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We consider a bilayer quantum Hall system at total filling fractionn=2 in tilted magnetic field allowing for
charge imbalance as well as tunneling between the two layers. Using an “unrestricted Hartree Fock,” previ-
ously discussed by Burkov and MacDonald[Phys. Rev. B 66, 115323 (2002)], we examine the zero-
temperature global phase diagrams that would be accessed experimentally by changing the in-plane field and
the bias voltage between the layers while keeping the tunneling between the two layers fixed. In accordance
with previous work, we find symmetric and ferromagnetic phases as well as a first-order transition between two
canted phases with spontaneously broken U(1) symmetry. We find that these two canted phases are topologi-
cally connected in the phase diagram and, reminiscent of a first-order liquid-gas transition, the first-order
transition line between these two phases ends in a quantum critical point. We develop a physical picture of
these two phases and describe in detail the physics of the transition.

DOI: 10.1103/PhysRevB.70.115325 PACS number(s): 73.43.Nq

I. INTRODUCTION

Over the last fifteen years, one of the most exciting fron-
tiers in two-dimensional electron physics has been the study
of quantum Hall bilayers.1 Stacking two quantum Hall sys-
tems a small distance away from each other serves two main
purposes: First of all, it is a way of creating a multicompo-
nent system in which the layer index of the electron plays the
role of an isospin. Secondly, it is a step in adding another
dimension to the traditionally two-dimensional quantum Hall
medium.

A striking phenomena that illustrates the richness of the
physics of bilayer quantum Hall systems is the
commensurate-incommensurate transition observed in sys-
tems with filling fractionn=1 subjected to tilted magnetic
fields.1–6 For typical parameters in these systems, the spin
degrees of freedom are frozen out and the only important
discrete degree of freedom is the layer index(isospin). Thus
only two processes are important: interlayer tunneling and
Coulomb interactions. When such a bilayer system is sub-
jected to tilted magnetic fields, the electrons tunneling be-
tween the layers enclose flux quanta. In the presence of a
sufficiently strong in-plane magnetic field it may be favor-
able for the system to forgo tunneling in order to escape
destructive interference induced by the in-plane field. This
creates an opportunity for a phase transition to occur be-
tween a phase in which tunneling plays the central role and a
phase in which tunneling is effectively zero.

Recently, it has been shown7 that a somewhat different
phase transition can occur in bilayer systems with a total
filling fraction n=2. Then=2 bilayer system is enriched not
only by the presence of two electrons per flux quantum, but
most importantly by the role of real spin. In contrast ton
=1 bilayers where the real spin degrees of freedom are fro-
zen out, inn=2 bilayers, spin degrees of freedom areen-
tangled with the isospin degrees of freedom as a result of
Fermi statistics(Pauli exclusion principle, in other words).
Thus, then=2 bilayers exhibit a richer phase diagram even
in perpendicular field, and, as we will see later, an even more
intriguing phase diagram in the tilted field.

In 1997, Zheng, Radtke, and Das Sarma(ZRD)8,9 pre-
dicted that the bilayer quantum Hall systems at total filling
fraction n=2 can exhibit a novel spontaneously symmetry-
broken phase. ZRD performed a time-dependent Hartree-
Fock study of spin-density excitations of then=2 bilayers
and found that, under experimentally attainable conditions
(at finite Zeeman energy and interlayer tunneling), the spin-
density mode softens, signaling a phase transition to a
symmetry-broken quantum Hall state. The state was found to
have a finite magnetization, similar to the simple ferromag-
netic statesFd that occurs in the limit of large Zeeman en-
ergy; it also exhibited interlayer phase coherence, similar to
the spin-singlet statesSd stabilized by strong interlayer tun-
neling. In addition, the state was found to possess antiferro-
magnetic correlations. ZRD dubbed the novel state “canted,”
since schematically the state can be viewed as one in which
the spins in the opposite layers are canted away from the
magnetic field in opposite directions. The canted ground
state breaks the U(1) symmetry associated with rotations
around the direction of the magnetic field; this spontaneously
broken symmetry is behind the formation of the soft(Gold-
stone) spin-density mode found by ZRD.

The canted state is a pure many-body state, stabilized by
Coulomb interactions. In the absence of the interactions,
there would be a first-order phase transition between the fer-
romagnetic phase and the spin-singlet state. Coulomb inter-
actions effectively mix the ferromagnetic state and the spin-
singlet state around the would-be first-order phase transition
(when the energy splitting between these states is small),
giving rise to the canted phase. Because Coulomb interac-
tions somewhat favor the ferromagnetic state, a finite amount
of tunneling is crucial for the stability of the canted phase.

Brey, Demler, and Das Sarma(BDD),10 however, showed
that the canted phase can be extended to the region of finite
Zeeman energy and infinitely small tunneling by creating a
charge imbalance between the layers. The charge imbalance
can be induced by an external bias voltage applied perpen-
dicularly to the system. In the charge-unbalanced regime,
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another many-body phase with a spontaneously broken U(1)
symmetry, but with vanishing antiferromagnetic order pa-
rameter, was discovered at zero tunneling. This phase—theI
phase—is continuously(without a phase transition) con-
nected to the antiferromangetic canted phase. MacDonald,
Rajaraman, and Jungwirth11 (MRJ) pointed out in their thor-
ough Hartree-Fock study of then=2 bilayer phase diagram
that theI phase is akin to the spontaneous interlayer phase
coherent phase that occurs in then=1 bilayers in the absence
of tunneling.2 MRJ therefore suggested that the spontaneous
interlayer phase coherence of theI phase may lead to inter-
esting effects in tilted fields, closely related to the
commensurate-incommensurate transition of then=1
bilayers.3–6

In a recent paper, Burkov and MacDonald7 (BM) explore
this possibility. Indeed they find that a tilted field applied to
a charge-unbalancedn=2 bilayer system induces a quantum
phase transition within the canted phase. Their “unrestricted
Hartree-Fock” analysis shows that the phase transition is first
order and is between two commensurate phases: At low tilt
angles the phase is a simple canted commensurate phase, in
which the layer degree of freedom(isospin) is commensurate
with the in-plane component of the magnetic field. At higher
tilt angles a phase transition occurs to a phase, in which not
only the isospin, but also thespin becomes commensurate
with the in-plane field(Fig. 4). Thus, BM conclude, the
phase transition is not a commensurate-incommensurate
transition.

In this paper, their results are extended and given a physi-
cal explanation. Using the “unrestricted Hartree-Fock” ap-
proximation, we find that the first-order phase transition ter-
minates with a quantum critical transition embedded within
the canted phase(Fig. 3). The simple commensurate and the
spin-isospin commensurate canted phases are continuously
connected to each other—very similar to the familiar ex-
ample of water and its vapor, the two phases possess the
same symmetry properties[the spontaneously broken U(1) in
our case]. To illustrate the first-order transition and the quan-
tum critical transition that terminates it, we present a series
of phase diagrams(Fig. 3). Each phase diagram is obtained
for fixed perpendicular-field Zeeman energy and tunneling
strength, and the axes on the phase diagrams are the in-plane
field and the bias voltage. We find this choice of axes par-
ticularly suitable, since current experimental techniques al-
low us to vary the bias voltage and the in-plane fieldin situ
over a wide range of values. All the phases on a given phase
diagram can therefore be accessed on a single sample; this
should facilitate the detection of the novel phase transitions
and the new phases. In an upcoming publication,12 we obtain
the collective modes in various parts of the phase diagram,
thus providing signatures of different phases and phase tran-
sitions for possible light-scattering experiments.

