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We investigate many-body phase diagrams of atomic boson-fermion mixtures loaded in the two-dimensional
optical lattice. Bosons mediate an attractive, finite-range interaction between fermions, leading to fermion
pairing phases of different orbital symmetries. Specifically, we show that by properly tuning atomic and lattice
parameters it is possible to create superfluids with s-, p-, and d-wave pairing symmetry as well as spin and
charge density wave phases. These phases and their stability are analyzed within the mean-field approximation
for systems of 40K-87Rb and 40K-23Na mixtures. For the experimentally accessible regime of parameters,
superfluids with unconventional fermion pairing have transition temperature around a percent of the Fermi
energy.
DOI: 10.1103/PhysRevA.72.051604 PACS number�s�: 03.75.Mn, 03.75.Hh, 74.20.Fg, 74.20.Rp

Mixtures of quantum degenerate atoms recently became a
subject of intense studies. Examples include recent experi-
mental observations of instabilities in Bose-Fermi mixtures
�1�, superfluidity of fermion pairing �2�, and condensation of
molecules in fermionic mixtures �3�. Many other intriguing
many-body effects have been proposed theoretically. They
include formation of composite particles �4�, appearance of
charge density wave order �5�, phonon-induced fermion pair-
ing �6,7�, and polaronic effects �8�. In this paper, we study
quantum phases of boson-fermion mixtures �BFM� in two-
dimensional �2D� optical lattices. The fermionic atoms are
prepared as a mixture of two hyperfine spin states, which
interact via short-range repulsive interaction. Density fluc-
tuations in a condensate of bosonic atoms induce an attrac-
tive interaction between fermions, which is of finite range.
Competition between these two types of interactions results
in several many-body phases of fermions by appropriately
choosing atomic and lattice parameters. These include charge
and spin density wave phases �CDW/SDW� as well as super-
fluid states with unconventional pairing of fermions. We dis-
cuss how these phases can be observed in realistic parameter
regime of interest �9�. Experimental realization of such sys-
tems should provide critical insights into understanding sev-
eral important strongly correlated electron systems, including
quasi-2D unconventional superconductors, such as high Tc
cuprates �10� and organic conductors �11� displaying d-wave
superconductivity, as well as ruthenates �12� and Bechgaard
salts �11� displaying p-wave superconductivity.

We first describe the microscopic theory for the BFM sys-
tems in 2D optical lattice. When the lattice potential is strong
enough, the BFM system can be described by the single band
Hubbard type Hamiltonian �8,13�

H = �
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where b̂k and f̂k,s are the annihilation operators for bosonic

and fermionic atoms with momentum k. �̂k
b =�pb̂p+k

† b̂p
is the boson density operators, and �̄k

b ��k
b −�b, where

�k
b =−tb�k is the single particle energy with tb being the tun-

neling amplitude of bosons between neighboring sites and
�k�2�cos kx+cos ky� �lattice constant is set to be unit�. �b is
the boson chemical potential. Similar notations also apply to
fermions with superscript f and �̂k

f � �̂k,↑
f + �̂k,↓

f in Eq. �1�.
Ubb, Ubf, and Uf f are, respectively, boson-boson, boson-
fermion, and fermion-fermion onsite interaction energy,
which can be calculated from the s-wave scattering length
and the lattice potential �13,14�. � is the system volume. For
simplicity we neglect the global trapping potential and con-
sider systems with uniform densities.

We are interested in the low temperature regime where
the bosonic atoms are condensed ��b=�0

b�. Using Bogoliu-
bov approximation, one can obtain an effective fermion-
phonon coupling Hamiltonian �6,15�. The phonon field
can be integrated out �6� to provide an effective attractive
interaction between fermion atoms and hence cause the fer-
mion pairing. If the phonon velocity c is much larger than
the Fermi velocity � f �i.e., in the fast phonon limit�, the re-
sulting interaction between fermions is instantaneous and

given by Vind�k�=−Ṽ/�1+�2�4−�k��, where Ṽ�Ubf
2 /Ub is

the strength of the phonon-induced attractive interaction and
�=	tb /2nbUbb is the boson correlation �healing� length. Such
antiadiabatic limit may not be easily achieved in typical
40K-87Rb system �c /� f 
1� because the boson atom mass is
larger than the fermion atoms. In this paper, therefore, we
also consider a BFM system composed by 40K and 23Na
atoms, where the phone velocity can be several times larger
than the Fermi velocity �c /� f 
5�. We note that including the
retardation effects just changes the prefactor in the BCS ex-
pression for Tc from the Fermi energy Ef to some character-
istic bosonic frequency �16�, and therefore it should provide
similar quantum phases as obtained within the fast phonon
limit �see also Refs. �6,7��. As a result, we may still apply the
fast phonon approximation and obtain the following effective
fermion Hamiltonian:

