
The Complexity of Computing the Optimal
Composition of Differential Privacy

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Murtagh, Jack, and Salil Vadhan. 2015. “The Complexity of
Computing the Optimal Composition of Differential Privacy.”
Lecture Notes in Computer Science (December 19): 157–175.
doi:10.1007/978-3-662-49096-9_7.

Published Version 10.1007/978-3-662-49096-9_7

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28237450

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20Complexity%20of%20Computing%20the%20Optimal%20Composition%20of%20Differential%20Privacy&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f1fe41fc57ae5343792d2bfa96bf0388&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:28237450
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

The Complexity of Computing the Optimal Composition
of Differential Privacy∗†

Jack Murtagh‡ Salil Vadhan§

Center for Research on Computation & Society
John A. Paulson School of Engineering & Applied Sciences

Harvard University, Cambridge, MA, USA
{jmurtagh,salil}@seas.harvard.edu

Abstract. In the study of differential privacy, composition theorems (starting with the orig-
inal paper of Dwork, McSherry, Nissim, and Smith (TCC’06)) bound the degradation of pri-
vacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath
(ICML’15) showed how to compute the optimal bound for composing k arbitrary (ε, δ)-
differentially private algorithms. We characterize the optimal composition for the more gen-
eral case of k arbitrary (ε1, δ1), . . . , (εk, δk)-differentially private algorithms where the privacy
parameters may differ for each algorithm in the composition. We show that computing the
optimal composition in general is #P-complete. Since computing optimal composition exactly
is infeasible (unless FP=#P), we give an approximation algorithm that computes the com-
position to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyer’s
dynamic programming approach to approximately counting solutions to knapsack problems
(STOC’03).

Keywords: differential privacy, composition, computational complexity, approximation algorithms

1 Introduction

Differential privacy is a framework that allows statistical analysis of private databases while mini-
mizing the risks to individuals in the databases. The idea is that an individual should be relatively
unaffected whether he or she decides to join or opt out of a research dataset. More specifically, the
probability distribution of outputs of a statistical analysis of a database should be nearly identical
to the distribution of outputs on the same database with a single person’s data removed. Here
the probability space is over the coin flips of the randomized differentially private algorithm that
handles the queries. To formalize this, we call two databases D0, D1 with n rows each neighboring
if they are identical on at least n− 1 rows, and define differential privacy as follows:
∗ c©IACR 2016. This article is the final version submitted by the authors to the IACR and

to Springer-Verlag on October 30, 2015. The version published by Springer-Verlag is available at
doi:10.1007/978-3-662-49096-9_7.
†A full version of this paper is available on arXiv [10]
‡Supported by NSF grant CNS-1237235 and a grant from the Sloan Foundation.
§Supported by NSF grant CNS-1237235, a grant from the Sloan Foundation, and a Simons Investigator

Award.

Definition 1.1 (Differential Privacy [2],[3]). A randomized algorithm M is (ε, δ)-differentially
private if for all pairs of neighboring databases D0 and D1 and all output sets S ⊆ Range(M)

Pr[M(D0) ∈ S] ≤ eε Pr[M(D1) ∈ S] + δ

where the probabilities are over the coin flips of the algorithm M .

In the practice of differential privacy, we generally think of ε as a small, non-negligible, constant
(e.g. ε = .1). We view δ as a “security parameter” that is cryptographically small (e.g. δ = 2−30).
One of the important properties of differential privacy is that if we run multiple distinct differentially
private algorithms on the same database, the resulting composed algorithm is also differentially pri-
vate, albeit with some degradation in the privacy parameters (ε, δ). In this paper, we are interested
in quantifying the degradation of privacy under composition. We will denote the composition of k
differentially private algorithms M1,M2, . . . ,Mk as (M1,M2, . . . ,Mk) where

(M1,M2, . . . ,Mk)(x) = (M1(x),M2(x), . . . ,Mk(x)) .

A handful of composition theorems already exist in the literature. The first basic result says:

Theorem 1.2 (Basic Composition [2]). For every ε ≥ 0, δ ∈ [0, 1], and (ε, δ)-differentially
private algorithms M1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (kε, kδ)-differential
privacy.

This tells us that under composition, the privacy parameters of the individual algorithms “sum
up,” so to speak. We care about understanding composition because in practice we rarely want to
release only a single statistic about a dataset. Releasing many statistics may require running multiple
differentially private algorithms on the same database. Composition is also a very useful tool in
algorithm design. Often, new differentially private algorithms are created by combining several
simpler algorithms. Composition theorems help us analyze the privacy properties of algorithms
designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of algorithms in the
composition (k) grows and it is of interest to improve on this bound. If we can prove that privacy
degrades more slowly under composition, we can get more utility out of our algorithms under the
same global privacy guarantees. Dwork, Rothblum, and Vadhan gave the following improvement on
the basic summing composition above [5].

Theorem 1.3 (Advanced Composition [5]). For every ε > 0, δ, δ′ > 0, k ∈ N, and (ε, δ)-
differentially private algorithmsM1,M2, . . . ,Mk, the composition (M1,M2, . . . ,Mk) satisfies (εg, kδ+
δ′)-differential privacy for

εg =
√

2k ln(1/δ′) · ε+ k · ε · (eε − 1) .

Theorem 1.3 shows that privacy under composition degrades by a function of O(
√
k ln(1/δ′))

which is an improvement if δ′ = 2−O(k). It can be shown that a degradation function ofΩ(
√
k ln(1/δ))

is necessary even for the simplest differentially private algorithms, such as randomized response [11].
Despite giving an asymptotically correct upper bound for the global privacy parameter, εg,

Theorem 1.3 is not exact. We want an exact characterization because, beyond being theoretically
interesting, constant factors in composition theorems can make a substantial difference in the prac-
tice of differential privacy. Furthermore, Theorem 1.3 only applies to “homogeneous” composition

where each individual algorithm has the same pair of privacy parameters, (ε, δ) . In practice we
often want to analyze the more general case where some individual algorithms in the composition
may offer more or less privacy than others. That is, given algorithms M1,M2, . . . ,Mk, we want
to compute the best achievable privacy parameters for (M1,M2, . . . ,Mk). Formally, we want to
compute the function:

OptComp(M1,M2, . . . ,Mk, δg) = inf{εg : (M1,M2, . . . ,Mk) is (εg, δg)-DP} .