In addition to our new Hartree-Fock results, we present a
detailed physical discussion of the surprising behavior of the
n=2 bilayers in the tilted magnetic field. We show that the
exotic spin-isospin commensurate canted phase is closely re-
lated to theI phase, as illustrated by a comparison of order
parameters in the two phases(Fig. 5). In fact, the spin-
isospin commensurate phase rapidly converges to theI phase
as the tilt angle is increased. We use the symmetry properties

of the I state to give a simple explanation to the spin com-
mensuration at high in-plane fields. The similarities between
the novel first-order transition of then=2 bilayers and the
commensurate-incommensurate transition of then=1 bilay-
ers help us understand many aspects of our and BM’s nu-
merical findings, such as the confinement of the phase tran-
sition to the canted phase and the absence of the new
transition in charge-balancedn=2 bilayers.

This paper is organized as follows. In Sec. II, the bilayer
Hamiltonian under the influence of tilted magnetic fields is
presented. In Sec. III, the Hartree-Fock procedure, used by
Das Sarma, Sachdev, and Zheng9 (DSZ) to obtain the phase
diagram of the charge-balancedn=2 bilayer system in per-
pendicular field, is extended to the present case of a charge-
unbalancedn=2 bilayer in tilted field. A similar procedure
was outlined by BM,7 who dubbed it the “unrestricted”
Hartree-Fock approximation. In Sec. III, a detailed presenta-
tion of this, unrestricted, Hartree-Fock procedure is given.

In Sec. IV, the global phase diagram of then=2 bilayers
in tilted field is presented. The phase diagram of then=2
bilayers in perpendicular field has been previously reported
and discussed by several groups of authors.8–11 MRJ in par-
ticular, have obtained the full Hartree-Fock phase diagrams
of the n=2 bilayers for various combinations of
parameters.11 MRJ used a very elucidating reduced Hartree-
Fock solution, consisting of only three variational param-
eters, which elegantly captures the physics of then=2 bilay-
ers. The only shortcoming of their approximation is that it
does not always give the exact Hartree-Fock ground state
that is crucial for obtaining the correct collective mode dis-
persions from the time-dependent Hartree-Fock solution(as
will be presented in Ref. 12). In particular, as we will discuss
further below, the approximation of MRJ gives an approxi-
mate ground state for the canted phaseC, in which, as will
be shown in Sec. V, the most interesting phenomena happen
when the magnetic field is tilted. In addition, some aspects of
the phase diagram, such as the properties of the zero-
tunneling I phase have been essentially uninvestigated. In
Sec. IV some of these properties are discussed in detail.

In Sec. V the main results of this paper are presented. In
the first part of this section, the physics of the
commensurate-incommensurate transition of then=1 bilay-
ers in tilted fields is reviewed. In the next part, the possibility
of a similar transition inn=2 is discussed. Next, the quanti-
tative Hartree-Fock results are presented and explained. The
results are summarized in Figs. 3–5. Figure 4 illustrates the
commensuration of spin with the in-plane field at large tilt
angles. Figure 3 presents a set of global phase diagrams of
the n=2 bilayers in tilted magnetic fields, which show the
emergence and the evolution of the phase transition, induced
by the in-plane field. Figure 5 llustrates the close relationship
between the novel commensurate-commensurate transition
(with the involvement of the spin) and a “naive”
commensurate-incommensurate transition(in which the spin
is not involved).

Section VI gives a short summary of the results presented
in this paper. We also qualitative discussion of phenomena
beyond the Hartree-Fock results as well as discussing pos-
sible effects of finite temperature and the possibility of ob-
serving similar physics in other related physical systems.
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II. THE BILAYER HAMILTONIAN

We model then=2 bilayer quantum Hall system in tilted
magnetic field by a simple Hamiltonian which includes the
five most important aspects of the system: Landau level
quantization, Zeeman energy, tunneling between the layers,
an external bias voltage, and the Coulomb interactions be-
tween electrons. Disorder will be completely neglected
throughout this work.

We choose to work in the gaugeAW srWd=s0,B'x,−Bixd,
whereB' is the component of the magnetic field perpendicu-
lar to the plane of the sample andBi is the in-plane compo-
nent of the field(the total field isBtotal=ÎB'

2 +Bi
2). If the

layers are assumed to be infinitely thin(an approximation
used throughout this work), the lowest-Landau-level single-

electron wave functions for each layer in the gaugeAW srWd are

fXsrWd =
1

ÎlLy
Îp

eiXy/l2e−sx − Xd2/2l2, s1d

where X=−kyl
2 are the guiding centers of these Landau-

gauge wave functions;l =Î"c/eB' is the magnetic length
and Ly is the length of the system in they direction.
Throughout this paper, we assume that the cyclotron energy
is much larger than all other energy scales in the system and
restrict our arguments to the lowest Landau level.

In addition to the orbital degrees of freedomX, electrons
in the bilayer systems possess a spin and can be localized in
either layer. The layer index serves as an additional discrete
degree of freedom—the isospin—in bilayer systems. As a
result, the electron creation operatorscmsX

† are labeled by
three indices: the orbital indexX, the spin indexs=↑ (or +1)
and↓ (or −1), and the layer indexm that can take on values
R (or +1) andL (or −1). To facilitate the analogy between the
spin and the isospin, we define the electron spin and isospin

operatorsSWX and IWX:

SWX =
1

2 o
mss8

cmsX
† sW ss8cms8X, s2d

IWX =
1

2o
smn

cmsX
† tWmncnsX, s3d

wheresW andtW are sets of Pauli matrices, and the spin opera-
tor is defined here in the usual manner.13 The total spin and
isospin of the system are defined by the operatorsO
=oXOX, whereO= I ,S.

The term in the Hamiltonian representing the Zeeman en-
ergy is simply

HZ = − o
X

DZSX
z = −

1

2
DZsN↑ − N↓d, s4d

whereDZ=gmBBtotal is the Zeeman splitting andN↓ and N↑
are the total numbers of down and up spins in the system.
Very similarly, the term representing the bias voltage(i.e.,
the difference in electrostatic potential between the layers) is
written as

HV = − o
X

DVIX
z = −

1

2
DVsNR − NLd, s5d

whereDV is the potential difference between the layers, and
NL and NR are the total number of particles in the left and
right wells, respectively. The bias voltage clearly acts as an
effective external field that couples to the isospin.

Within the tight-binding approximation,14 tunneling be-
tween the layers can also be expressed as an effective exter-
nal field coupling to the isospin. When the magnetic field
applied to the system is perpendicular to it(so that the elec-
trons tunnel along the direction of the magnetic field and
never see any magnetic flux), the tunneling term can be writ-
ten as

HT
Bi=0 = − DSAS

0 o
X

IX
x s6d

=−
DSAS

0

2 o
X,s

scRsX
† cLsX+ cLsX

† cRsXd, s7d

i.e., it acts as an external field acting on the isospin in theIx

direction. The coefficient DSAS
0 is the symmetric-

antisymmetric gap induced by the tunneling in the absence of
the other external fields and interactions.

When the magnetic field is tilted with respect to the nor-
mal to the sample, the electrons tunneling between the layers
pick up an Aharonov-Bohm phasefse/cdeA ·dlg. As a result,
the tunneling term acquires phase factors

HT = − DSASo
X,s

feiQiXcRsX
† cLsX+ e−iQiXcLsX

† cRsXg s8d

=−
DSAS

2 o
X

feiQiXIX
+ + e−iQiXIX

−g, s9d

where the operatorsI±= Ix± iI y are the isospin raising and

lowering operators. The wave vectorQW i is defined as

QW i =
ẑ3 BW i

sB'l2/dd
s10d

with d the distance between the two layers16 (and the in-
plane magnetic field, in our gauge, pointing in theŷ direc-

tion). Note thatuQW iu is proportional to tanu=Bi /B', whereu
is the tilt angle. Interference between the electrons tunneling
in the presence of an in-plane field results in the reduction of
the effective symmetric antisymmetric gap14

DSAS= DSAS
0 e−Qi

2l2/4. s11d

We note that, had we chosen a different gauge, the Gaussian
decay ofDSAS would have remained although the form of
this term would have been different, and the phase factors
could disappear from the tunneling term and reappear in
other terms in the Hamiltonian(see Sec. V A).

