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Paul Kleindorfer was among the first to weigh in on and nurture the stream of Sustainable Operations

Management. The thoughts laid out here are based on conversations we had with Paul relating to the drivers

underlying sustainability as a management issue: population and per capita consumption growth, the limited

nature of resources and sinks, and the responsibility and exposure of firms to ensuing ecological risks and

costs. We then discuss how an operations management lens contributes to the issue, and criteria to help the

Sustainable Operations Management perspective endure. This article relates to a presentation delivered by

Morris Cohen for Paul’s Manufacturing and Service Operations Management Distinguished Fellows Award,

given at Columbia University, June 18, 2012. We wrote this article at Paul’s request.
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Paul Kleindorfer was a pioneering and impactful force in the field of Sustainable Operations

Management (Sustainable OM). He was among the first to lend his voice to the field (Kunreuther

and Kleindorfer 1980), co-edit a number of the original special issues on the subject (Corbett and

Kleindorfer 2001a, Corbett and Kleindorfer 2001b, and Corbett and Kleindorfer 2003), and co-

author a survey of its early work (Kleindorfer et al. 2005). As two of Paul’s former students, we

were among the many fortunate enough to benefit from his vast knowledge of the subject and his

generosity in sharing it.

The recent burgeoning of Sustainable OM was a point of pride for Paul. But, forever the mentor,

he would not allow us to merely observe and contribute to its growth. He pushed us to question the

stream’s ability to endure. It matters relatively little that the field is of interest today, he would

say. When you look back over your career 20 years from now, will Sustainable OM prove to have

been an enduring stream or a passing fancy? That question invariably led to two others: 1) Why

is sustainability, broadly speaking, of growing interest?; and 2) What does the field of operations

management (OM) have to contribute to it?
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Why is Sustainability of Growing Interest?

The finite and semirenewable nature of many global resources and the limited ability of ecosystems

to absorb pollutants have long been recognized1. However, because the renewable supply of these

resources (e.g., water, forests, fish stocks) or the rate at which new sources were discovered (e.g.,

minerals, oil) vastly exceeded their consumption, their limited nature was not historically perceived

to be a binding constraint for the development of production systems to fuel economic growth. The

future in which these natural assets might become limiting resources seemed distant, left largely

to dystopian visions in film and literature. However, that future is now in sight. Two fundamental

factors have thrown these constraints into relief: population growth and increasing per capita

consumption.

Thomas Malthus (1798) argued that population growth threatens economic sustainability,

observing that population grew “in a geometrical ratio” (i.e., exponentially) while food produc-

tion, in Malthus’ estimation, grew “in an arithmetical ratio” (i.e., linearly). While his theory has

drawn criticism, Malthus receives credit for originating the discussion on economic sustainability

and identifying population growth as one of its principal challenges. That growth has not abated.

Worldwide population grew to 6.97 billion by 2011, an increase of 83% since 1970, with the vast

majority of that growth occurring in emerging economies (Global Financial Data 2013). The United

Nations estimates that this growth will continue, albeit at a decreasing rate, reaching a global

population of 9.31 billion by 2050 and over 10 billion by 2100 (UN, Department of Economic and

Social Affairs, Population Division 2011).

Similarly, since 1970, a combination of shorter product life cycles and increased purchasing power

has contributed to a 138% increase in developed economies’ per capita consumption while increased

earnings and greater access to consumer goods has helped drive a 231% increase in per capita

consumption in emerging economies (World Bank 2013). Together, these trends propel exponential

growth in the world’s aggregate consumption, with an astounding 671% increase in consumption in

emerging economies. Given that per capita consumption in these regions is still only about 1/17th

that of the developed world (World Bank 2013), we should expect considerable growth ahead.

Figures 1a-c below illustrate each of these trends.

These underlying drivers—particularly population and income growth, and greater access to

consumer goods in developing economies—do not seem likely to abate any time soon. With the

continuance of these trends, growth in global consumption also projects forward, placing increasing

demands on production systems worldwide.

1 As early as 1272, for example, smog in London was so bad that King Edward I banned the burning of sea coal, with
violations punishable by torture or death. The ban proved ineffective (Urbanito 1994).
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Figure 1 Trends in population (Figure 1a), per capita consumption (Figure 1b), and aggregate consumption

(Figure 1c). Source: World Bank (2013).

