
−

Ω∑
k=kF

(
|X(p, k, q)|2

E − ΩLP (p, k, q)
+

1− |X(p, k, q)|2

E − ΩUP (p, k, q)

)]−1

.

(S18)

We can simplify things further by noting that for p+ q − k > kph (kph is of the order of the photon momentum and
approximately given by ~k2

ph/(2mc) = gc) X(p, k, q) ≈ 1 and ΩLP (p, k, q) ≈ EX(p, k, q). Since kph is much smaller
than all the other momentum scales the phase space where these approximations break down is extremely small.
Based on this phase-space argument we can simplify the above equation:

E = ωX(p) +
g2

E − ωC(p)
+
∑
q

[
Ω∑

k=0

1

ET − ωX(0) + ωX(k) + ε(k)
−

Ω∑
k=kF

1

E − EX(p, k, q)

]−1

(S19)

We would have obtained the same equation if we started from an ansatz which did not contain the states corresponding
to a photon dressed by an electron-hole pair (i.e. ϕk,q = 0). Our full derivation serves to justify this approximation.
We remark that the poles in the q summation correspond to the molecular energies that are obtained when choosing
an ansatz of the form |Φ(p)〉 = φkx

†
p−ke

†
kep|0〉.

It can be shown that by replacing E → E+ iη (η → 0+), the last term on the right hand side of the above equation
is the self-energy of an exciton interacting with a Fermi sea. Although the inclusion of the infinitesimal iη might
seem arbitrary at this point, it can be shown that it emerges from choosing a time dependent ansatz, and instead of
minimizing 〈Φ|H|Φ〉, minimizing the action S =

∫
〈Φ(t)|i∂/∂t −H|Φ(t)〉 [S2]. Therefore, the above equation can be

written more intuitively as:

E = ωX(p) + ΣX(E, p) (S20)

ΣX(E, p) = ΣX−C(E, p) + ΣX−e(E, p) (S21)

ΣX−C(E, p) =
g2

E − ωC(p)
(S22)

ΣX−e(E, p) =
∑
q

[
Ω∑

k=0

1

ET − ωX(0) + ωX(k) + ε(k)
−

Ω∑
k=kF

1

E + iη − EX(p, k, q)

]−1

(S23)

In the above we made explicit the self energy of the exciton interacting with the cavity mode (ΣX−C) and with the
electrons in the Fermi sea (ΣX−e).

Having found the self-energy of the exciton, we can also obtain the self-energy of the cavity photon:

ΣC(E, p) =
g2

E − ωX(p)− ΣX−e(E, p)
(S24)

.

Spectral Function

In the weak-coupling regime, in our experiment, we are probing the exciton spectral function:

A(t) = 〈0|x0e
−iHtx†0|0〉 (S25)

In the truncated basis the Fourier transform of the spectral function is given by:

A(ω) =
1

π
Im

[
1

ω + iη − ω(x)
0 − ΣX(ω, 0)

]
(S26)
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In the strong coupling regime we are probing the spectral function of the cavity photon and therefore, in the above
we should replace ΣX with ΣC .

In simulating the experimental results we choose a lifetime broadening of the exciton/photon linewidth of η =
1.0 meV. Since the exciton is also subject to disorder broadening, in the weak coupling regime we convolve the
resulting spectral function with a Gaussian kernel with a standard deviation of 14 meV (such that FWHM = 7 meV),
obtained from fitting the experimental exciton line at zero Fermi energy.