The three terms of the Hamiltonian(HZ, HV, and Ht)
given above all describe single electrons and comprise the
noninteracting part of the Hamiltonian
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H0 = HZ + HV + HT

= − o
X
FDZSX

z + DVIX
z +

DSAS

2
seiQiXIX

+ + e−iQiXIX
−dG .

s12d

The Coulomb interactions between the electrons are taken
into account by an additional term

HI =
1

2V
o

X1X2

n1,n2

s1,s2

o
q

eiqxsX1−X2de−q2l2/2Vm1m2
sqd

3 cm1s1X1+qyl2
† cm2s2X2

† cm2s2X2+qyl2cm1s1X1
. s13d

where intralayer and interlayer Coulomb interactions are

VRRsqd =
2pe2

«q
, VRLsqd =

2pe2

«q
e−dq, s14d

respectively,d is the distance between the layers, andV is
the area of the sample. The total Hamiltonian is therefore
simply

H = H0 + HI . s15d

III. THE UNRESTRICTED HARTREE-FOCK
APPROXIMATION

A. Trial ground state

The Coulomb-interacting Hamiltonian in Eq.(15) is not
tractable exactly, and we solve it using the Hartree-Fock ap-
proximation. In the usual manner, we assume that the many-
body ground stateuGl is a Slater determinant of single-
particle states and perform a functional minimization of the
expectation valuekGuHuGl with respect to these single-
particle states. Under the assumption of translational invari-
ance in theŷ direction, the most general single-particle state
is a superposition of all the combinations of spin and isospin
degrees of freedomR↑, R↓, L↑, and L↓ which can be de-
scribed as a normalized four-spinor

W= swR↑,wR↓,wL↑,wL↓d. s16d

Such a normalized complex four dimensional vector trans-
forms under U(4). To make an=2 Slater determinant state,
we occupy each orbitalX by two particles7

uGl = p
X

f1X
† f2X

† u0l, s17d

where

fnX
† = o

ms

wmsX
n cmsX

† s18d

creates a particle described by Eq.(16). The requirement that
the operatorsfnX

† obey the fermionic anticommutation rela-
tions

hfmX, fnX8
† j = dmndXX8 s19d

is equivalent to an orthonormality constraint on theWn

o
ms

swmsX
n d * wmsX

m = dnm. s20d

Each element of U(4) specifies four orthonormalWn spinors.
When the filling fraction isn=2, the two states with lowest
mean-field energies(which we label 1 and 2 throughout the
paper) are occupied.15

The unrestricted Hartree-Fock ground state given by Eq.
(17) is very general. The freedom provided by the coeffi-
cientswmsX

n includes a possibility of nonuniform states, such
as stripe states. In this paper, we restrict our attention to
states with uniform density and uniform spin density, ignor-
ing the possibility of charge density waves or spin density
waves. We note that Ref. 16 considered the possibility of
nonuniform phases in bilayer quantum Hall systems atn=2
in the case of equal electron densities in the two layers. The
conclusion of that work was that charge or spin density wave
phases were never stabilized in the realistic range of param-
eters. The excitation spectra above the uniform-density
states, which we present in Ref. 12) also support the absence
of stripe or spin density wave instabilities.

We note that while the three parameter variational ansatz
of MRJ (Ref. 11) captures all the physics qualitatively(at
least in perpendicular field) it is not sufficiently general to
obtain the exact Hartree-Fock ground state(which is crucial
for properly obtaining the correct excitation spectra) in the
canted phases. In order to have a state of uniform spin den-
sity and uniform real density in each layer, the occupation
numberNmsX of each statemsX

NmsX = uwmsX
1 u2 + uwmsX

2 u2 s21d

has to be independent of the positionX. Thus, we may
write17

wmsX
n = eifmssXdzms

n , s22d

wherezms
n ’s are independent of position and the only posi-

tional dependence arises in the phases. In the case of zero
in-plane fieldsBi=Qi=0d, it will be very easy to see below
that the lowest energy solution should have no positional
dependence of the phases, so thatfmssXd can be taken to be
zero. However, in the more general case of nonzero in-plane
field a nontrivial positional dependence will be favored.

Following BM,7 we use a simple trial form for the posi-
tional phase dependence

fmssXd = QmsX s23d

or, equivalently,

fnX = o
ms

szms
n d * e−iQmsXcmsX. s24d

A ground state[Eq. (17)] with nonzeroQms possesses spin-
isospin-wave order, discussed at length in Sec. V D.
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As was mentioned above, the proposed ground state[Eqs.
(24) and (17)] is not the most general Slater determinant
(Hartree-Fock) state. Indeed, having made a specific choice
[Eq. (23)] of the positional dependence of the phase, this trial
state is not even the most general state with uniform density
and spin density in each layer. However, our analysis of the
collective modes12 around the ground states obtained by the
minimization ofkGuHuGl indicate the stability of these states
against second-order transitions that cannot be described
within the Hilbert space defined by our ansatz. The possibil-
ity of phase transitions into a soliton-lattice state will be
discussed in the concluding Sec. VI.

B. Hartree-Fock minimization

We minimize the expectation value of the Hamiltonian
(i.e. the trial ground state energy) with respect to the varia-
tional parameterszms

n andQms. Since

kcmsX
† cns8Xl = eisQns8−QmsdX o

n=1,2
szms

n d * zns8
n , s25d

the expectation value of the ground state energy per unit flux
in our nonuniform ansatz is

1

g
kGuHuGl = −

1

2 o
mnss8

„DZdmnsss8
z + DVdss8tmn

z + DSASdss8 cosfsQi − QRs+ QLsdXgtmn
x + sinfsQi − QRs+ QLsdXgtmn

y
… o

n=1,2
szms

n d * zns8
n

+ H−o
ms

o
n=1,2

uzms
n u2F o

s8,m=1,2

uzms8
m u2 − 1G −

1

2 o
mn,ss8

Fmnf− sQms − Qns8dq̂xd o
m,n=1,2

szms
n d * zns8

n szns8
m d * zms

m , s26d

whereg is the Landau level degeneracyg=V /2pl2, and

Fmnsqd =E d2k

s2pd2e−k2l2/2Vmnskdeiq∧k l2

=E dk

2p
e−k2l2/2VmnskdkJ0skql2d, s27d

H−sqd =
1

4pl2
fVRRsqd − VRLsqdg =

e2

«l

1 − e−dq

2ql
, s28d

so that H−=H−s0d=se2/«ldsd/2ld. The functionsFmn are
monotonically decreasing functions ofq and therefore the
higher the wave vector of the spin-isospin-wave order, the
lower the contribution of exchange to the ground-state en-
ergy. The exchange term thus favors a uniform state. The
tunneling term, however, does not contribute to the ground-
state energy, unlessQRs−QLs=Qi, and therefore favors
isospin-wave order. It is this competition that gives rise to
the novel first-order transition discovered by BM(Ref. 7)
and is presented in more detail in the next section. Using the
results of BM,7 we make a simplifying assumption that
QRs−QLs=Ql, for boths=↑ and↓, and thatQm↑−Qm↓=QS,
for m=R and L. In other words, we reduce the number of
phase parameters from three to two and write

Qms =
m

2
QI +

s

2
QS, s29d

where a finiteQI indicates the presence of an isospin-wave
order, while a finiteQS reflects the real spin-wave order.