In their seminal work, The Limits to Growth, Meadows et al. (1972) refer to growth in consump-

tion and the limited nature of “sources and sinks”—the finite supply of many natural resources

and the finite capacity of ecosystems to absorb pollutants without conspicuous effects—as the core

challenges to achieving an ecologically sustainable economy. This is not to say that all consump-

tion of sources or emission of pollutants is unsustainable. Technological innovation can improve

production efficiency with respect to source and sink use, mitigating certain sustainability con-

cerns. Indeed, it is precisely such innovation that has spared us so far from the population crises

predicted by Malthus. Advances in agrarian technology—the invention of iron plows in the 1790s,

steel plows and threshing machines in the 1830s, modern irrigation and chemical fertilizers in the

1840s, and so forth—have enabled agricultural output to grow exponentially rather than at the

linear rate predicted by Malthus. Even today, as illustrated in Figures 2a-c, agricultural factor

efficiency (output per unit of factor input) in the United States continues to improve exponentially,

whether the factor considered is land, labor, or a multifactor combination of capital, materials,

and labor. Agricultural output has thus managed to keep pace with population growth and hold

Malthus’ sustainability crisis at bay.
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Figure 2 Trends in the agricultural factor efficiency of land (Figure 2a), labor (Figure 2b), and all factors (Fig-

ure 2c) relative to a 2005 basis. Source: USDA Economic Research Service (2013)

This discussion relates closely to “IPAT” (Ehrlich and Holdren 1971), which stands for Impact

= Population x Affluence x Technology, although in the discussion above we substitute per capita

consumption for affluence (which is generally measured by per capita GDP). We do so because

consumption indicates more directly the demands placed on production systems.

To understand when consumption growth can lead to sustainability concerns that require reg-

ulatory action and when those concerns might better be addressed by free-market-induced tech-

nological change, one must first consider what levels of activity are sustainable. El Serafy (1989)

and Daly (1990) outlined three intuitive sustainability criteria in the form of upper bounds on

consumption and pollution rates: (i) Consumption of a renewable source is sustainable if it is no

greater than the regeneration rate of that source; (ii) consumption of a nonrenewable source is

sustainable if the economy substitutes an alternate material or technology at a sufficient rate that

the nonrenewable resource is fully replaced before its reserves are exhausted; and (iii) the emission

of pollution (or waste) is sustainable if it occurs at a rate no greater than the rate at which its

sink (the ecosystem into which it is injected) can naturally assimilate it plus the rate at which the

pollutant is actively removed. Figure 3 summarizes these sustainability criteria.

Figure 3 El Serafy (1989) and Daly (1990) criteria for maximum sustainable consumption and pollution. rates

While these criteria are relatively straightforward to comprehend, adhering to them on a global

scale is far from easy. Chief among the challenges are: (i) Uncertainty and debate with respect to
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the various rates which define the criteria; and (ii) the pursuit of local objectives that require the

consumption of shared resources. The former makes intervention more difficult (whether that inter-

vention is regulation or a free-market “invisible hand”) while the latter contributes to a “tragedy

of the commons” on firm and national levels (Hardin 1968, Aflaki 2013). There is growing evidence

that, as a result of these challenges, we have already ventured into unsustainable territory on a

number of fronts.

Rockström et al. (2009) identify nine “planetary boundaries,” building the case that the long-

term stability of the biosphere would be at risk should any of these boundaries be violated. The

authors find that human activity has already resulted in the violation of three of the thresholds,

suggesting that we are operating in the “red zone” with respect to anthropogenic impact. Similarly,

Wackernagel et al. (1999) develop a framework to map source and sink consumption to land-

area requirements; that is, to an “ecological footprint.” They estimate that we would require 1.5

earths to sustain current levels of human activity (footprintnetwork.org 2013). These findings are

ultimately driven by an unsustainable rate of consumption of specific sources and an unsustainable

rate of emission into specific sinks.

Finite supply of natural resources

The “overconsumption” of nonrenewable resources is seldom a matter of actually exhausting those

resources, but rather a matter of incurring ever-increasing marginal costs. For example, if only

the known reserves of copper and silver are considered (i.e., stocks which have been identified and

which can be exploited economically), then we have only an estimated 22- and 15-year supply

left, respectively (Mining, & Sustainable Development Project 2002). If, on the other hand, one

were to estimate the entire resource base of both minerals (including undiscovered and currently

uneconomic sources), then the horizons become 736 and 731 years, respectively (Mining, & Sustain-

able Development Project 2002). Further discoveries will be made and new extraction technologies

will be developed, so that the actual horizon for both minerals will fall somewhere between these

extremes. However, the marginal extraction cost is very likely to increase as we harvest veins less

conveniently located in the Earth’s crust.