It is convenient for us to view δg as given and then compute the best εg, but the dual formulation,
viewing εg as given, is equivalent (by binary search). Actually, we want a function that depends
only on the privacy parameters of the individual algorithms:

OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) = sup{OptComp(M1,M2, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]} .

In other words we want OptComp to give us the minimum possible εg that maintains privacy
for every sequence of algorithms with the given privacy parameters (εi, δi). This definition refers
to the case where the sequence of algorithms (M1, . . . ,Mk) and the pair of neighboring databases
(D0, D1) on which they are applied are fixed, but we show that the same optimal bound holds even
if the algorithms and databases are chosen adaptively, i.e. Mi and databases (D0, D1) are chosen
adaptively based on the outputs of M1, . . . ,Mi−1. (See Section 2 for a formal definition.)

A result from Kairouz, Oh, and Viswanath [9] characterizes OptComp for the homogeneous
case.

Theorem 1.4 (Optimal Homogeneous Composition [9]). For every ε ≥ 0 and δ ∈ [0, 1),
OptComp((ε, δ)1, (ε, δ)2, . . . , (ε, δ)k, δg) = (k−2i)ε, where i is the largest integer in {0, 1, . . . , bk/2c}
such that

i−1∑
l=0

(
k

l

)(
e(k−l)ε − e(k−2i+l)ε)
(1 + eε)k ≤ 1− 1− δg

(1− δ)k .

With this theorem the authors exactly characterize the composition behavior of differentially
private algorithms with a polynomial-time computable solution. The problem remains to find the
optimal composition behavior for the more general heterogeneous case. Kairouz, Oh, and Viswanath
also provide an upper bound for heterogeneous composition that generalizes the O(

√
k ln(1/δ′))

degradation found in Theorem 1.3 for homogeneous composition but do not comment on how close
it is to optimal.

1.1 Our Results

We begin by extending the results of Kairouz, Oh, and Viswanath [9] to the general heterogeneous
case.

Theorem 1.5 (Optimal Heterogeneous Composition). For all ε1, . . . , εk ≥ 0 and δ1, . . . , δk, δg ∈
[0, 1),OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) equals the least value of εg such that

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ 1− 1− δg∏k

i=1 (1− δi)
. (1)

Theorem 1.5 exactly characterizes the optimal composition behavior for any arbitrary set of
differentially private algorithms. It also shows that optimal composition can be computed in time
exponential in k by computing the sum over S ⊆ {1, . . . , k} by brute force. Of course in prac-
tice an exponential-time algorithm is not satisfactory for large k. Our next result shows that this
exponential complexity is necessary:

Theorem 1.6. Computing OptComp is #P -complete, even on instances where δ1 = δ2 = . . . =
δk = 0 and

∑
i∈[k] εi ≤ ε for any desired constant ε > 0.

Recall that #P is the class of counting problems associated with decision problems in NP. So
being #P -complete means that there is no polynomial-time algorithm for OptComp unless there is
a polynomial-time algorithm for counting the number of satisfying assignments of boolean formulas
(or equivalently for counting the number of solutions of all NP problems). So there is almost certainly
no efficient algorithm for OptComp and therefore no analytic solution. Despite the intractability of
exact computation, we show that OptComp can be approximated efficiently.

Theorem 1.7. There is a polynomial-time algorithm that given ε1, . . . , εk ≥ 0, δ1, . . . δk, δg ∈ [0, 1),
and η > 0, outputs ε∗ where

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η .

The algorithm runs in O
(

log
(
k
η

∑k
i=1 εi

)
k2

η

∑k
i=1 εi

)
time assuming constant-time arithmetic op-

erations.

Note that we incur a relative error of η in approximating δg and an additive error of η in
approximating εg. Since we always take εg to be non-negligible or even constant, we get a very
good approximation when η is polynomially small or even a constant. Thus, it is acceptable that
the running time is polynomial in 1/η.

In addition to the results listed above, our proof of Theorem 1.5 also provides a somewhat
simpler proof of the Kairouz-Oh-Viswanath homogeneous composition theorem (Theorem 1.4 [9]).
The proof in [9] introduces a view of differential privacy through the lens of hypothesis testing and
uses geometric arguments. Our proof relies only on elementary techniques commonly found in the
differential privacy literature.

Practical Application. The theoretical results presented here were motivated by our work on an
applied project called “Privacy Tools for Sharing Research Data”1. We are building a system that
will allow researchers with sensitive datasets to make differentially private statistics about their
data available through data repositories using the Dataverse2 platform [1], [8]. Part of this system
is a tool that helps both data depositors and data analysts distribute a global privacy budget across
many statistics. Users select which statistics they would like to compute and are given estimates
of how accurately each statistic can be computed. They can also redistribute their privacy budget
according to which statistics they think are most valuable in their dataset. We implemented the
approximation algorithm from Theorem 1.7 and integrated it with this tool to ensure that users
get the most utility out of their privacy budget.

1privacytools.seas.harvard.edu
2dataverse.org

2 Technical Preliminaries

A useful notation for thinking about differential privacy is defined below.

Definition 2.1. For two discrete random variables Y and Z taking values in the same output space
S, the δ-approximate max-divergence of Y and Z is defined as:

Dδ
∞(Y ‖Z) ≡ max

S

[
ln Pr[Y ∈ S]− δ

Pr[Z ∈ S]

]
.