To find a variational minimum of this Hamiltonian, we
differentiates1/gdkGuHuGl with respect toszms

n d* (Ref. 18)
under the orthonormality constraints onWn [Eq. (20)]. The
resulting set of minimization conditions can be arranged in
the form of a Schrödinger equation

MZn = enZ
n, s30d

whereZn=szR↑ ,zR↓ ,zL↑ ,zL↓d andM is a 434 matrix, which
is just the mean-field single-particle Hartree-Fock Hamil-
tonian

Mns8;ms = − DZdmnsss8
z − DVdss8tmn

z − DSASdss8F1

g
o
X

cosfsQi

− QIdXgtmn
x +

1

g
o
X

sinfsQi − QIdXgtmn
y G

+ 2H−o
ms

dmndss8F o
s8,m=1,2

uzms8
m u2 − 1G − Fmn

− fQI/2sm − nd + QS/2ss− s8dgq̂x o
n=1,2

szns8
n d * zms

n .

s31d

The Schrödinger equation(30) is solved iteratively.9 At
each iteration, the two eigenstates corresponding to the low-
est eigenvalues are filled(i.e., chosen to be states 1 and 2).
These lowest-energy eigenstatesZ1 and Z2 are then used to
obtain the matrixM for the next iteration. The procedure is
repeated until a self-consistent solution is achieved. This
solution—a set of eigenspinorsZn sorted according to their
eigenvalues—defines the lowest energy trial state among the
Slater determinants defined by Eqs.(17) and (24) subject to
fixed values of theQms’s. The eigenvalues«n give the bind-
ing energy of a particle in the subbandn, i.e., the energy lost
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when the particle is taken out of the system. The sum of
individual binding energies does not give the groundstate
energy; the ground state energy is evaluated using Eq.(27).
The minimization of the energy of the ground state over the
Qms’s is done last.7 Thus, we find the Hartree-Fock ground
state in two steps: First, for fixed values ofQI and QS, we
minimize the expectation value of the ground-state energy
with respect toszms

n d*. Then, we minimize the ground-state
energy with respect toQI and QS. The results are summa-
rized in the following sections.

IV. GLOBAL PHASE DIAGRAM OF THE n=2 BILAYERS
IN ZERO IN-PLANE FIELD

We start by considering the zero in-plane field case. As
was mentioned in the introductory section, the phase diagram
of then=2 bilayers in perpendicular field has been studied in
some detail.8–11 In this section, we highlight the properties of
the zero in-plane field phase diagram that help elucidate the
physics of then=2 bilayers in tilted field and discuss a num-
ber of issues, to which little attention has been paid to date.

The Zeeman splitting for a typical bilayer GaAs sample21

with filling fraction n=2 in perpendicular field isDZ
0

<0.01se2/«ld; it is set by the properties of the material(theg
factor and the effective electron mass) and the density of the
2DEG’s. We assume that, in the absence of an external bias
voltage, the density of the 2DEG’s in the two layers is the
same. Applying a finite bias voltageDV perpendicularly to
the layers, one can induce a charge imbalance between the
layers. We assume that the charge imbalance can be created
while keeping both the filling fraction and the magnetic field
constant. The tunneling strengthDSAS

0 is assumed to be un-
affected by the induced charge imbalance.

It is apparent from Eq.(27) that, when the magnetic field
is oriented perpendicularly to the plane of the bilayer sample,
i.e., Qi=0, spin- or isospin-wave order is not favored.
Throughout this section, we therefore assume thatQI =QS
=0.

Under these conditions, we obtain the global phase dia-
gram for then=2 bilayers. A cross section of the phase dia-
gram forDZ

0=0.01se2/«ld is presented in Fig. 1.10 The phase

diagram exhibits four phases: ferromagneticF, spin-singlet
S, cantedC, and the spin-isospin-entangled noncanted phase
I (represented by the thick line alongDSAS

0 =0). As expected,
when both the bias voltageDV and the tunneling strength
DSAS

0 are small, the Zeeman energy dominates and gives rise
to the ferromagnetic phase. In the opposite limit, of large
DSAS

0 and DV, the spin-singlet phase is stabilized. In the in-
termediate regime, the Coulomb interactions give rise to the
canted phase whenDSAS

0 Þ0 and to theI phase whenDSAS
0

=0.
The topology of the phase diagram is the same for all

other finite values ofDZ
0. For larger values ofDZ

0, the phase
space volume of the ferromagnetic phase increases, and the
spin-singlet phase is shifted to higher values ofDSAS

0 andDV;
the width of the canted phase(slowly) decreases. For smaller
values ofDZ

0, the opposite effect takes place: the volume of
the ferromagnetic phase decreases and the canted phase be-
comes wider. The ferromagnetic phase does not disappear
from the phase diagram untilDZ

0=0, when, within the
Hartree-Fock approximation, a many-body phase(the DZ

0

→0 limit of the canted phase) fills the low-DSAS
0 −DV region

completely.19 In real bilayer samplesDZ
0 is always finite,

while 0,DSAS
0 &0.08se2/«ld. As was proposed by Brey,

Demler, and Das Sarma,10 and is clear form Fig. 1, by
sweeping the external bias voltage one can probe the three
phases of then=2 bilayer system that occur in the presence
of finite tunneling: ferromagnetic, canted, and spin singlet. In
tilted fields, theI phase can also be attained in the limit of a
large tilt angle(see Sec. V D).

A. Ferromagnetic phase

The simplest phase in the phase diagram is the ferromag-
netic phase. The ferromagnetic ground state has the simple
form uFl=pXcR↑X

† cL↑X
† u0l. It is effectively a single-particle

state, which could occur in the absence of interactions. The
n=2 system in the ferromagnetic state can be viewed as two
decoupled spin-polarizedn=1 monolayers. The state is
clearly not interlayer phase coherent, therefore, an in-plane
field would not affect it.

B. Spin-singlet phase

The spin-singlet state is also a single-particle state. It is
stabilized by largeDSAS

0 and/or DV. The spin-singlet state
uSl=pXszRcR↑X

† +zLcL↑X
† dszRcR↓X

† +zLcL↓X
† du0l is interlayer

phase coherent unlessDSAS
0 =0. When DSAS

0 =0, the spin-
singlet state is simplyuSl=pXcR↑X

† cR↓X
† u0l, a n=2 monolayer

quantum Hall state. In the presence of interlayer tunneling,
the n=2 bilayer system in the spin-singlet state can be
viewed as two oppositely spin-polarizedn=1 bilayer systems
that possess interlayer phase coherence. The main difference
between then=2 bilayer system in the spin-singlet state and
a set of twon=1 bilayer systems is that in the latter case the
interactions play an important role alongside tunneling in
creating the interlayer phase coherence; in the spin-singlet
state of then=2 bilayers interactions are not important. The
phase space region where the interactions play an active role
in n=2 bilayers is the region of stability of the canted phase.

FIG. 1. Global phase diagram for an=2 bilayer sample in per-
pendicular magnetic field. The Zeeman energy isDZ

0=0.01se2/«ld
and the interlayer spacing isd= l. The tunneling strengthDSAS

0 and
the bias voltageDV are given in units ofse2/«ld. The phaseS is the
spin-singlet phase,F is the ferromagnetic phase, andC is the canted
phase. The thick line alongDSAS

0 =0 represents theI phase.
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The boundaries of the canted phase therefore mark the
boundaries of the influence of the interactions. Moreover,
unlike in the n=1 bilayers where tunneling and exchange
work cooperatively, in then=2 bilayers tunneling and ex-
change are in competition, since the Coulomb interactions
favor the ferromagnetic state(due to their intralayer-
interlayer anistrophy).