Crude oil is perhaps the most commonly cited nonrenewable resource in this context. Kerr (2011)

and Murray and King (2012) indicate that since 2005, oil production has been inelastic to demand

while prices have increased by about 15% per year. From this, they infer that production capacity

has a ceiling of about 75 million barrels per day. They go on to argue that neither conventional nor

unconventional oil sources (i.e., tar sands) are likely to significantly increase production beyond

current levels. While average crude oil prices are expected to be 90-130 $/bbl by 2020 (US Energy

Information Administration 2012), price volatility is likely to increase significantly. Substituting
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natural gas for crude oil may offer a remedy. Indeed, the IEA (2012) touts a golden age of gas fueled

by unconventional gas sources such as shale-gas fracturing (fracking). Such substitution—in this

case, natural gas for oil—satisfies the Daly criteria for sustainable consumption of finite resources,

however it can exacerbate sustainability concerns on other dimensions, as discussed below.

As Simon (1998) argued, when the supply of a finite resource becomes increasingly scarce, tra-

ditional supply-and-demand economics lead to a greater market price for the good relative to

available extraction technologies and substitutes. This, in turn, incentivizes more exploration and

technological innovation to access previously unknown, unobtainable, or uneconomic sources of

the good. If supply becomes scarce enough, then the relative price increase incentivizes a tran-

sition to alternate resources; e.g., transitioning from oil to natural gas. Such transitions may be

disruptive, potentially requiring significant infrastructure investment and/or unsettling established

market balance. However, in such a manner, free-market mechanisms can ensure the sustainability

of priced resources, either by increasing supply through discovery and extraction or decreasing

demand through substitution. Even so, free-market mechanisms are not a universal sustainability

panacea.

In the case of crude oil, the extraction of new sources (e.g., tar sands) and the transition to

alternative resources (e.g., natural gas) can have unintended sustainability effects. While extrac-

tion from tar sands increases the world’s oil reserves, it is significantly more emissions-intensive

than conventional oil extraction (Lattanzio 2013). Similarly, the spike in natural gas supply from

fracking helps alleviate peak oil concerns and provides a lower-emissions-intensity alternative to oil.

However, lower natural gas prices could reduce the adoption of zero-emissions energy technologies

(e.g., wind, solar, hydro) and suppress investment in energy efficiency improvements. As McKibben

(2012) notes, there are 2,795 gigatons of carbon embedded in proven oil, gas, and coal reserves cur-

rently owned by fossil fuel firms—nearly five times the carbon that it is estimated would result in

a two-degree-Celsius increase in average global temperature (Meinshausen et al. 2009). Therefore,

while the discovery of more oil, gas, or coal may alleviate peak oil concerns, it does so at the cost

of exacerbating sustainability concerns on other fronts.

Further, free-market mechanisms break down for resources that are not priced. With water con-

sumption more than doubling over the last century (UN Water 2013), it is not difficult to imagine

the demand for fresh water outstripping its regeneration rate. Already, half of the developing

world’s hospital beds are filled by those suffering from water-related diseases (UN Development

Programme 2006). Worldwide, such diseases cause nearly 20% of deaths among children under the

age of five (WHO/UNICEF 2009). Given asymmetric access to wealth and the universal need for

water, pricing water in such scenarios to bring it within the control of market mechanisms would

likely fail to equitably address these water scarcity concerns.
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Finite capacity for ecosystems to absorb pollutants

As OM scholars, it is natural to think of the sustainability of pollutant emissions into sinks in

queuing terms. If the average arrival rate of waste into an ecosystem exceeds the average rate at

which that waste can be served by that ecosystem (i.e., removed from or assimilated by it), then

waste will accumulate infinitely and that ecosystem is unstable; i.e., the level of emissions being

injected into the system is unsustainable. Therefore, evaluating ecosystem stability with respect

to waste emissions requires an understanding of a pollutant’s arrival rate into the system and the

rates at which the pollutant can be removed from and assimilated by the system.

The US Environmental Protection Agency (2011) currently monitors, through the Toxics Release

Inventory alone, the emission of over 500 pollutants from nearly 3,000 facilities around the country

while Europe, under the European Union Emissions Trading Scheme (often referred to as the

EU-ETS), monitors over 11,000 facilities for their greenhouse gas (GHG) emissions (European

Commission 2013). This suggests that regulators possess the capability to monitor the arrival of a

large number of emissions/pollutants to various ecosystems on a vast scale. The greater challenges

generally are estimating the rate at which specific sinks can naturally render those emissions

harmless (i.e., assimilate them) and limiting the arrival of emissions into sinks once those maximum

sustainable rates are identified. Because the absorptive rate of a sink is not always clear, there

is room for both scientific and political debate, which can stall action, as we see in the ongoing

carbon emission and climate change debate. Further, in the absence of a market price for pollutant

emissions, the market mechanisms described above are not able to keep supply (i.e., available sink

capacity) and demand (i.e., emission of pollutants) within sustainable limits.