Notice that an algorithmM is (ε, δ) differentially private if and only if for all pairs of neighboring
databases, D0, D1, we have Dδ

∞(M(D0)‖M(D1)) ≤ ε. The standard fact that differential privacy is
closed under “post processing” [3], [4] now can be formulated as:

Fact 2.2 If f : S → R is any randomized function, then

Dδ
∞(f(Y)‖f(Z)) ≤ Dδ

∞(Y ‖Z) .

Adaptive Composition. The composition results in our paper actually hold for a more general model
of composition than the one described above. The model is called k-fold adaptive composition and
was formalized in [5]. We generalize their formulation to the heterogeneous setting where privacy
parameters may differ across different algorithms in the composition.

The idea is that instead of running k differentially private algorithms chosen all at once on
a single database, we can imagine an adversary adaptively engaging in a “composition game.”
The game takes as input a bit b ∈ {0, 1} and privacy parameters (ε1, δ1), . . . , (εk, δk). A randomized
adversary A, tries to learn b through k rounds of interaction as follows: on the ith round of the game,
A chooses an (εi, δi)-differentially private algorithmMi and two neighboring databases D(i,0), D(i,1).
A then receives an output yi ← Mi(D(i,b)) where the internal randomness of Mi is independent
of the internal randomness of M1, . . . ,Mi−1. The choices of Mi, D(i,0), and D(i,1) may depend on
y0, . . . , yi−1 as well as the adversary’s own randomness.

The outcome of this game is called the view of the adversary, V b which is defined to be
(y1, . . . , yk) along with A’s coin tosses. The algorithms Mi and databases D(i,0), D(i,1) from each
round can be reconstructed from V b. Now we can formally define privacy guarantees under k-fold
adaptive composition.

Definition 2.3. We say that the sequences of privacy parameters ε1, . . . , εk ≥ 0, δ1, . . . , δk ∈ [0, 1)
satisfy (εg, δg)-differential privacy under adaptive composition if for every adversary A we have
D
δg
∞(V 0‖V 1) ≤ εg, where V b represents the view of A in composition game b with privacy parameter

inputs (ε1, δ1), . . . , (εk, δk).

Computing real-valued functions. Many of the computations we discuss involve irrational numbers
and we need to be explicit about how we model such computations on finite, discrete machines.
Namely when we talk about computing a function f : {0, 1}∗ → R, what we really mean is comput-
ing f to any desired number q bits of precision. More precisely, given x, q, the task is to compute a
number y ∈ Q such that |f(x)− y| ≤ 1

2q . We measure the complexity of algorithms for this task as
a function of |x|+ q.

3 Characterization of OptComp

Following [9], we show that to analyze the composition of arbitrary (εi, δi)-DP algorithms, it suffices
to analyze the composition of the following simple variant of randomized response [11].

Definition 3.1 ([9]). Define a randomized algorithm M̃(ε,δ) : {0, 1} → {0, 1, 2, 3} as follows, setting
α = 1− δ:

Pr[M̃(ε,δ)(0) = 0] = δ Pr[M̃(ε,δ)(1) = 0] = 0
Pr[M̃(ε,δ)(0) = 1] = α · eε

1+eε Pr[M̃(ε,δ)(1) = 1] = α · 1
1+eε

Pr[M̃(ε,δ)(0) = 2] = α · 1
1+eε Pr[M̃(ε,δ)(1) = 2] = α · eε

1+eε
Pr[M̃(ε,δ)(0) = 3] = 0 Pr[M̃(ε,δ)(1) = 3] = δ

Note that M̃(ε,δ) is in fact (ε, δ)-DP. Kairouz, Oh, and Viswanath showed that M̃(ε,δ) can be used
to simulate the output of every (ε, δ)-DP algorithm on adjacent databases.

Lemma 3.2 ([9]). For every (ε, δ)-DP algorithmM and neighboring databases D0, D1, there exists
a randomized algorithm T such that T (M̃(ε,δ)(b)) is identically distributed to M(Db) for b = 0 and
b = 1.

Proof. We provide a new proof of this lemma in the full version of the paper [10].

Since M̃(ε,δ) can simulate any (ε, δ) differentially private algorithm and it is known that post-
processing preserves differential privacy (Fact 2.2), it follows that to analyze the composition of
arbitrary differentially private algorithms, it suffices to analyze the composition of M̃(εi,δi)’s:

Lemma 3.3. For all ε1, . . . , εk ≥ 0, δ1, . . . , δk, δg ∈ [0, 1),

OptComp((ε1, δ1), . . . , (εk, δk), δg) = OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) .

Proof. Since M̃(ε1,δ1), . . . , M̃(εk,δk) are (ε1, δ1), . . . , (εk, δk)-differentially private, we have:

OptComp((ε1, δ1), . . . , (εk, δk), δg) = sup{OptComp(M1, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]}
≥ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) .

For the other direction, it suffices to show that for everyM1, . . . ,Mk that are (ε1, δ1), . . . , (εk, δk)-
differentially private, we have

OptComp(M1, . . . ,Mk, δg) ≤ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk)) .

That is,

inf{εg : (M1, . . . ,Mk) is (εg, δg)-DP} ≤ inf{εg : (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP} .

So suppose (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP. We will show that (M1, . . . ,Mk) is also (εg, δg)-DP.
Taking the infimum over εg then completes the proof.

We know from Lemma 3.2 that for every pair of neighboring databases D0, D1, there must exist
randomized algorithms T1, . . . , Tk such that Ti(M̃(εi,δi)(b)) is identically distributed to Mi(Db) for
all i ∈ {1, . . . , k}. By hypothesis we have

Dδg
∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg .

Thus by Fact 2.2 we have:

Dδg
∞
(
(M1(D0), . . . ,Mk(D0))‖(M1(D1), . . . ,Mk(D1))

)
=

Dδg
∞
(
(T1(M̃(ε1,δ1)(0)), . . . , Tk(M̃(εk,δk)(0)))‖(T1(M̃(ε1,δ1)(1)), . . . , Tk(M̃(εk,δk)(1)))

)
≤ εg .