C. Canted phase

While the ferromagnetic and the spin-singlet phases are
essentially single-particle phases, stabilized by single-
particle fields, the canted phase is a many-body phase stabi-
lized by the interactions. As was mentioned in the Introduc-
tion, in the absence of the interactions there would be a first-
order phase transition between the spin-singlet and the
ferromagnetic phases. The interactions can lower the energy
of the system by creating the canted phase(Fig. 2), and the
ground-state energy and width of the canted phase depend on
the strength of the interactions.20 As will be shown in Sec. V,
the importance of the interactions in the canted phase implies
that the phase can be nontrivially affected by the in-plane
component of the magnetic field.

In the canted phase, the interactions effectively mix the
ferromagnetic and the spin-singlet states22 giving rise to a
finite magnetizationkSzl and antiferromagnetic spin correla-

tions ukŜR
z 3SWRl−kŜL

z 3SWLluÞ0W, whereŜm
z is the unit vector in

the spin-up direction in the layerm.9 (One often defines an
antiferromagnetic order parameterOxz,

7,11 where Oab=kSa

^ Ibl, which is finite only in the canted phase.) The U(1)
symmetry associated with rotations aroundSz is spontane-
ously broken. The canted ground stateuCl has the most gen-
eral form, Eq.(17), and is spin-isospin entangled—i.e., it
cannot be decoupled into two independent spin or isospin

channels such as the ferromagnetic or the spin-singlet ground
states. The canted ground state is therefore interlayer phase
coherent, which is confirmed by a nonzero value ofksIxd2

+sIyd2l.

D. I phase

While the canted phase has attracted the most
attention,8–11,22 the many-body phase that occurs in charge-
unbalanced systems in the absence of interlayer tunneling is
no less interesting. In the absence of tunneling, the interac-
tions give rise to aspontaneouslyinterlayer phase coherentI
state(Refs. 10 and 11) (with the antiferromagnetic order pa-
rameterOzx=0). The interlayer phase coherence of theI state
is spontaneous since the single-particle fieldsDZ

0 andDV do
not stabilize interlayer phase coherent states. TheI ground
state has a simple formuIl=PXcR↑X

† szR↓cR↓X
† +zL↑cL↑X

† du0l,
which manifests the interlayer phase coherence of the state,
its spin-isospin entanglement, and the U(1) spontaneous
symmetry breaking. Simply speaking, the U(1) symmetry of
the I state is the freedom to choose the relative phase ofzR↓
andzL↑ in the expression foruIl. One can also formally con-
sider the U(1) symmetry associated with rotation aroundIz or
aroundSz (applying eiuIz or eiuSz

clearly gives the desired
effect). It is important to note that the stateuIl does not break
the Us1d3Us1d symmetry of spin and isospin rotations
completely.9,11 This state is an eigenstate ofIz+Sz with an
eigenvalueg (the degeneracy of the Landau Level), but it
mixes states with differentIz−Sz quantum numbers. So the
stateuIl breaks theUs1d3Us1d symmetry down to the diag-
onal U(1).

The feature of the stateuIl to be an eigenstate ofIz+Sz

will prove useful in the following discussion of the many-
body phases in the presense of an in-plane field. In fact, all
the possible ground states of then=2 bilayers in the absence
of tunneling are eigenstates ofIz+Sz. If the bias voltage and
the Zeeman energy are positive, all the possible zero-
tunneling ground states are(locally—for a given orbital
quantum numberX) linear combinations of aSX

z = +1 spin
triplet and anIX

z = +1 isospin triplet(the ferromagnetic and
the spin-singlet states being the two extremes with only the
spin triplet or isospin triplet contributing, respectively). In
this case, all the zero-tunneling ground states are eigenstates
of Iz+Sz with an eigenvalueg, whereg is the Landau level
degeneracy.

Even thoughIz+Sz is a formal construction, whose expec-
tation value cannot be directly measured, it can help advance
our understanding of the physics of theI phase and of the
canted phase in the presence of small interlayer tunneling.
Thus, since applying a rotationeiusIz+Szd to the stateuIl gen-
erates a trivial phase factor,Iz+Sz can be treated as the ef-
fective direction in which theI state “points.” In contrast, if
tunneling is added to the system,Iz+Sz does not commute
with the Hamiltonian. The operatoreiusIz+Szd then generates a
nontrivial rotation of the canted state aroundIz+Sz. When
interlayer tunneling is small, the canted ground state has a
large overlap with anI state, and can be visualized in its
Hilbert space as pointing slightly away from theIz+Sz direc-
tion. The relevance of this picture to then=2 bilayer physics

FIG. 2. Energy profile of charge-balancedn=2 bilayers with
Zeeman energyDZ=0.05se2/«ld, interlayer spacingd= l, and a
range of tunneling amplitudes. The dashed line represents the en-
ergy of the ferromagnetic state. The long dashed line is the energy
of the spin-singlet state. In the absence of interactions, there would
be a first order phase transition at the intersection of the two dashed
lines. The interactions effectively “smooth out” the profile by sta-
bilizing the canted phase.
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will become more clear in the next section(Sec. V D).
The relation between the canted phase and theI phase is

reminiscent of the relation between phases of then=1 bilay-
ers in the presence and absence of tunneling. The main simi-
larity is that, when there is no tunneling between the layers,
both then=1 and then=2 bilayers support a spontaneously
interlayer phase coherent phase. There are, however, marked
differences. The main difference is that the symmetry prop-
erties of the canted phase and theI phase are the same, while
in the n=1 bilayers spontaneous symmetry-breaking occurs
only in the absence of tunneling. Moreover, unlike the zero-
tunneling phase of then=1 bilayers, theI phase is spin-
isospin entangled. As we will show in the next section, be-
cause of their similar nature, both then=1 andn=2 systems
undergo essentially similar phase transitions in the tilted
magnetic field; the systems’ differences, however, lead to
surprisingly different behaviors of then=1 andn=2 bilayers
in the vicinity of the phase transitions.

V. GLOBAL PHASE DIAGRAM OF THE n=2 BILAYERS
IN TILTED FIELD

As was discussed in the previous section, the physics of
then=2 bilayers is very rich. Then=2 bilayers exhibit a host
of many-body phenomena, such as spontaneous symmetry
breaking, spontaneous interlayer phase coherence, and spin-
isospin entanglement. To further explore the many-body na-
ture of the phases and phase transitions of then=2 bilayer
system, in this section we study the behavior of the system in
the presence of a tilted magnetic field.

Tilted magnetic fields have been successfully used to
study the role of both spin and layer degrees of freedom in
quantum Hall physics. In thin monolayer systems, the tilted
field technique was used to investigate the spin-unpolarized
fractional quantum Hall ground states. The technique is
based on the fact that, in the infinitely thin limit, the orbital
motion in a 2DEG depends solely on the perpendicular com-
ponent of the magnetic fieldB', while the Zeeman energy is
proportional to the total fieldB. The Zeeman energy can
therefore be increased independently of the effective interac-
tions in the quantum Hall monolayer by adding an in-plane
field Bi. In bilayer systems, the presence of an in-plane field
affects not only the Zeeman energy but also therelative or-
bital motion in the two layers and, therefore, the tunneling
between the layers and interlayer interactions.