Despite these challenges, there are several examples where regulatory action has successfully

limited emissions to rates below maximum sustainable levels. Examples include Britain’s 1956 Clean

Air Act, which reduced smog in London (Urbanito 1994); Amendment IV of the 1990 US Clean

Air Act, which reduced acid rain resulting from SO2 (US Environmental Protection Agency 2010);

and the US ban of the presumed carcinogen DDT from pesticides (US Environmental Protection

Agency 1972). However, many other unsustainable practices have arisen or remain unaddressed.

Perhaps the most widely cited is the emission of CO2 and other GHG relative to the biosphere’s

ability to assimilate them. Rockström et al. (2009) point out that the earth was ice-free until the

concentration of atmospheric CO2 decreased to 450 +/- 100 parts per million (ppm). To maintain

the earth’s current climate system, of which the polar ice caps are such a crucial component, they

suggest a boundary of 350 ppm, which we have already exceeded. It is therefore not surprising

that the UN Intergovernmental Panel on Climate Change (IPCC) has stated that “warming of

the climate system is unequivocal” and that “most of the observed increase in global average
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temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic

[greenhouse gas] concentrations” (IPCC 2007).

There are numerous, more localized examples of unsustainable emission into sinks, such as the

emission of air particulates in Beijing reaching nearly three times the “emergency” threshold for air

quality (Associated Press 2013, January 13); similar air quality issues in Singapore, Malaysia and

Indonesia (Wong 2013, June 20); waste and sewage discharge into China’s Yellow River rendering

over one-third of the river unusable even for agricultural and industrial purposes and less than

one-sixth sufficiently clean for domestic use (Branigan 2008, November 25); and the accumulation

of plastic debris throughout the world’s oceans and seas (Derraik 2002). As global consumption

increases and production systems ramp to satisfy this demand, we should expect such reports to

become more frequent.

Implications for business

Research commissioned by the Central Intelligence Agency and conducted by the National Research

Council (2012) concluded that climate crises are likely to increase in frequency and magnitude

over the coming decades, disrupting regional water supplies, food markets, public health systems,

and the global supply chains of strategic commodities. These risks clearly create humanitarian,

geopolitical, and operational concerns related to political and social instability and the reliable

availability of food, water, and raw materials. Given the interconnectedness of global markets, the

uncertainties that such climate crises present for industry are extreme.

Specifically with respect to climate change, firms can face three types of risk (Hultman et al.

2010). First, firms that operate unsustainably bear regulatory, economic, and legal risks from

policy makers and from NGOs that lobby firms directly. Emissions caused by deforestation provide

one such example. The UN IPCC estimated in 2007 that deforestation and forest degradation

contribute approximately 17% of annual global CO2 emissions. Sourcing practices for palm oil, an

essential ingredient of cooking oil, soaps, and cosmetics, are frequently blamed for deforestation

and destruction of animal habitats. Under pressure from NGOs backed by the IPCC’s finding,

Unilever accepted a moratorium on palm oil harvesting in South East Asia (Greenpeace 2009).

Second, firms launching or investing in new sustainable products and services also face regulatory

risk. Policy fluctuations and uncertainty as regulators grapple with the issue of climate change

can significantly alter the value of such investments. In Germany, the current debate about the

design of feed-in tariffs—long-term guaranteed purchase agreements for electricity generated from

renewable energy—is one example. This policy mechanism helped increase the share of renewables

in Germany from 3% in 1990 to 20% in 2011, with yearly investments peaking in 2010 at 27.9

billion EUR (BMU 2012). However, the currently negotiated redesign with significantly lower
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remuneration has led to the cancellation of planned investments in renewable energy. In general,

as climate change policies are continually refined, the value of sustainability opportunities will be

subject to substantial changes with the ebb and flow of policy.

Third, firms’ profits and cash-flows in many sectors are directly exposed to climate instability.

This set of firms is larger than one might think. Cachon et al. (2012), for example, estimate that

US auto manufacturers lose an average of about 1.5% of their available capacity per year due

to severe weather, results that the authors point out become more important given the threat of

anthropogenic climate change. Aon estimates that there was $200 billion in climate-catastrophe-

related damage in 2012, including $65 billion from hurricane Sandy and $35 billion from a drought in

the US Midwest (Aon Benfield 2013). Given the predicted increase in the frequency and magnitude

of climate crises (National Research Council 2012), we should expect these costs to grow under

any business-as-usual scenario. To mitigate such costs, Kleindorfer (2009) challenges the insurance

industry to become a knowledge broker in the area of climate risk, with the goal of integrating risk

management solutions with sustainability strategies. Similarly, Jaffe et al. (2010) and Kleindorfer

et al. (2012a) advocate multiyear property insurance as a mechanism by which individuals can

reduce their financial exposure to climate change, replacing that volatility with stable insurance

premiums over several years.