Heff = �
k,s

�̄k
f f̂k,s

† f̂k,s +
1

2�
�

k,s,s�

Veff
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where Veff
s,s��k��Uf f�s,−s�+Vind�k�.
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Following the early work of Micnas et al. �17�, we apply
the mean-field approximation to calculate the Tc of fermion
pairing phases and that of the competing SDW/CDW phases.
For the superfluid states, the single particle excitation energy

Ek has a gap at Fermi surface: Ek=	��̄k
f +	k�2+ �
k

s,s��2,

where the gap function, 
k
s,s���−1�pVeff

s,s��k−p�� f̂p,s
† f̂−p,s�

† ,
is determined by the gap equation
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Here �k=−�1/���pVeff
s,s�k−p�� f̂p,s

† f̂p,s is fermion exchange
self-energy within Hartree-Fock �HF� approximation. Finally
the fermion chemical potential �corrected by the Hartree en-
ergy� is fixed by the known total density of fermions
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To analyze the results of different gap symmetries,
we consider the following ansatz for the gap function

�17�: 
k
s,s�=�s,−s��
s0+
s1�k+
d�k�+�s,s�
p sin kx, where

�k�2�cos kx−cos ky�. Here 
s0 and 
s1 are for the onsite
and extended s-wave pairing phase, while 
p/d is for the
p- /d-wave pairing phase. The transition temperature Tc is

then numerically solved by setting 
s0,s1,d,p
s,s� →0 in Eqs. �3�

and �4�. A similar approach can also be used to analyze the
SDW/CDW phases �18�, where the associated order param-
eters are, respectively, the spin and charge density compo-
nents at certain wave-vector Q �i.e. �k�fk+Q,↑

† fk,↓�0 for
SDW and �k,s�fk+Q,s

† fk,s�0 for CDW�. Here Q= �� ,�� is
the 2D nesting wave vector at half-filling �we set the lattice
constant a to be unit�. In such a case, the SDW/CDW phase
shows the periodic modulation of pseudospin and atomic
densities, respectively, in the 2D optical lattice with period
2a. Away from half-filling, the SDW/CDW phases for the
commensurate wave-vector Q= �� ,�� may be less favorable
than density wave phases at incommensurate wavevectors
�19� �i.e., the density oscillation period is not a multiple of
the lattice constant�. The later, however, are much more dif-
ficult to analyze than their commensurate analogues. In this
paper we therefore discuss only the commensurate SDW/
CDW phases, but we believe they provide an accurate esti-
mate for the regime of more general SDW/CDW phases.

Finally we study the stability of the many-body phases
discussed above. The mean field �MF� ground state energy of
a pairing phase can be derived to be

EMF = �
k

��̄k
f + 	k − Ek� + � fNf

+
Nf

2

4�
�Uf f + 2Vph�0�� + �

k,s,s�

�
k
s,s��2

4Ek
,

where � f is determined via Eq. �4� by conserving the
total number of fermions Nf. The stability condition results
from requiring that the compressibility �or bulk modulus
B� be positive. At zero temperature it is defined by

B�−���P /���Nf
=nf

2�2EMF /�nf
2, where P�−��EMF/���Nf

is the pressure of the atomic gas and EMF=EMF/� is the
energy density. The stability analysis here is different from
the previous theories �15� due to the additional gap energy of
the pairing ground state. This condition is evaluated numeri-
cally in our calculation and the results have been shown in
our main results below. Similar analysis for CDW and SDW
phases can be also obtained �18�.

In the numerical calculation of this paper, we consider
two types of BFM systems for comparison: System A corre-
sponds to the conventional 40K-87Rb mixtures trapped in the
optical lattices of a far-off resonant Nd:YAG laser and Sys-
tem B corresponds to the 40K-23Na mixture loaded in the
same trap. The interaction strength between different species
of atoms can be tuned by either a relative shift of bosonic
and fermionic lattice �20� or by tuning the system in the
vicinity of interspecies Feshbach resonance �21�. If not
specified, the interaction strengths used in this paper are re-
ferred to the background s-wave scattering lengths as listed
in Ref. �14�. Other details about the lattice parameters are
shown in the caption of Fig. 1.