Polaron mass

Having found the exciton self-energy we can also determine the effective mass of the exciton due to the interaction
with the light cavity photon and the electron system. Assuming that the lowest energy state is at energy E0 and
momentum 0, the effective mass is given by:

1

m∗
=

1

mx
+

∂

∂2p
ΣX(E0, p)

∣∣∣∣∣
0

=
1

mx
+

1

mc
+

∂

∂2p
ΣX−e(E0, p)

∣∣∣∣∣
0

(S27)

Regardless of the contribution of the last term in the above equation we can see that, due to the small mass of the cavity
photon, the polaron mass is going to be ultra-small. Therefore, we conclude that we are dealing with an ultra-low
mass polaron. We emphasize that an ultra-low mass polaron can only be achieved by dressing a (polariton) impurity
which is a superposition of an ultra-low mass particle (cavity photon) with a relatively heavy particle (exciton). Such
a mixed-impurity exhibits an ultra-small mass for low momenta but restricts the recoil energy to the coupling energy
gc. Otherwise, if we did not have the relatively heavy particle, the dressing of an ultra-low mass impurity is very
ineffective since ET → 0 for the same V . This means that the impurity will not be affected by the Fermi sea at all.

SAMPLE PREPARATION AND MEASUREMENT SETUP

The heterostructure studied in this work was assembled using the pickup technique [S3]: Flakes of the constituent
materials are exfoliated onto separate substrates and sequentially picked up with a polycarbonate layer which finally
deposits the complete heterostructure onto the target substrate. The target substrate in this case is a distributed
Bragg reflector (DBR) ion beam sputtered onto a fused silica substrate. The DBR is designed to have a reflectivity
of > 99.3% for the spectral range of 680-800 nm and an intensity maximum at the DBR surface. The graphene top
gate as well as the MoSe2 flake were contacted using metal gates consisting of a thin layer of titanium followed by a
thicker layer of gold. In order to increase the chance of a good contact to the MoSe2 flake, a parallel contact via a
second graphene flake was made.

The top mirror is formed by a dimple with radius of curvature of 30µm shot into the fiber facet with a CO2 laser.
The geometry of the dimple was measured with interferometry. The fiber facet was coated with the same DBR as
described above. All measurements are performed using a dipstick immersed in liquid helium. The sample can be
moved in the (x-y) plane using nanopositioners. In addition, the cavity length is adjusted with a z-axis nanopositioner.
For transmission, light from a (broadband) LED covering the spectral range of interest is sent through the fiber with
the dimple and collected by an aspheric lens. A second LED emitting green light, that overlaps with a transmission
window of the DBR mirrors, is used to locate the flake.

For PL measurements, a 532 nm laser is sent through the fiber. This wavelength is within a transmission window
outside of the stop band of the DBR. Therefore, PL excitation is efficient and only marginally changing with the
cavity length. To extract the PL spectrum, the cavity emission spectrum is measured as a function of cavity length.
For each cavity length, the area and the center wavelength of the PL escaping through the cavity mode is measured.
Plotting the area against the center wavelength of the cavity mode yields the PL spectrum of the flake.

CAPACITIVE MODEL FOR THE FERMI ENERGY

By applying a top gate voltage Vg the electron density in the sample and therefore the Fermi energy EF is changed.
We denote the smallest Vg for which the attractive polaron is observed as Vg = Vc which we interpret as the gate
voltage for which we start populating the conduction band (EF > 0).

The capacitance per unit area C/A between top gate and sample is given by:
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C

A
=

(
t

εε0
+

1

e2D(E)

)−1

, (S28)

where D(E) is the density of states and t, ε are the thickness respectively the permittivity of the hBN flake. The
two terms are the geometric respectively quantum capacitance of the sample. For EF > 0, the quantum capacitance
can be neglected since its effect is much smaller and within the uncertainty of the permittivity of the hBN flake. For
Vg > Vc i.e. EF > 0 this yields:

EF =
π~2εε0
tem∗

(Vg − Vc) ≈ 0.77
meV

V
(Vg − Vc), (S29)

where m∗ is the effective electron mass of the conduction band.

SPATIAL DEPENDENCE

One of the principal advantages of the open fiber cavity structure is the ability to adjust the cavity length and
to thereby change the nature of coupling. In our setup, the fiber facet and the substrate form a small angle. As a
consequence, when the fiber is in close proximity to the facet it touches the substrate. The contact is located at the
edge of the fiber which is 125µm in diameter. This contact stabilizes the cavity by suppressing the vibrations that
would otherwise have lead to line broadening. Furthermore, once the cavity is brought into contact with the substrate,
changing the cavity length by changing the piezo voltage of the z-axis nanopositioner seems to be completely reversible.
When the cavity length is reduced further to a few micrometers, it is essentially the fiber angle that changes and
reduces the cavity length at the dimple which is in the center of the fiber facet.