How Can an Operations Management Lens Contribute?

OM offers a vital sustainability perspective. At the micro-level, firms’ operational decisions deter-

mine the production and distribution technologies and system design that they employ. These in

turn determine how efficiently (and which) materials and energy are consumed as well as the type

and intensity of waste injected into ecosystems, which aggregate to determine global source and

sink consumption rates and, ultimately, the sustainability of an ecosystem with respect to human

activity. Sustainable OM, therefore, potentially has an important role to play in contributing to

solutions for the sustainability challenges that we currently face. However, to fulfill that potential,

we must deliver on the stream’s implicit promise—to generate research that enables production

and distribution systems to operate more efficiently with respect to their environmental and social

impact. Research that fulfills this promise must not only be rigorously executed, it must also

directly or indirectly influence firm decisions and/or shape policy. Such research will satisfy at least

one, and ideally both, of the following criteria: (i) it engages practitioners and/or policy makers;

and (ii) it embraces the multidisciplinary nature of the sustainability challenge.

Not satisfied with a handful of paragraphs at the end of his papers to make the case for his

work’s managerial implications, Paul’s modus operandi throughout his career was to engage with

firms and policy makers to fine tune research questions and communicate results. He embraced the
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role of a management academic, and with it the scholarly duty to affect practice. Paul engaged

with practice and/or policy makers in all of the streams that he was active in; engaging with

postal operators around the world with Michael Crew, partnering with industry and government

organizations while co-directing the Risk Management and Decision Processes Center at Wharton,

and doing the same while playing an integral role in the Social Innovation Centre at INSEAD.

He created opportunities for his students and colleagues to engage with practitioners as well.

When one of us brought the topic for our first dissertation paper to Paul, his response was not the

expected “how do you plan to formulate the problem,” rather it was “Wonderful! Now let me find

some managers for you to meet with.”

For sustainable OM to endure as a topic of importance and interest, it seems such an approach is

required. The growing salience and magnitude of sustainability in general are not enough. Sustain-

able OM’s value to the broader field of sustainability hinges on its micro view of firms’ processes

and environment—i.e., its conceptual proximity to firms’ actual operations. It therefore seems that

interest in Sustainable OM is likely to wane unless it ultimately delivers on this value by influencing

the manner in which firms operate. Engaging directly with practitioners, policy makers, and those

who will one day fill such roles (i.e., our students) is the most direct way in which to achieve that

impact, which gives rise to the first criterion.

The second criterion arises because the world’s challenges are often not cleanly partitioned by

academic department, a fact abundantly clear in the case of sustainability where scholars from a

host of disciplines contribute their research efforts. Consequently, most sustainability challenges will

not be met by efforts from a single discipline, but will require interaction and collaboration across

disciplines. For example, implementing a market price for carbon emissions to address climate

change risks requires not only understanding how firms would adjust their OM decisions in response

to a carbon market. It also requires climate science, economics, public policy, and law perspectives,

to name a few. The impact that any one stream has on practice and policy relies on the degree to

which it is integrated with parallel efforts in other streams. This complementarity suggests that

the ability of any given sustainability stream to endure as an important field depends in part on

the extent to which scholars collaborate across disciplines.

Such a multi-disciplinary approach came naturally to Paul. He not only was one of the most

broadly-read academics that we have known, he also often attended other field’s conferences, co-

authored with scholars from other disciplines (e.g., Crew and Kleindorfer 1970, Kleindorfer and

Orts 1998, and Rosenthal et al. 2006), and published in non-OM outlets (e.g., Crew and Kleindorfer

1976, Kunreuther and Kleindorfer 1980, Schulkin and Kleindorfer 1995, and Kleindorfer 2008). Such

cross-pollination requires intentional effort but pays off by increasing the visibility of Sustainable

OM research beyond our own circle of scholars, enhancing its potential impact. One recent example
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of such an effort is Plambeck (2012), which reviews Sustainable OM research related to climate

change for the environmental economics community.

Clearly, in addition to the two criteria above, both sustainability and operations management

must be at the core of Sustainable OM research. There are several avenues through which this can be

achieved. Many decisions that determine a firm’s sustainability impact also naturally intersect with

established OM streams such as, product design, technology choice, and supply chain management.

Sustainable OM considers these operational decisions with the intent of identifying opportunities

and potential pitfalls related to improving firms’ ecological efficiency. We briefly discuss five active

themes in the field, describing how a few contributions in each address the criteria outlined above.