Now we are ready to characterize OptComp for an arbitrary set of differentially private algo-
rithms.
Proof (Proof of Theorem 1.5). Given (ε1, δ1), . . . , (εk, δk) and δg, let M̃k(b) denote the composition
(M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) and let P̃ kb (x) be the probability mass function of M̃k(b), for b = 0
and b = 1. By Lemma 3.3, OptComp((ε1, δ1), . . . , (εk, δk), δg) is the smallest value of εg such that:

δg ≥ max
Q⊆{0,1,2,3}k

{P̃ k0 (Q)− eεg · P̃ k1 (Q)} .

Given εg, the set S ⊆ {0, 1, 2, 3}k that maximizes the right-hand side is

S = S(εg) =
{
x ∈ {0, 1, 2, 3}k | P̃ k0 (x) ≥ eεg · P̃ k1 (x)

}
.

We can further split S(εg) into S(εg) = S0(εg) ∪ S1(εg) with

S0(εg) =
{
x ∈ {0, 1, 2, 3}k | P̃ k1 (x) = 0

}
.

S1(εg) =
{
x ∈ {0, 1, 2, 3}k | P̃ k0 (x) ≥ eεg · P̃ k1 (x), and P̃ k1 (x) > 0

}
.

Note that S0(εg) ∩ S1(εg) = ∅. We have P̃ k1 (S0(εg)) = 0 and P̃ k0 (S0(εg)) = 1 − Pr[M̃k(0) ∈
{1, 2, 3}k] = 1−

∏k
i=1(1− δi). So

P̃ k0 (S(εg))− eεg P̃ k1 (S(εg)) = P̃ k0 (S0(εg))− eεg P̃ k1 (S0(εg)) + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg))

= 1−
k∏
i=1

(1− δi)k + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg)) .

Now we just need to analyze P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg)). Notice that S1(εg) ⊆ {1, 2}k because
for all x ∈ S1(εg), we have P̃0(x) > P̃1(x) > 0. So we can write:

P̃ k0 (S1(εg))− eεg · P̃ k1 (S1(εg))

=
∑

y∈{1,2}k
max

 ∏
i : yi=1

(1− δi)eεi
1 + eεi

·
∏

i : yi=2

(1− δi)
1 + eεi

− eεg
∏

i : yi=1

(1− δi)
1 + eεi

·
∏

i : yi=2

(1− δi)eεi
1 + eεi

, 0

=

k∏
i=1

1− δi
1 + eεi

∑
y∈{0,1}k

max

 e
∑k

i=1
εi

e
∑k

i=1
yiεi
− eεg · e

∑k

i=1
yiεi , 0

 .

Putting everything together yields:

δg ≥ P̃ k0 (S0(εg))− eεg P̃ k1 (S0(εg)) + P̃ k0 (S1(εg))− eεg P̃ k1 (S1(εg))

= 1−
k∏
i=1

(1− δi) +
∏k
i=1(1− δi)∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

.

We have characterized the optimal composition for an arbitrary set of differentially private
algorithms (M1, . . . ,Mk) under the assumption that the algorithms are chosen in advance and all
run on the same database. Next we show that OptComp under this restrictive model of composition
is actually equivalent under the more general k-fold adaptive composition discussed in Section 2.

Theorem 3.4. The privacy parameters ε1, . . . , εk ≥ 0, δ1, . . . , δk ∈ [0, 1), satisfy (εg, δg)-differential
privacy under adaptive composition if and only if OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg.

Proof. First suppose the privacy parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-differential privacy
under adaptive composition. Then OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg because adaptive com-
position is more general than the composition defining OptComp.

Conversely, suppose OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg. In particular, this means
OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) ≤ εg. To complete the proof, we must show that the privacy
parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-differential privacy under adaptive composition.

Fix an adversary A. On each round i, A uses its coin tosses r and the previous outputs
y1, . . . , yi−1 to select an (εi, δi)-differentially private algorithm Mi = M

r,y1,...,yi−1
i and neighbor-

ing databases D0 = D
r,y1,...,yi−1
0 , D1 = D

r,y1,...,yi−1
1 . Let V b be the view of A with the given privacy

parameters under composition game b for b = 0 and b = 1.
Lemma 3.2 tells us that there exists an algorithm Ti = T

r,y1,...,yi−1
i such that Ti(M̃(εi,δi)(b)) is

identically distributed toMi(Db) for both b = 0, 1 for all i ∈ [k]. Define T̂ (z1, . . . , zk) for z1, . . . , zk ∈
{0, 1, 2, 3} as follows:

1. Randomly choose coins r for A
2. For i = 1, . . . , k, let yi ← T

r,y1,...,yi−1
i (zi)

3. Output (r, y1, . . . , yk)

Notice that T̂ (M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) is identically distributed to V b for both b = 0, 1. By
hypothesis we have

Dδg
∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg .

Thus by Fact 2.2 we have:

Dδg
∞
(
V 0‖V 1) = Dδg

∞

(
T̂ (M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖T̂ (M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg .

4 Hardness of OptComp

#P is the class of all counting problems associated with decision problems in NP. It is a set of
functions that count the number of solutions to some NP problem. More formally:

Definition 4.1. A function f : {0, 1}∗ → N is in the class #P if there exists a polynomial p : N→ N
and a polynomial time algorithm M such that for every x ∈ {0, 1}∗:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ .
Definition 4.2. A function g is called #P -hard if every function f ∈ #P can be computed in
polynomial time given oracle access to g. That is, evaluations of g can be done in one time step.

If a function is #P -hard, then there is no polynomial-time algorithm for computing it unless
there is a polynomial-time algorithm for counting the number of solutions of all NP problems.

Definition 4.3. A function f is called #P -easy if there is some function g ∈ #P such that f can
be computed in polynomial time given oracle access to g.