A. Commensurate-incommensurate transition in then=1
bilayers: An overview

The coupling of the tilted field to the layer degree of
freedom is easier to demonstrate using the thoroughly stud-
ied n=1 bilayers2–6 as an example. Inn=1 bilayers the spin
degree of freedom is frozen out by the ferromagnetic
exchange8 and, in the absence of an external bias voltage, the
physics of the system is fully determined by the interplay of
tunneling and Coulomb interactions. As was discussed
above, tunneling[Eq. (9)] can be considered as an external
field that couples toIx; Coulomb interactions give rise to a
charging energy(from the direct term) and an anisotropic

isospin stiffness, both of which favor the isospin-xy plane.4

When the layers are separated by a distance comparable to
the distance between the electrons in a single layer, the an-
isotropic Coulomb interactions support a spontaneously in-
terlayer phase coherent ground state even in the absence of
tunneling.2 The U(1) symmetry associated with rotations
aroundIz is spontaneously broken. Tunneling, always present
to some degree in real samples, breaks this symmetry, but it
does not destroy the interlayer phase coherence. Instead, in
the absence of an in-plane field, tunneling acts cooperatively
with the interactions to stabilize the interlayer phase coherent
state.3,4

A finite in-plane field introduces a competition between
tunneling and the Coulomb interactions inn=1 bilayers.4,6 In
the presence of an in-plane field, the tunneling term[Eq. (9)]
now favors an isospin-wave ground state, in which the iso-
spin twists around theIz direction with the wave vectorQi.
Exchange interactions, on the other hand, favor a uniform
configuration. The competition between tunneling and ex-
change results in the commensurate-incommensurate transi-
tion between the isospin-wave commensurate and uniform
incommensurate phases.

The picture of the commensurate-incommensurate transi-
tion outlined above is somewhat simplistic.4,6 The transition,
in fact, does not happen directly from the commensurate to
the incommensurate state, but instead occurs through forma-
tion of a soliton-lattice phase. When, as the in-plane field is
increased, the losses in exchange energy due to twisting be-
come approximately equal to the expectation value of the
tunneling term, the system can optimize its ground-state en-
ergy by forming a soliton in an otherwise commensurate
state.4,6,23,24By forming a soliton the system recovers some
exchange energy while saving most of the tunneling energy.
The commensurate-incommensurate transition by means of
soliton-formation is the Talapov-Pokrovsky commensurate-
incommensurate transition.4

The microscopic description of the physics of a bilayer
system in an in-plane field depends on a particular choice of
the gauge, but the underlying picture of an induced compe-
tition between tunneling and exchange is valid for any

gauge.6 Thus, for example, in the gaugeAW =s0,B'x−Biz,0d,
the tunneling electrons acquire no Aharonov-Bohm phase
and the tunneling term in the microscopic Hamiltonian is
unaffected.3,14 However, in this gauge it is the interlayer ex-
change that acquires an additional phase in this case, so that
it is the interaction term that now favors an isospin wave.

B. Possibility of commensurate-incommensurate
transition

in n=2 bilayers

To create a framework for the interpretation of our nu-
merical results, we start by a qualitative discussion of the
behavior of then=2 bilayers in tilted field. We consider the
theoretical possibility of the commensurate-incommensurate
transition in then=2 bilayers, much as has been done for the
n=1 bilayers: We assume for simplicity that the
commensurate-incommensurate transition happens between
a commensurate state that maximizes tunneling at the ex-
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pense of exchange(i.e., QI =Qi and QS=0) and an incom-
mensurate state that maximizes exchange while losing all the
tunneling energysQI =QS=0d. This is the scenario that we
called simplistic in our discussion of then=1 bilayers since
better mathematical models indicate that the commensurate-
incommensurate transition occurs through a succession of
soliton lattice phases rather than directly. Nevertheless, the
“naive” commensurate-incommensurate transition serves as
a good simple approximation that allows one to make experi-
mentally relevant predictions and explanations without any
numerical calculations. We therefore expect that the naive
commensurate-incommensurate approximation will capture
some of the physics of then=2 bilayers in tilted fields as
well.

The naive commensurate-incommensurate transition can
happen only in the canted phase, since it is the only phase in
which tunneling and exchange are comparable to each other.
The other two phases—the ferromagnetic phase and spin-
singlet phase—essentially mark the regions in the phase
space where interactions are less important than the single
particle fields. We therefore expect the spin-singlet phase to
be always commensurate. The ferromagnetic state is not in-
terlayer phase coherent and therefore the in-plane field can-
not affect it. The canted phase, however, can be commensu-
rate at lower in-plane fields, but it may turn incommensurate
when the in-plane fields are so high that the losses in ex-
change become greater than the contribution of the tunneling
term.

The naive commensurate-incommensurate transition,
however, cannot happen in charge-balancedn=2 bilayers. In
order for the commensurate-incommensurate transition to
happen, an incommensurate state should exist, which would
become lower in energy than the corresponding commensu-
rate state as the tilt angle is increased. Since the tunneling
contribution to the energy of the naive incommensurate state
is zero, the incommensurate state is equivalent to the state of
the system with no interlayer tunneling(all other parameters
unchanged). In charge-balancedn=2 bilayers, the zero-
tunneling ground state is always ferromagnetic. As is clear
from Fig. 2, the energy of a ferromagnetic state created in a
system with no tunneling and given intralayer interactions is
always higher than that of a canted state created by adding a
finite amount of tunneling to this system(all other things
being equal). Therefore, there can be no naive
commensurate-incommensurate transition in a charge-
balancedn=2 bilayer system.

The situation changes if a finite bias voltage can be ap-
plied to the system. As was mentioned in Sec. IV, in the
presence of finite bias voltage one can obtain an interlayer
phase coherent phase—theI phase—even in the absence of
tunneling. The ground-state energy of theI state depends not
only on the relative strength of the Zeeman energy and the
external bias voltage, but also on the interlayer Coulomb
interactions. Therefore, it is straightforward to argue that, in
charge-unbalanced samples with small tunneling amplitudes,
a commensurate-incommensurate transition may be possible:
Let us consider such a sample. In a perpendicular field, the
many-body state of the sample is a canted state. Because the
tunneling amplitude is small, this canted state is just a slight
perturbation of the corresponding zero-tunnelingI state. The

interaction energies of the two states are very close; the en-
ergy of the canted phase is lower largely due to the tunneling
term. As the magnetic field is tilted, the isospin starts twist-
ing commensurately with the in-plane field, thereby losing
some interlayer exchange. When the losses in exchange en-
ergy become equal to the tunneling energy, the energies of
the canted commensurate state and the corresponding zero-
tunneling I state become approximately equal. At slightly
higher tilt angles, a transition to theI state clearly would
occur. In anticipation of this discussion, at the start of the
chapter, we named the zero-tunneling many-body phase theI
phase, whereI stands for “incommensurate.”

We also can expect that the in-plane field will not only
induce a transition, but also affect the location of the second-
order phase transitions between the spin-singlet, canted, and
ferromagnetic phases in the phase space. The reduced effec-
tive interlayer interactions in the commensurate states will
destabilize the canted commensurate phase, and its two
phase boundaries will move toward each other as the in-
plane field is increased. The relative position of the bound-
aries of the incommensurate phase will be nearly constant
with the increasing tilt angle. At larger in-plane fields another
effect, which we so far have ignored, will become
important—the dependence of the Zeeman energy and the
tunneling amplitude on the in-plane field. The increasing
Zeeman energy and the decreasing tunneling will eventually
drive the system into a ferromagnetic state as the tilt angle
becomes very large.(At very large in-plane fields, however,
our infinitely-thin layer approximation loses its validity com-
pletely, and therefore this discussion becomes purely theoret-
ical.)

In the next subsection we explain that the commensurate-
incommensurate transition atn=2 is sufficiently different
from the simple picture presented above. Hence, the argu-
ments presented here should be considered only as a motiva-
tion for a more detailed discussion in subsecuent sections.