Product design

The concept of cradle-to-cradle (McDonough and Braungart 1998, McDonough and Braungart

2000) has been highly relevant to sustainable product design. This concept—which itself is in

accordance with the notion of biomimicry (Benyus 1997)—helped popularize the notion of indus-

trial ecology (e.g., Kneese et al. 1970), modeling industry according to nature’s processes, such

that output (waste) from one system becomes an input (nutrient) to another system. Two types

of “nutrients” are distinguished: biological nutrients (e.g., compostable products), and technical

nutrients, which refer to, for instance, a product that can be disassembled and hence reused in

another product. The OM literature at the intersection of product design and sustainability focuses

on such design choices. This literature informs several stakeholders: legislators with regard to set-

ting the right incentives for green product design, manufacturers in terms of the ramifications of

product design choices, and investors with respect to their valuation of green product development

initiatives.

In this vein, Plambeck and Wang (2009) analyze the impact of e-waste collection alternatives

on the frequency of new product introduction. They find that fee-upon-sale schemes enhance sus-

tainability by inducing manufacturers to introduce new products less frequently but with higher

quality. However, the authors find that this type of scheme does not incentivize manufacturers

to engage in design for recyclability, which can be achieved through fee-upon-disposal regulation.

This work therefore highlights an unexpected policy trade-off; to incentivize less frequent prod-

uct introduction (and fewer units produced) versus greater recyclability. Agrawal and Ülkü (2013)

study modular upgradability which is commonly recommended in the product design literature

as an enabler of sustainable products by allowing single components (rather than entire units) to

be upgraded and hence disposed of. However, the authors show that, for product categories such

as computers, modular upgradability increases environmental impact by accelerating obsolescence.

Agrawal and Ülkü (2013) integrate product design, engineering, and OM perspectives and relate
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their results to specific product categories which helps connect their findings to managerial practice.

Raz et al. (2013) study firm investments to improve environmental performance in the manufac-

turing and in the use phases of a product’s lifecycle. They show that firms should invest more

in improving the environmental efficiency of manufacturing for functional products, but should

invest more in improving the environmental efficiency of product use for innovative products. Ba

et al. (2012) bridge the investors’ and the firm’s perspectives as they show, by means of an event

study, that the stock-market’s reaction is generally positive to green development initiatives in the

automotive industry.

Production technology choice

The adoption of cleaner technologies is a necessary condition for a sustainable future. Indeed,

the principal reason that the dire predictions made by Malthus (1798) have not come to pass

is because technologies have thus far been developed and adopted to allow production to grow

exponentially; i.e., at pace with population (Trewavas 2002). In a sustainable economy, technology

adoption must achieve similar efficiency gains with respect to the reduction of toxic emissions.

The sustainable technology choice literature explores such adoption. Specifically, the Sustainable

OM technology choice literature studies investment in production technologies that vary across

multiple dimensions, with one of the focal dimensions relating to environmental performance such

as pollution intensity (the amount of waste emitted per unit of production). There is no hard-

and-fast delineation between technology choice research in Sustainable OM versus Environmental

Economics (see Jaffe et al. 2002, and Popp et al. 2009 for reviews of the latter). However Sustainable

OM typically takes a more granular view of firms’ objectives and decision process (e.g., through

discrete technologies and/or uncertainties pertinent to the setting).

In this stream, İşlegen and Reichelstein (2011) provide an excellent example of multi-disciplinary

work that is well-connected to practice. They advise carbon policy by estimating the break-even

emissions price for the adoption of Carbon Capture and Storage (CCS) technology in power gener-

ation, finding the CCS adoption threshold for natural gas to be twice that of coal-fired production

(at $60 and $30 per ton of emissions, respectively). Based on these adoption thresholds, the authors

estimate that electricity prices would increase no more than 30% as a consequence of emissions

regulation. The analysis in İşlegen and Reichelstein (2011) is multi-disciplinary in that it addresses

discrete technology choice, while applying costing methodology derived in the energy literature

(levelized cost of electricity), and explicitly accounting for differences in US state-level power gen-

eration policy. Drake et al. (2012) analyze a firm’s optimal portfolio of discrete technologies under

carbon regulation, advising carbon policy by countering conventional wisdom, showing that the

firm earns greater expected profit under cap-and-trade than a carbon tax due to emissions price
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uncertainty under the former and the option not to produce.2 The authors also summarize the

motivating example from this research in a pedagogical case as a vehicle to communicate their

principal findings to students, executives, and policy makers (Drake et al. 2010).