If a function is both #P -hard and #P -easy, we say it is #P -complete. Proving that computing
OptComp is #P -complete can be broken into two steps: showing that it is #P -easy and showing
that it is #P -hard.

Lemma 4.4. Computing OptComp is #P -easy.

Proof. A proof of this statement can be found in the full version of the paper [10].

Next we show that computing OptComp is also #P -hard through a series of reductions. We
start with a multiplicative version of the partition problem that is known to be #P -complete by
Ehrgott [7]. The problems in the chain of reductions are defined below.

Definition 4.5. #INT-PARTITION is the following problem: given a set Z = {z1, z2, . . . , zk} of
positive integers, count the number of partitions P ⊆ [k] such that∏

i∈P
zi −

∏
i6∈P

zi = 0 .

All of the remaining problems in our chain of reductions take inputs {w1, . . . , wk} where 1 ≤
wi ≤ e is the Dth root of a positive integer for all i ∈ [k] and some positive integer D. All of
the reductions we present hold for every positive integer D, including D = 1 when the inputs are
integers. The reason we choose D to be large enough such that our inputs are in the range [1, e] is
because in the final reduction to OptComp, εi values in the proof are set to ln(wi). We want to show
that our reductions hold for reasonable values of ε’s in a differential privacy setting so throughout
the proofs we use wi’s ∈ [1, e] to correspond to εi’s ∈ [0, 1] in the final reduction. It is important to
note though that the reductions still hold for any choice of positive integer D and thus any range
of ε’s ≥ 0.

Definition 4.6. #PARTITION is the following problem: given a number D ∈ N and a set W =
{w1, w2, . . . , wk} of real numbers where for all i ∈ [k], 1 ≤ wi ≤ e is the Dth root of a positive
integer, count the number of partitions P ⊆ [k] such that∏

i∈P
wi −

∏
i 6∈P

wi = 0 .

Definition 4.7. #T-PARTITION is the following problem: given a number D ∈ N and a set
W = {w1, w2, . . . , wk} of real numbers where for all i ∈ [k], 1 ≤ wi ≤ e is the Dth root of a positive
integer and a positive real number T , count the number of partitions P ⊆ [k] such that∏

i∈P
wi −

∏
i6∈P

wi = T .

Definition 4.8. #SUM-PARTITION: given a number D ∈ N and a set W = {w1, w2, . . . , wk}
of real numbers where for all i ∈ [k], 1 ≤ wi ≤ e is the Dth root of a positive integer and a real
number r > 1, find ∑

P⊆[k]

max

∏
i∈P

wi − r ·
∏
i 6∈P

wi, 0

 .

We prove that computing OptComp is #P -hard by the following series of reductions:

#INT-PARTITION ≤ #PARTITION ≤ #T-PARTITION ≤ #SUM-PARTITION ≤ OptComp .

Since #INT-PARTITION is known to be #P -complete [7], the chain of reductions will prove
that OptComp is #P -hard.

Lemma 4.9. For every constant c > 1, #PARTITION is #P -hard, even on instances where∏
i wi ≤ c.

Proof. Given an instance of #INT-PARTITION, {z1, . . . , zk}, we show how to find the solution
in polynomial time using a #PARTITION oracle. Set D = dlogc(

∏
i zi)e and wi = D

√
zi ∀i ∈ [k].

Note that
∏
i wi = (

∏
i zi)

1/D ≤ c. Let P ⊆ [k]:

∏
i∈P

wi =
∏
i 6∈P

wi ⇐⇒

(∏
i∈P

wi

)D
=

∏
i 6∈P

wi

D

⇐⇒
∏
i∈P

zi =
∏
i 6∈P

zi .

There is a one-to-one correspondence between solutions to the #PARTITION problem and solu-
tions to the given #INT-PARTITION instance. We can solve #INT-PARTITION in polynomial
time with a #PARTITION oracle. Therefore #PARTITION is #P -hard.

Lemma 4.10. For every constant c > 1, #T-PARTITION is #P -hard, even on instances where∏
i wi ≤ c.

Proof. Let c > 1 be a constant. We will reduce from #PARTITION, so consider an instance of
the #PARTITION problem, W = {w1, w2, . . . , wk}. We may assume

∏
i wi ≤

√
c since

√
c is also

a constant greater than 1.
Set W ′ = W ∪ {wk+1}, where wk+1 =

∏k
i=1 wi. Notice that

∏k+1
i=1 wi ≤ (

√
c)2 = c. Set T =√

wk+1 (wk+1 − 1). Now we can use a #T-PARTITION oracle to count the number of partitions
Q ⊆ {1, . . . , k + 1} such that ∏

i∈Q
wi −

∏
i6∈Q

wi = T .

Let P = Q ∩ {1, . . . , k}. We will argue that
∏
i∈Q wi −

∏
i6∈Q wi = T if and only if

∏
i∈P wi =∏

i 6∈P wi, which completes the proof. There are two cases to consider: wk+1 ∈ Q and wk+1 6∈ Q.

Case 1: wk+1 ∈ Q. In this case, we have:

wk+1 ·

(∏
i∈P

wi

)
−
∏
i 6∈P

wi =
∏
i∈Q

wi −
∏
i 6∈Q

wi = T = √wk+1 (wk+1 − 1)

⇐⇒

∏
i∈[k]

wi

(∏
i∈P

wi

)2

−
∏
i∈[k]

wi =
√∏
i∈[k]

wi

∏
i∈[k]

wi − 1

(∏
i∈P

wi

)
multiplied both sides by

∏
i∈P

wi

⇐⇒

∏
i∈P

wi −
√∏
i∈[k]

wi

∏
i∈[k]

wi
∏
i∈P

wi +
√∏
i∈[k]

wi

 = 0 factored quadratic in
∏
i∈P

wi

⇐⇒
∏
i∈P

wi =
√∏
i∈[k]

wi

⇐⇒
∏
i 6∈P

wi =
∏
i∈P

wi .