In Fig. 1 we show the calculated many-body phase dia-
grams of both System A �in �a�� and System B �in �b�� as a
function of fermion filling fraction �nf� and boson-fermion
on-site interaction �Ubf� in a regime where most competing
orders can be observed. The phase boundaries are deter-
mined by comparing the mean-field Tc of these many-body
phases. From our numerical calculation, Tc of the s-wave
pairing phase of system A or the d-wave pairing of system B
can be 1–3 % of the Fermi energy �=4tf 
1.53 kHz� in the
regime near half filling.

Several important results presented in Fig. 1 should be
noted. First of all, SDW and CDW are dominant near the

FIG. 1. �a� Phase diagrams of 40K-87Rb mixtures �system A� and
�b� 40K-23Na mixtures �system B� loaded in 2D optical lattice with
Nd:YAG laser wavelength =1.06 �m. 40K are prepared in the
hyperfine states �F ,mF= �9/2 ,−9/2 and �9/2 ,−7/2 correspond-
ing to the pseudospin up and down fermions. Bosonic atoms
�87Rb and 23Na� are in state �1,1. nf is fermion filling fraction
and the in-plane lattice potential is chosen to be V0,� =5Er and it is
V0,z=30Er in the z direction to form a �quasi-�2D system.
Er=4.44 kHz is the recoil energy of 40K. We choose boson filling
fraction nb=1 for system A but nb=9 for system B, respectively.
The shaded areas are the regimes of collapse. Arrows in �b� indicate
the background interaction strength �Ref. �14��, while it is at
0.84 Er and beyond the scale of �a�. From �b�, the d-wave pairing
phase should exist near half-filling with abf 
−100a0 �Ref. �14��.
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half-filling region due to the nesting effects �i.e., fermion
filling is commensurate with the lattice spacing�, and strong
Ubf favors CDW �or suppresses SDW� phase as shown in �a�.
This is because the phonon induced attractive interaction
�proportional to �Ubf�2 /Ub� competes with the on-site repul-
sion between fermions. Second, the two density wave phases
are separated by the superfluid phases, which is the usual
s-wave pairing in system A but can be unconventional �d- or
p-wave� pairing in system B. Physically, the unconventional
pairing mechanisms arise when the boson correlation �heal-
ing� length is comparable to the lattice constant so that
the strong intersite correlations are enhanced. In a typical
40K-87Rb system shown in �a�, such a requirement cannot be
satisfied because the Rb atom is relatively heavy. As shown
in �b� and in the later discussion, system B with lighter
bosonic atoms �Na� can have longer correlation length and
therefore shows a wide regime for unconventional fermion
pairing phases. Finally, within our mean-field analysis, a part
of these unconventional pairing phases falls in the regime of
collapse. However, we note that the mean-field approxima-
tion always strongly overestimates the collapse region, while
correlation effects beyond the mean-field approximation can
stabilize the uniform phases �22�. Thus Fig. 1�b� demon-
strates that there is a wide parameter regime where one can
observe unconventional fermion pairing in the K-Na BFM
systems in a 2D optical lattice.

To study the competing orders further, in Fig. 2 we show
the mean-field Tc of the SDW and d-wave pairing phases for
system B with two different values of Uf f. For strong on-site
repulsive interaction, the SDW phase is favored near the
half-filling �nf =1� regime because double occupancy of fer-
mions is energetically unfavored and pseudospin Néel order
is stabilized by the nesting effects. Away from half-filling,
however, d-wave pairing becomes dominant because the
usual s-wave pairing is suppressed by the strong on-site in-
teraction. In the inset are the results for the same system but
with even smaller Uf f, where the s-wave pairing phase be-
comes dominant as shown in Fig. 1�b�. The Tc of the s-wave
pairing phase has a dip at �nf −1�
0.5 because the on-site

and the intersite components of s-wave pairing are dominant
near half-filling and away from half-filling, respectively.
From the typical value of Tc, we can estimate the effective
BCS coupling strength BCS
0.4�1. Therefore most of our
results still fit reasonably well into a weak coupling regime
where the mean-field approximation is justified.