Transportation systems

Transportation generates over 23% of the world’s carbon emissions, making it the second largest

source of emissions behind power generation (European Commission 2010). Further, fleet-related

expenses make up about 20% of logistics providers’ total costs (Le Groupe La Poste 2012). Together,

these facts point to the environmental and commercial importance of transportation, with technol-

ogy choice playing a central role. Transport technology choice is distinct from production technology

choice in a number of important ways: it is generally less capital-intensive to acquire increments

of transport capacity; transport technologies are often concurrently available for commercial and

private purchase; and transport technologies are often constrained by vehicle range and routing

requirements. The environmental benefits derived from transport electrification depend on the

environmental performance of the power grid it draws from. Likewise, transport electrification has

been shown to enable greater investment in renewable energy through vehicle-to-grid services and

other technologies that mitigate intermittency concerns associated with most renewable energy

sources (Richardson 2013, and Hein et al. 2012).

Kleindorfer et al. (2012b) analyze the case of a large fleet operator, La Poste. Given the choice

between conventional diesel vehicles and electric vehicles (EVs), and accounting for postal opera-

tors’ Universal Service Obligation (Crew and Kleindorfer 2005), they conclude that EVs allow La

Poste to significantly lower their fleet cost while also reducing their carbon foot print by about

30% due to a 75% share of nuclear power in France’s energy portfolio (World Nuclear Association

2013, May). Due to the tight orchestration between the research team and La Poste’s manage-

ment (the Director of Mail Operations at La Poste was a co-author on the paper), this research

was sufficiently well-grounded in practice to enable La Poste to commit to the purchase of 15,600

EV’s in October 2011. Wang et al. (2011) provide an extension to the previous paper by allowing

for uncertain vehicle demand which gives rise to a portfolio solution of vehicle technologies. The

authors derive an optimal policy for investments in sustainable transport technologies, applying it

to the case of Coca-Cola where the optimal fleet composition is shown to consist of nearly an even

mix of diesel and hybrid electric vehicles. This optimal portfolio is demonstrated to reduce Coca-

Cola’s fleet costs by between 2 and 6% relative to a single-vehicle-type fleet while also reducing the

2 Like Drake et al. (2012), İşlegen et al. (2012) independently show that variability in emissions price under cap-and-
trade increases firms’ expected profits relative to a carbon tax. They do so in a competitive setting without technology
choice to study carbon leakage and international trade while Drake et al. (2012) do so in a non-competitive setting
with discrete technology choice and endogenous capacity constraints to study technology portfolios.
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fleet’s environmental impact. While the previous papers explore sustainable transport through the

adoption of cleaner vehicle technologies, Akyol and De Koster (2013) illustrate that environmental

gains can also be achieved by integrating transport planning and policy perspectives. By explor-

ing the effect of municipal policy restricting freight delivery times, they show that coordination

of such policies across urban areas can lead to environmental and financial improvements while

concurrently satisfying municipality objectives.

Forward supply chain

Sustainable supply chain management extends the scope of analysis from a single firm or indus-

try to multiple echelons of suppliers, manufacturers, distributors, and/or retailers. By its nature,

this scope often reaches across organizational and national boundaries, introducing decisions and

challenges such as overall supply chain design, information asymmetry, contracting and coordina-

tion, and geopolitical and regional trends. While this can add considerable complexity, it can also

add vital perspective when considering sustainability since the majority of a product’s ecological

impact often falls beyond any single tier’s organizational boundaries. For example, Matthews et al.

(2008) estimate that the direct carbon emissions from an industry, on average, represent only 14%

of that industry’s total supply chain emissions.

Within this stream, two recent papers explore emissions allocation policies when those emissions

are jointly determined by multiple products or firms. Keskin and Plambeck (2011) analyze allo-

cation rules for emissions generated by a process that yields co-products. When one co-product is

imported into an emissions-regulated region protected by a carbon tariff and the other is consumed

in the (unregulated) region that it was produced, the authors find that allocating emissions to

co-products based on their relative price can counter-intuitively lead to increased production and

emissions. Caro et al. (2013) study a setting where a product’s GHG emissions result from a supply

chain’s joint effort—i.e., the emissions from at least one process are determined by the efforts of

multiple partners. They find that, in such settings, emissions must be over-allocated to achieve

welfare-maximizing abatement efforts. Both papers advise carbon policy by providing emissions

allocation guidance in settings where operational complexity blurs carbon footprint boundaries.

In work exploring supply chain information sharing related to climate change exposure and

performance, Jira and Toffel (2013) empirically study the factors that contribute to suppliers’

willingness to comply with buyer requests for emissions disclosure. They find compliance to be

greater when suppliers belong to more profitable industries, have a greater number of buyers

requesting the information, and/or are located in GHG regulated countries. Kalkanci et al. (2013)

explore the effect of policy intended to improve supply chain transparency (the public disclosure of

performance). They warn that government regulation requiring firms to disclose what they know
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of their supply chain’s environmental and social performance can have the unintended effect of

deterring the measurement of that performance. Together, these papers provide guidance on when

firms are likely (and are not likely) to disclose details to their partners and to the public relating

to environmental their performance.