So there is a one-to-one correspondence between solutions to the #T-PARTITION instance
W ′ where wk+1 ∈ Q and solutions to the original #PARTITION instance W .

Case 2: wk+1 6∈ Q. Solutions now look like:

∏
i∈P

wi −
∏
i∈[k]

wi
∏
i6∈P

wi =
√∏
i∈[k]

wi

∏
i∈[k]

wi − 1

 .

One way this can be true is if wi = 1 for all i ∈ [k]. We can check ahead of time if our input
set W contains all ones. If it does, then there are 2k − 2 partitions that yield equal products (all
except P = [k] and P = ∅) so we can just output 2k−2 as the solution and not even use our oracle.
The only other way to satisfy the above expression is for

∏
i∈P wi >

∏
i∈[k] wi which cannot happen

because P ⊆ [k]. So there are no solutions in the case that wk+1 6∈ Q.
Therefore the output of the #T-PARTITION oracle onW ′ is the solution to the #PARTITION

problem. So #T-PARTITION is #P -hard.

Lemma 4.11. For every constant c > 1, #SUM-PARTITION is #P -hard even on instances
where

∏
i wi ≤ c.

Proof. We will use a #SUM-PARTITION oracle to solve #T-PARTITION given a set of Dth
roots of positive integers W = {w1, . . . , wk} and a positive real number T . Notice that for every
z > 0: ∏

i∈P
wi −

∏
i 6∈P

wi = z =⇒
∏
i∈P

wi −
∏
i∈[k] wi∏
i∈P wi

= z

=⇒ ∃ j ∈ Z+such that D
√
j −

∏
i∈[k] wi
D
√
j

= z .

Above, j must be a positive integer, which tells us that the gap in products from every partition
must take a particular form. This means that for a given D and W , #T-PARTITION can only be

non-zero on a discrete set of possible values of T = z. Given z, we can find a z′ > z such that the
above has no solutions in the interval (z, z′). Specifically, solve the above quadratic for D

√
j (where

j may or may not be an integer), let j′ = bj + 1c > j, and z′ = D
√
j′ −

∏
i
wi

D
√
j′
. We use this property

twice in the proof.

Define P z ≡ {P ⊆ [k] |
∏
i∈P wi −

∏
i6∈P wi ≥ z}. As described above we can find the interval

(T, T ′) of values above T with no solutions. Then, for every c ∈ (T, T ′):

∣∣∣∣∣∣
P ⊆ [k] |

∏
i∈P

wi −
∏
i 6∈P

wi = T

∣∣∣∣∣∣ =

∣∣PT \P c∣∣
= 1
T

 ∑
P∈PT \P c

∏
i∈P

wi −
∏
i6∈P

wi

= 1
T

 ∑
P∈PT

∏
i∈P

wi −
∏
i 6∈P

wi

− ∑
P∈P c

∏
i∈P

wi −
∏
i 6∈P

wi

 .

We now show how to find
∑

P∈P z

(∏
i∈P

wi −
∏
i 6∈P

wi

)
for any z > 0 using the #SUM-PARTITION

oracle. Once we have this procedure, we can run it for z = T and z = c and plug the outputs into
the expression above to solve the #T-PARTITION problem. We want to set the input r to the
#SUM-PARTITION oracle such that:

∏
i∈P

wi − r ·
∏
i 6∈P

wi ≥ 0 ⇐⇒
∏
i∈P

wi −
∏
i 6∈P

wi ≥ z .

Solving this expression for r gives:

rz =
4
∏
i∈[k]

wi(√
z2 + 4

∏
i∈[k]

wi − z

)2 .

Below we check that this setting satisfies the requirement.

∏
i∈P

wi −
4
∏
i∈[k]

wi(√
z2 + 4

∏
i∈[k]

wi − z

)2 ·
∏
i 6∈P

wi ≥ 0 ⇐⇒ 1−
4
(∏

i 6∈P wi

)2

(√
z2 + 4

∏
i∈[k]

wi − z

)2 ≥ 0

⇐⇒
√
z2 + 4

∏
i∈[k]

wi ≥ 2
∏
i 6∈P

wi + z

⇐⇒ 4
∏
i∈[k]

wi ≥ 4

∏
i 6∈P

wi

2

+ 4z
∏
i 6∈P

wi

⇐⇒
∏
i∈P

wi −
∏
i 6∈P

wi ≥ z .

So we have P z =
{
P ⊆ [k] |

∏
i∈P wi − rz ·

∏
i 6∈P wi ≥ 0

}
but this does not necessarily mean

that

∑
P∈P z

∏
i∈P

wi −
∏
i6∈P

wi

 =
∑
P∈P z

∏
i∈P

wi − rz ·
∏
i 6∈P

wi

 .

The sum on the left-hand side without the rz coefficient is what we actually need to compute.
To get this we again use the discreteness of potential solutions to find z′′ 6= z such that P z = P z

′′ .
We just pick z′′ from the interval (z, z′) of values above z that cannot possibly contain solutions to
#T-PARTITION.

Running our #SUM-PARTITION oracle for rz and rz′′ will output:

∑
P∈P z

∏
i∈P

wi − rz ·
∏
i6∈P

wi

∑
P∈P z

∏
i∈P

wi − rz′′ ·
∏
i 6∈P

wi

This is just a system of two equations with two unknowns and it can be solved for

∑
P∈P z

∏
i∈P wi

and
∑
P∈P z

∏
i6∈P wi separately. Then we can reconstruct

∑
P∈P z

(∏
i∈P wi −

∏
i 6∈P wi

)
. Running

this procedure for z = T and z = c gives us all of the information we need to count the number
of solutions to the #T-PARTITION instance we were given. We can solve #T-PARTITION in
polynomial time with four calls to a #SUM-PARTITION oracle. Therefore #SUM-PARTITION
is #P -hard.

Now we prove that computing OptComp is #P -complete.