To understand why System A �K-Rb mixture� does not
provide unconventional pairing phases in the entire phase
diagram �Fig. 1�a��, it is instructive to analyze how the Tc of
the d-wave pairing phase depends on the boson healing
length � in System B as shown in Fig. 3. Experimentally the
healing length � can be easily tuned by changing the density
of bosonic atoms without affecting the stability of the whole
system �15�. We find that for different values of phonon-

induced interaction strength Ṽ, the maximum Tc always cor-
responds to �c
0.6 �in the units of lattice constant�, which is
of the same order as lattice spacing for intersite pairing.
However, for System A, the healing length of Rb is typically
too short ��
0.12� to support intersite coupling. This ex-
plains why unconventional pairing phases are not present in
system A and/or probably in most BFM systems with boson
atoms heavier than fermions.

Low-temperature states of a BFM in the 2D optical lattice
can be prepared by a process in which the sympathetic cool-
ing of the atomic mixture is followed by an adiabatic cooling
via increasing the lattice potential �23� until the phase tran-
sition is reached. Here we describe an alternative method to
reach the low temperature unconventional pairing phases.
Consider the situation in which a condensate mixture of
bosonic atoms and molecules �composed by the fermions of
two hyperfine states� is created. The lattice potential is then
turned on and adiabatically increased such that the molecules
are driven into a strongly localized state. A two-photon Ra-
man pulse �24� is then applied to dissociate the bound mol-
ecule states into the lowest two-atom state in each lattice site.
Finally, the lattice potential is reduced to the desired value
such that the dissociated fermions begin to tunnel into neigh-
boring sites while the bosons become condensed and then
mediate the attractive interaction between fermions during an
entire procedure. We point out that this method can be ex-
tremely efficient since the initial molecule condensate helps

FIG. 2. Typical Tc of the SDW phase and d-wave pairing phases
as a function of filling fraction for system B �see text and Fig. 3
caption�. Uf f /Er=0.52 and 0.6 for the lower and upper curves of
SDW phase, respectively. D=4tf =0.34Er is half of the bandwidth.
Inset: same but with Uf f /Er=0.32 and 0.28 for the lower and upper
curves of the s-wave pairing phase, respectively. Tc of p-wave pair-
ing phase is too small and not shown in this figure.

FIG. 3. Tc of d-wave pairing phase at half-filling �nf =1� as a
function of the healing length, �. Curves from bottom to up are for

Ṽ /Er=0.53, 0.88, and 1.23, respectively, and all the other param-
eters are the same as used for Fig. 2.
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all Cooper pairs get closer to the zero momentum states and
the relative motion of the pairing atoms after dissociation can
be also kept in the lowest energy state if only the “melting”
is slow enough. Finally, two-color photoassociation �26� can
generate low lying Cooper pairs efficiently without heating
�25�, because both the molecules and the dissociated fermion
pairs before melting are confined by a deep optical lattice
and hence the energy cost for exciting to higher subbands
can be much larger than the effective spontaneous rate.

The exotic many-body phases shown in Fig. 1 can be
detected by various approaches due to their well-defined or-
der parameters. First of all, CDW order can be observed in a
standard time-of-flight measurement of bosons because the
periodic density modulation of the boson condensate can be
induced by the boson-fermion interaction and hence pro-
duces additional Bragg peaks at Q= �� ,��. Besides, SDW
order and the pairing phases can be further investigated by
studying the noise correlation spectrum in the time-of-flight
measurements �27�: The spectrum of pairing phase will have
a sharp peak at zero momentum due to the condensation of
Cooper pairs, while it will peak at momentum Q in the SDW
phase due to the nesting effect. Furthermore, one can use
Bragg scattering spectroscopy to probe the gap symmetry of
the fermion pairing as proposed in Ref. �23�. For example,

for the d-wave pairing phase a zero energy excitation should
be observable when the momentum transfer of the two scat-
tering photons matches any two of the nodal points on the
Fermi surface. One can also use rf spectroscopy to measure
the binding energy of fermion pairing �2� and the photoasso-
ciation method to study the superfluid fraction �26�. All these
techniques have been used by a number of experimental
groups.

In summary we investigated the many-body phase dia-
grams of a boson-fermion mixture in a 2D optical lattice. For
a realistic 40K-23Na or 40K-87Rb system, a nature of super-
fluidity can be controlled by appropriate tuning of the atomic
interaction strength and optical lattice parameters. Our re-
sults indicate that experimental studies of boson-fermion
mixtures of cold atoms could have important implications for
understanding the physics of unconventional superconduct-
ing materials.
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