Closed-loop supply chain

Dating back to at least the Environmental Handbook published to coincide with the first Earth

Day (De Bell 1970), the environmentalists’ directive has been “reduce, reuse, recycle.” Research

in the streams discussed above generally address sustainability through the first of these R’s. In

comparison, Closed-Loop Supply Chain (CLSC) research—literature focusing on product recovery

and reuse—addresses the latter two R’s, adding “remanufacturing” to the set. That said, it should

be noted that these Sustainable OM streams are not mutually exclusive. There are contributions

in the other streams noted above that intersect with the CLSC literature through a focus on reuse,

remanufacturing, and or recycling (e.g., see Debo et al. 2005 for sustainable technology choice work

that intersects with CLSC; and Plambeck and Wang 2009, Atasu and Subramanian 2012, and

Subramanian et al. 2013 for sustainable product design work that intersects with CLSC). Souza

(2012) provides a thorough tutorial and review of the closed-loop supply chain literature while

Guide and Van Wassenhove (2009) describe the stream’s evolution.

The exploration of Extended Producer Responsibility (EPR)—regulation whereby manufactur-

ers are held accountable for the recovery and reuse or disposal of their products—has been an active

area of CLSC research well-integrated with policy (e.g., Atasu et al. 2009, Jacobs and Subramanian

2012, Gui et al. 2013). Gui et al. (2013), for example, show that return-share methods tradition-

ally employed by regulators to allocate recovery costs to manufacturers result in fragmented and

relatively costly collection networks. The authors instead propose an alternative allocation scheme

that adjusts for firms’ marginal return costs and capacity contributions to the collection network.

To ground their research, the authors engage practitioners—interviewing collectors, processors,

transporters, and NGOs—and calibrate their model with data collected from Washington state’s

product recovery program. The research is also multi-disciplinary, using an economic method (col-

laborative game theory) to test specific policy options through a detailed operational model of a

product recovery network.

Some recent CLSC research leverages perspectives from both OM and marketing, incorporating

behavioral studies to ground and calibrate analytic results with consumer preferences. For example,

Ovchinnikov (2011) conducts a behavioral study that indicates cannibalization of new products by

remanufactured products is inverted-u-shaped in price. Using these results, he shows that (contrary

to conventional wisdom) a firm should generally set a much lower price for their remanufactured
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products than the myopic price that ignores the presence of new products. Also leveraging behav-

ioral results, Agrawal et al. (2012) show that an Original Equipment Manufacturer (OEM) reduces

the perceived quality of their new products when they remanufacture their own goods. However,

they show that the perceived quality of an OEM’s new products increases with the presence of a

third-party remanufacturer. By incorporating behavioral methods, both of these papers are able to

guide the development of remanufacturing processes with insight that would likely not have come

to light in the absence of such a multi-disciplinary approach.

Conclusion

Sustainability will endure as a topic of interest to a variety of stakeholders (including managers

and management scholars) due to a causal chain with links likely to persist for the foreseeable

future. First, growth of the principal drivers of aggregate consumption—population and per capita

consumption—does not appear likely to abate. Second, evidence suggests that this growth has

already led, in several instances, to consumption and pollution rates that exceed sustainable lev-

els. Third, this unsustainable consumption of specific sources and sinks has created a set of risks,

costs and opportunities that can directly impact firm profitability. All of this points to the eco-

logical impact of industry continuing to escalate in both its salience and stakes. Consequently,

sustainability in general will endure as an important and active field.

Firms’ OM decisions determine the technologies that they employ and the design of their pro-

duction and distribution systems, all of which play a fundamental role in determining industry’s

source and sink consumption. Firms’ OM decisions are therefore principle contributors to anthro-

pogenic effects on ecosystem sustainability. As a consequence, Sustainable OM is likely to endure

as an active and important stream if we deliver on its implicit promise: to generate research that

enables production systems to operate more efficiently with respect to their environmental and

social impact. Such research must ultimately advise and impact practice and/or policy. It can do

so by (i) engaging practitioners and/or policy makers; and (ii) embracing the multidisciplinary

nature of the sustainability challenge. By producing research that satisfies these two criteria, we

as a community maximize our ability to deliver on the stream’s promise and contribute to making

the quality-of-life gains delivered through industry more harmonious with the world around us.

When we do that, the importance of and interest in the stream will flourish; or, as Paul was fond

of saying, “we’ll be cooking with gas.”
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