Proof (Proof of Theorem 1.6). We have already shown that computing OptComp is #P -easy. Here
we prove that it is also #P -hard, thereby proving #P -completeness.

Given an instance D, W = {w1, . . . , wk}, r of #SUM-PARTITION, where ∀i ∈ [k], wi is the
Dth root of an integer and

∏
i wi ≤ c, set εi = ln(wi) ∀i ∈ [k], δ1 = δ2 = . . . δk = 0 and εg = ln(r).

Note that
∑
i εi = ln (

∏
i wi) ≤ ln(c). Since we can take c to be an arbitrary constant greater than

1, we can ensure that
∑
i εi ≤ ε for an arbitrary ε > 0.

Again we will use the version of OptComp that takes εg as input and outputs δg. After using
an OptComp oracle to find δg we know the optimal composition equation 1 from Theorem 1.5 is
satisfied:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

= 1− 1− δg∏k
i=1 (1− δi)

= δg .

Thus we can compute:

δg ·
k∏
i=1

(1 + eεi) =
∑

S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

=
∑

S⊆{1,...,k}

max

∏
i∈S

wi − r ·
∏
i6∈S

wi, 0

 .

This last expression is exactly the solution to the instance of #SUM-PARTITION we were
given. We solved #SUM-PARTITION in polynomial time with one call to an OptComp oracle.
Therefore computing OptComp is #P -hard.

5 Approximation of OptComp

Although we cannot hope to efficiently compute the optimal composition for a general set of dif-
ferentially private algorithms (assuming P6=NP or even FP6= #P), we show in this section that we
can approximate OptComp arbitrarily well in polynomial time.

Theorem 1.7 (Restated). There is a polynomial-time algorithm that given ε1, . . . , εk ≥ 0, δ1, . . . δk, δg ∈
[0, 1), and η > 0, outputs ε∗ where

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η .

The algorithm runs in O
(

log
(
k
η

∑k
i=1 εi

)
k2

η

∑k
i=1 εi

)
time assuming constant-time arithmetic op-

erations.

We prove this theorem using the following three lemmas:

Lemma 5.1. Given non-negative integers a1, . . . , ak, B and weights w1, . . . , wk ∈ R, one can com-
pute ∑

S⊆[k] s.t.∑
i∈S

ai≤B

∏
i∈S

wi

in time O(Bk).

Notice that the constraint in Lemma 5.1 is the same one that characterizes knapsack problems.
Indeed, the algorithm we give for computing

∑
S⊆[k]

∏
i∈S wi is a slight modification of the known

pseudo-polynomial time algorithm for counting knapsack solutions, which uses dynamic program-
ming. Next we show that we can use this algorithm to approximate OptComp.

Lemma 5.2. Given ε1, . . . , εk, ε
∗ ≥ 0, δ1, . . . δk, δg ∈ [0, 1), if εi = aiε0 ∀i ∈ {1, . . . , k} for non-

negative integers ai and some ε0 > 0, then there is an algorithm that determines whether or not
OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ that runs in time O

(
k
ε0

∑k
i=1 εi

)
.

In other words, if the ε values we are given are all integer multiples of some ε0, we can determine
whether or not the composition of those privacy parameters is (ε∗, δg)-DP in pseudo-polynomial
time for every ε∗ ≥ 0. This means that given any inputs to OptComp, if we discretize and polyno-
mially bound the εi’s, then we can check if the parameters satisfy any global privacy guarantee in
polynomial time. Once we have this, we only need to run binary search over values of ε∗ to find the
optimal one. In other words, we can solve OptComp exactly for a slightly different set of εi’s. The
next lemma tells us that the output of OptComp on this different set of εi’s can be used as a good
approximation to OptComp on the original εi’s.

Lemma 5.3. For all ε1, . . . , εk, c ≥ 0 and δ1, . . . , δk, δg ∈ [0, 1):

OptComp((ε1 + c, δ1), . . . , (εk + c, δk), δg) ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−kc/2 · δg) + kc .

Next we prove the three lemmas and then show that Theorem 1.7 follows.

Proof (Proof of Lemma 5.1). We modify Dyer’s algorithm for approximately counting solutions
to knapsack problems [6]. The algorithm uses dynamic programming. Given non-negative integers
a1, . . . , ak, B and weights w1, . . . , wk ∈ R, define

F (r, s) =
∑

S⊆[r] s.t.∑
i∈S

ai≤s

∏
i∈S

wi .

We want to compute F (k,B). We can find this by tabulating F (r, s) for (0 ≤ r ≤ k, 0 ≤ s ≤ B)
using the recursion:

F (r, s) =

1 if r = 0
F (r − 1, s) + wrF (r − 1, s− ar) if r > 0 and ar ≤ s
F (r − 1, s) if r > 0 and ar > s .

Each cell F (r, s) in the table can be computed in constant time given earlier cells F (r′, s′) where
r′ < r. Thus filling the entire table takes time O(Bk).

Proof (Proof of Lemma 5.2). Given ε1, . . . , εk, ε∗ ≥ 0 such that εi = aiε0 ∀i ∈ {1, . . . , k} for non-
negative integers ai and some ε0 > 0, and δ1, . . . δk, δg ∈ [0, 1), Theorem 1.5 tells us that answering
whether or not

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗

is equivalent to answering whether or not the following inequality holds:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eε
∗
· e

∑
i6∈S

εi

, 0
}
≤ 1− 1− δg∏k

i=1 (1− δi)
.

The right-hand side and the coefficient on the sum are easy to compute given the inputs so in
order to check the inequality, we will show how to compute the sum. Define

K =

T ⊆ [k] |
∑
i 6∈T

εi ≥ ε∗ +
∑
i∈T

εi

=
{
T ⊆ [k] |

∑
i∈T

εi ≤

(
k∑
i=1

εi − ε∗
)
/2
}

=
{
T ⊆ [k] |

∑
i∈T

ai ≤ B

}
for B =

⌊(
k∑
i=1

εi − ε∗
)
/2ε0

⌋
and observe that by setting T = Sc, we have

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eε
∗
· e

∑
i6∈S

εi

, 0
}

=
∑
T∈K

e

k∑
i=1

εi

·
∏
i∈T

e−εi

−(eε∗ ·∏
i∈T

eεi

) .