C. Global phase diagram ofn=2 bilayers in tilted
magnetic field

The Hartree-Fock phase diagrams are presented in Fig. 3.
The axes on the phase diagrams are the bias voltageDV and
the in-plane field wave vectorQi. We find this choice of axes
convenient, since current experimental techniques allow one
to tune both the bias voltage and the in-plane fieldin situ
across a wide range. The other parameters of a bilayer
sample—the perpendicular-field Zeeman splittingDZ

0, the
perpendicular-field tunneling amplitudeDSAS

0 , and the dis-
tance between the layersd—are, to a good approximation,
intrinsic to a given sample. For each phase diagram, we fix
these parameters at values typical of real samplesDZ

0

=0.01se2/«ld, DSAS
0 ø0.08se2/«ld, andd= l. Each phase dia-

gram in Fig. 3 therefore corresponds to a single sample with
DZ

0=0.01se2/«ld, d= l, and the value ofDSAS
0 given in the

lower right corner of the phase diagram.
The unrestricted Hartree-Fock calculation does provide

evidence for a phase transition7 (the dashed line in Fig. 3)
which possesses the properties we qualitatively predicted for
the naive commensurate-incommensurate transition: The
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first-order transition occurs only within the canted phase and
only in the presence of a finite bias voltage. Moreover, the
canted commensurate phase shrinks as the in-plane field is
increased, but the decrease in the width of the phase stops
after the first-order transition. However, instead of the in-
commensurate phase, we find an interesting seemingly dou-
bly commensurate phase, in which both the isospin and the
spin components are commensurate with the in-plane field.7

That is to say, throughout the interlayer phase coherent
region—in the phases SC,C1, andC2 in Fig. 3—the wave
vector of the isospin-waveQI =Qi. In the canted phasesC1
andC2, however, the spin-wave wave vector is also nonzero.
It is almost zero in theC1 phase, except near the phase
transition boundary, but it is close toQS=Qi in theC2 phase
(Fig. 4 and Ref. 7). The phase transition between the two
canted phases is first order, terminating at a critical point.
The onset of the first-order transition occurs at a critical tun-
neling amplitudeDSAS

0 <0.015se2/«ld. As the tunneling am-
plitude DSAS

0 is increased, theC1-C2 transition becomes
more prominent and a higher in-plane field is needed to in-
duce it. The presence of the in-plane component of the mag-
netic field thus leads to a phase transition that is clearly re-
lated to the commensurate-incommensurate transition, but
possesses some unexpected properties that invite a physical
explanation.

We emphasize that a simple picture of the commensurate-
incommensurate transtion should not be carried directly from
n=1 to n=2. In the former case it appears as a result of the
competition between the single particle tunneling energy and
the exchange part of the Coulomb interaction. Atn=2 we
have QI =Qi in all of the canted phase(both C1 and C2),
which optimizes the tunneling term. The origin of theC1
-C2 transtions is the competition of the exchange terms in
Eq. (31). The wave vectors of the exchange terms in this
equation are given byQs, Qi−Qs, andQi+Qs (we usedQI
=Qi). So different exchange terms would be minimized for
different values ofQs. It is useful to consider the variational

energy of the ground state in Eq.(31) as a function ofQs for
different points in the phase diagramEsQsd. When we start
near the base of the first order transition and far from the
critical point (see Fig. 3), the function has two local minima:
one for Qs close to zero and the other forQs close toQi.
When we are on theC1 side of the transition, the former is
the global minimum, and when we are on theC2 side, the
latter corresponds to the true ground state. As we move along
the first order line toward the critical point(by increasing the
gate voltage), the positions of the two local minima move
together until the critical point where they merge into a
single minimum. Anywhere above the critical point the sys-
tem has only one local minimum inEsQsd. It is also useful to

FIG. 3. Global phase diagrams forn=2 bi-
layer samples of different tunneling strengths in
tilted magnetic field. The tunneling amplitudes
DSAS

0 are given in the lower right corner of each
panel. The Zeeman energyDZ

0=0.01se2/«ld and
the distance between the layersd= l, are the same
for all the phase diagrams. The solid lines indi-
cate second-order phase transitions and the
dashed lines indicate first order. The phases areS:
spin-singlet, F: ferromagnetic,I: incommensu-
rate, SC: spin-singlet commensurate,C1: canted
commensurate, andC2: canted spin-isospin
commensurate.

FIG. 4. Evolution of the spin-wave wave vectorQS (solid line)
as a function of the in-plane field wave vectorQi (given in units of
1/l). The dashed line isQI =Qi, given for comparison. The wave
vectorQS is small in the phaseC1 (low Qi) and abruptly jumps to
QS<Qi at the phase transition toC2. The Zeeman energy in this
figure isDZ

0=0.01se2/«ld, the interlayer spacing isd= l, the tunnel-
ing constant isDSAS

0 =0.06se2/«ld, and the external bias voltage is
DV=0.8se2/«ld.
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point out that there is a region of metastability ofC1 andC2
phases around the first-order line separating them. We expect
interesting hysteresis effects to occur in this region.

D. Canted commensurate phases inn=2 bilayers

The most surprising part of the phase diagram is theC2
phase, in which both the spin and the isospin degrees of
freedom are commensurate with the in-plane field.7 The lo-
cation of theC2 phase on the phase diagram, so similar to
that expected of the incommensurate phase, strongly sug-
gests that, despite its apparent complexity, theC2 phase is
simply related to the naive incommensurate phase. The close
relationship between theC2 phase and theI phase becomes
more clear if one considers the expectation values of spin
and isospin operators. In Fig. 5, we plot three expectation
values:kIQ

x l=oXkeiQiXIX
+ +e−iQiXIX

−l, kIzl, lIz+Szl for a sample
with DZ

0=0.01se2/«ld, DSAS
0 =0.06se2/«ld, and the bias volt-

age held atDV=0.8se2/«ld as we move across the first-order
transition by increasingQi. The operatorIQ

x is the tunneling
operator in the Hamiltonian of the system, and therefore its
expectation value indicates if tunneling contributes to the
energy of a particular state. The expectation valuekIQ

x l is
zero in the naive incommensurate state. The naive incom-
mensurate state, theI state, is an eigenstate of the operator
Iz+Sz with the eigenvalueg. Thus, s1/gdkIz+Szl=1 in this
state. To distinguish theI state from the ferromagnetic state
and the fully charge-unbalanced spin-singlet state, which are
also eigenstates ofIz+Sz, we also plotkIzl, which satisfies
0, s1/gdkIzl,1 in the I state. The thinner lines in Fig. 5
represent the expectation values obtained under the assump-
tion that the system undergoes the naive commensurate-
incommensurate transition(the spin-wave wave vectorQS is
held at 0). The discontinuity in the expectation values marks
the commensurate-incommensurate transition. As expected,
after the transition into the incommensurate phases1/gd

3kIQ
x l=0 ands1/gdkIz+Szl=1. The thick lines represent the

expectation values that we obtain for the system allowed to
undergo theC1-C2 transition. The expectation values ob-
tained from the full unrestricted Hartree-Fock solution and
those obtained under the assumption of the naive
commensurate-incommensurate transition exhibit strikingly
similar behaviors. The main difference is that, unlike in theI
phase, the expectation value of theIQ

x operator in theC2
phase is small but finite. This means that there is a contribu-
tion from the interlayer tunneling to the ground state energy
in theC2 phase. It is therefore clear that theC2 phase is the
optimized version of theI phase much as the soliton-lattice
phase of then=1 bilayers is the optimizedn=1 incommen-
surate state.

Unlike the n=1 bilayer system, then=2 bilayer system
possesses the spin degrees of freedom which it can use to
optimize its ground-state energy around the commensurate-
incommensurate transition. The system can satisfy the
Aharonov-Bohm phases in the tunneling term by winding
either aroundIz or Iz+Sz. Winding aroundIz+Sz clearly does
not affect the Zeeman and the bias voltage terms and in some
circumstances can cost less exchange energy: TheI state is
an eigenstate of theIz+Sz operator and, as we argued in Sec.
IV D, is invariant under rotation aroundIz+Sz (see Fig. 6). If
the I state is somehow perturbed so that it becomes slightly
canted, for example, because a small amount of tunneling is
present, the state is no longer invariant under rotations
aroundIz+Sz, but a precession aroundIz+Sz does not cost
much exchange energy.(A useful analogy is a Heisenberg
ferromagnet with all spins pointing in the same direction
kSzl= +1/2. If thespins are made to tilt away from the posi-
tive Sz direction and precess around it, very little spin-
stiffness energy is lost.) As the in-plane field is increased, the
winding aroundIz+Sz becomes faster and tighter. This causes
the phaseC2 to asymptotically approachI.