Additionally, scanning the sample with respect to the fiber mirror allows us to investigate the spatial dependence of
the MoSe2 optical excitations. In order to investigate the latter, the cavity length was enlarged to be sure to eliminate
any contact between fiber and substrate. At a cavity length of ∼ 30µm, the sample was moved with respect to the
fiber mirror with nanopositioner slip-stick steps. The nanopositioner resistive readout was used to get an estimate of
the traveled distance. A rough estimate of the cavity positon with respect to the flake is obtained using a camera by
imaging the flake illuminated with a green LED which is transmitted through a transmission window of the DBR.
The spectrum is derived from the cavity linewidth broadening in a cavity length scan using the same technique as for
the data shown in Figure 2 of the main text.

Figure S1 shows absorption spectra for different positions of the sample with respect to the cavity. The sample is
moved by ∼ 0.5µm in between the different measurements. The scan was measured at a gate voltage of Vg = −10 V
where we expect to see absorption from both the repulsive and attractive polaron. At x = −1.5µm, the spatial
overlap of the cavity mode with the MoSe2 monolayer is small. As the sample is moved, the overlap and therefore
the absorption increases until it reaches a maximum at x = 0.0µm. Moving the sample further up to x = 1.5µm
reduces the overlap again. The absorption strength of the attractive polaron as compared to the repulsive polaron does
not change significantly depending on the position of the sample which indicates a relatively homogeneous electron
density. The large distance over which the absorption decreases is in accordance with the large cavity mode waist of
1.7µm.

CAVITY MODE FITTING

The source for the transmission spectroscopy is a LED centered at ∼ 760 nm with a FWHM of ∼ 20 nm. For
Figure 2a, Figure 3a,b,c and Figure 4a of the main text, the transmitted spectrum is normalized by the LED spectrum.
For the derivation of the absorption spectrum of the flake from the transmission spectra shown in Figure 2a of the main
text, the normalization with the LED spectrum is not necessary since only the linewidth and the center wavelength
of the cavity mode but not the intensity of the transmitted cavity peaks are used to extract the absorption spectrum.
In addition to the fundamental cavity mode, higher transverse modes are observed in the transmission spectrum.
For fitting the lorentzian peak to the transmitted fundamental cavity mode, only the spectrum within a 4 nm wide
window was considered in order to exclude distortions from the higher transverse modes.

At the cavity lengths used for weak coupling measurements, more than one fundamental modes are observed within
the stop band of the DBR. For the derivation of the energy shift of the cavity due to the resonances of the flake,
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FIG. S1. Spatial dependence of the absorption spectrum.

the cavity length is calculated from the wavelength of the next (lower-energy) fundamental mode. Since the energy
of that cavity mode is smaller than any resonances of the MoSe2 monolayer, its center wavelength serves as a good
measure for the cavity length.

We note that for the cavity length of 9.1µm used to obtain the data depicted in Fig. 2b, the exciton and the cavity
are in the strong coupling regime for Vg < −10 V. As a consequence, it is not possible to obtain the imaginary part
of the MoSe2 linear susceptibility by measuring the excess cavity line broadening as we tune the cavity across the
exciton (repulsive polaron) resonance. As a remedy, we chose to plot the linewidth of the cavity-like polariton peak
for the parameter range corresponding to the dashed box in Fig. 2b. The cavity line broadening we extract in this
manner is larger than the actual width of the exciton resonance. It does however, yield the correct exciton resonance
frequency. As an alternative, it is possible to extract the actual imaginary part of the MoSe2 linear susceptibility
by fitting the data to a formula that describes the absorption lineshape in the presence of strong coupling [S4] and
extract an exciton linewidth of 4.5 meV. The drawback of the latter formula is that it is only accurate if the electronic
resonances are Lorentzian; this is satisfied only for Vg < −10 V.
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