We just need to compute this last expression and we can do it for each term separately since K
is a set of knapsack solutions. Specifically, setting wi = e−εi ∀i ∈ [k], Lemma 5.1 tells us that we
can compute

∑
T⊆[k]

∏
i∈T wi subject to

∑
i∈T ai ≤ B, which is equivalent to

∑
T∈K

∏
i∈T e

−εi .
To compute

∑
T∈K

∏
i∈T e

εi , we instead set wi = eεi and run the same procedure. Since we used
the algorithm from Lemma 5.1, the running time is O(Bk) = O

(
k
ε0

∑k
i=1 εi

)
Proof (Proof of Lemma 5.3). Let OptComp((ε1, δ1), . . . , (εk, δk), e−kc/2 · δg) = εg. From Equation 1
in Theorem 1.5 we know:

1∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ 1− 1− e−kc/2 · δg∏k

i=1 (1− δi)
.

Multiplying both sides by ekc/2 gives:

ekc/2∏k
i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
≤ ekc/2 ·

(
1− 1− e−kc/2 · δg∏k

i=1 (1− δi)

)

≤ 1− 1− δg∏k
i=1 (1− δi)

.

The above inequality together with Theorem 1.5 means that showing the following will complete
the proof:∑
S⊆{1,...,k}

max
{
e

∑
i∈S

(εi+c)
− eεg+kc · e

∑
i6∈S

(εi+c)

, 0
}
≤
ekc/2 ·

∏k
i=1 (1 + eεi+c)∏k

i=1 (1 + eεi)

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}
.

Since (1 + eεi+c)/(1 + eεi) ≥ ec/2 for every εi > 0, it suffices to show:

∑
S⊆{1,...,k}

max
{
e

∑
i∈S

(εi+c)
− eεg+kc · e

∑
i6∈S

(εi+c)

, 0
}
≤

∑
S⊆{1,...,k}

ekc ·max
{
e

∑
i∈S

εi

− eεg · e

∑
i6∈S

εi

, 0
}

.

This inequality holds term by term. If a right-hand term is zero
(∑

i∈S εi ≤ εg +
∑
i 6∈S εi

)
, then

so is the corresponding left-hand term
(∑

i∈S(εi + c) ≤ εg + kc+
∑
i 6∈S(εi + c)

)
. For the nonzero

terms, the factor of ekc ensures that the right-hand terms are larger than the left-hand terms.

Proof (Proof of Theorem 1.7). Lemma 5.2 tells us that we can determine whether a set of privacy
parameters satisfies some global differential privacy guarantee if the ε values are discretized. Notice
that then we can solve OptComp exactly for a discretized set of ε values by running binary search
over values of ε∗ until we find the minimum ε∗ that satisfies (ε∗, δg)-DP.

Given ε1, . . . , εk, ε∗, and an additive error parameter η > 0, set ai =
⌊
k
η εi

⌋
, ε′i = η

k · ai ∀i ∈ [k].
With these settings, the ai’s are non-negative integers and the ε′i values are all integer multiples
of ε0 = η/k. Lemma 5.2 tells us that we can determine if the new privacy parameters with ε′

values satisfy (ε∗, δg)-DP in time O
(
k2

η

∑k
i=1 εi

)
. Running binary search over values of ε∗ will then

compute OptComp((ε′1, δ1), . . . , (ε′k, δk), δg) = ε′g exactly in time O
(

log
(
k
η

∑k
i=1 εi

)
k2

η

∑k
i=1 εi

)
Notice that εi − η/k ≤ ε′i ≤ εi ∀i ∈ [k]. Lemma 5.3 says that the outputted ε′g is at most

OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η as desired.

References

1. Crosas, M.: The Dataverse Network R©: An Open-Source Application for Sharing, Discovering and Pre-
serving Data. D-lib Magazine. 17.1, p. 2 (2011)

2. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via
Distributed Noise Generation. In: Vaudenay, S. (ed.) 24th Advances in Cryptology-EUROCRYPT.
LNCS, vol. 4004, pp. 486–503, Springer, Berlin, Heidelberg (2006)

3. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data
Analysis. In: Halevi, S., Rabin, T. (eds.) 3rd Theory of Cryptography Conference. LNCS, vol. 3876, pp.
265–284, Springer, Berlin, Heidelberg (2006)

4. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential Privacy. Foundations and Trends in
Theoretical Computer Science. 9.3-4, pp. 211–407 (2013)

5. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and Differential Privacy. In: 51st IEEE Symposium
on Foundations of Computer Science, pp. 51–60. IEEE (2010)

6. Dyer, M.: Approximate Counting by Dynamic Programming. In: 35th ACM Symposium on Theory of
Computing, pp. 693–699. ACM (2003)

7. Ehrgott, M.: Approximation Algorithms for Combinatorial Multicriteria Optimization Problems. In-
ternational Transactions in Operational Research. 7.1, pp. 5–31 (2000)

8. King, G.: An Introduction to the Dataverse Network as an Infrastructure for Data Sharing. Sociological
Methods & Research. 36.2, pp. 173–199 (2007)

9. Kairouz, P., Oh, S., Viswanath. P.: The Composition Theorem for Differential Privacy. In: 32nd Inter-
national Conference on Machine Learning, pp. 1376–1385 (2015)

10. Murtagh, J., Vadhan, S.: The Complexity of Computing the Optimal Composition of Differential Pri-
vacy. http://arxiv.org/abs/1507.03113 (2015)

11. Warner, S.L.: Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. Journal
of the American Statistical Association. 60.309, pp. 63–69 (1965)

	The Complexity of Computing the Optimal Composition of Differential Privacy