TheC1 andC2 phases are both canted and have the same
symmetry properties. It is therefore not surprising that they
are connected on the phase diagram, i.e., they are essentially
the same phase. The qualitative difference betweenC1 and
C2 is in the involvement of the spin degree of freedom in the

FIG. 5. Expectation valueskIQ
x l (solid lines), kIzl (dashed lines),

and kIz+Szl (dash-dotted lines), per flux quantum, acrossC1-C2
(thick lines) and the naive commensurate-incommensurate(thin
lines) phase transitions. The Zeeman energy isDZ

0=0.01se2/«ld, the
interlayer spacing isd= l, the tunneling constant isDSAS

0

=0.06se2/«ld, and the external bias voltage isDV=0.8se2/«ld.

FIG. 6. Schmatic representation of the comensurateC1 andC2
states. In the left figure, anI state is represented. TheI state is
shown in Sec. IV D to be an eigenstate of the operatorIz+Sz. Thus,
the I state is represented as a vector pointing in theIz+Sz direction.
In the presence of tunneling, the system can satisfy the Aharonov-
Bohm phases in the tunneling term by winding around either the
Iz+Sz axis, yielding theC2-commensurate state shown above, or by
winding around theIz axis yielding theC1-commensurate state. The
C2 state asymptotically approaches theI state in large in-plane field
where the winding becomes very fast and therefore must be very
tight (due to “spin stiffness”).
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quenching of the in-plane magnetic field. In our mean-field
solution the wave vector of the spin wave does not always
jump between the qualitatively understood cases ofQS=0
andQS=Qi, but it can change gradually. The wave vectorQS
changes gradually whenC1 turns intoC2 via a crossover, at
larger values ofDV, when the canted state has a large overlap
with the I phase[s1/gdkIz+Szl close to 1]. In fact, whenDSAS

0

is very small,DSAS
0 ø0.015se2/«ld, the first-order transition

disappears altogether, since the canted phase is so close to
the I phase that the canted phase always has aC2 flavor to it.

VI. CONCLUSIONS

To summarize, we have obtained the global phase dia-
gram of then=2 bilayers in tilted magnetic field(Fig. 3). We
found that, in charge-unbalancedn=2 bilayers, a finite in-
plane component of the magnetic field can induce a first-
order phase transition between two commensurate canted
phasesC1 and C2. The phaseC1 possesses isospin-wave
order, commensurate with the in-plane field; in the phaseC2
commensurate spin-wave order is induced alongside with the
isospin-wave order. BothC1 andC2 phases spontaneously
break a global U(1) symmetry, and are technically the same
phase. Indeed, in the phase diagrams in Fig. 3, phasesC1
andC2 are topologically connected, and the first-order tran-
sition between them terminates at a critical end point.

The physics of the commensurate canted phases was dis-
cussed in detail in this paper. The behavior of then=2 bilay-
ers in tilted magnetic fields was compared to that of theirn
=1 counterparts. The phaseC1 was found to be analogous to
the commensurate phase ofn=1 bilayers, while the phaseC2
was linked to the incommensurate phase. As was predicted
by MRJ,11 the U(1)-symmetry-brokenI phase, which had
been predicted to exist in the absence of tunneling in charge-
unbalancedn=2 bilayer systems, was found to play the role
of a “naive” incommensurate phase inn=2 bilayers[akin to
the “naive”—translationally invariant—incommensurate
phase ofn=1 bilayers(see Sec. V A)]. In this paper, theC2
phase was argued to be an optimization of the naive incom-
mensurate phase, much as the soliton lattice phase inn=1
bilayers in tilted fields is an optimization of the naive incom-
mensurate phase in this system.

The rapid convergence of the spin-isospin commensurate
canted phase to theI phase can be used to study theI phase.
Very similar to the canted phase, theI phase also possesses a
number of intriguing many-body properties. However, theI
phase can occur only in the absence of interlayer
tunneling—a condition impossible in a typical bilayer
sample. Tilting the magnetic field allows one to access theI
phase in an experimental setting and study its properties.

The possibility of the formation of an interim soliton
phase around theC1-C2 first-order phase transition cannot
be ruled out with certainty in our approximation. However,
the energy of a soliton phase inn=1 bilayers converges to
the energy of the corresponding naive(translationally invari-
ant) incommensurate phase,23,24 much more rapidly than the
energy ofC2 converges to the energy of the correspondingI
state. We may therefore conclude that, even if the soliton
phase inn=2 bilayers is possible, it will not occupy a sig-
nificant amount of phase space.

In this paper we present a heuristic argument and numeri-
cal evidence that no new transition occurs incharge-
balancedn=2 bilayers. This is indeed consistent with the
inelastic light-scattering results by Pellegriniet al.21,25 In
their experiments, Pellegriniet al. used the tilted-field tech-
nique to sweep over a range of Zeeman energyin situ. No
perpendicular bias voltage was applied to the bilayer system;
the maximum tilt angle wasu=45°. Pellegriniet al.obtained
encouraging evidence of the existence of the expected phase
transitions between the spin-singlet and canted phases, as
well as between canted and ferromagnetic phases. No other
transitions have been reported.

The Hartree-Fock approximation, which we used to ob-
tain our results, had been shown to be robust for then=2
bilayers in perpendicular fields.11,26 The phase diagrams ob-
tained in the Hartree-Fock approximation(HFA) closely
match those obtained using exact diagonalization.26 While
the Hartree-Fock approximation overestimates the size of the
canted region on the spin-singlet side, it reproduces the
boundary between the canted and the ferromagnetic phases
essentiallyexactly (within the numerical accuracy of the
calculations).26 Since the phase transition occurs closer to the
ferromagnetic side of the canted phase, it is reasonable to
assume that the quantum fluctuations, not taken into account
in the HFA, will not wash it out. The quantum fluctuations
will probably effectively renormalize the canted phase and
make the first order-phase transition terminate closer to the
ferromagnetic-canted line. Indeed, in considering effects be-
yond HFA, it is reasonable to assume that the gapped phases
(the singlet and ferromagnetic phases) will be relatively ro-
bust when going beyond HFA, whereas the gapless phases
(C1, C2, and I) could be strongly renormalized, or even
changed qualitatively by disorder.27

One might also consider the effects of finite temperatures.
In the context of the Hartree-Fock approximation, one need
only think about thermally exciting electrons from the occu-
pied basis statesf1X

† and f2X
† to the unoccupied basis states

f3X
† and f4X

† [see Eq.(17) and thereafter]. Indeed, one could
easily generalize the current work to treat finite temperature
in this way. Without doing this work explicitly one can quali-
tatively guess many of the results. In the gapped(ferromag-
netic and singlet) phases, so long as the gap is larger than the
temperature, there are no excitations and the state remains
completely unchanged. In the gapped phases at higher tem-
peratures, or in the gapless phases at any finite temperature
quasiparticle excitations are thermally excited(see Ref. 12
where we discuss the zero-temperature excitation spectra in
great detail). At high enough temperatures the proliferation
(and interaction) of multiquasiparticle excitations should
self-consistently change the energetics and the nature of the
state. In particular, in the gapped phases, we expect the gap
to be self-consistently destroyed at high enough temperature.
In the canted phase we have linearly dispersing spin-wave
excitations, which can be excited at finite temperature. This
should lead to a suppression in spin stiffness that is linear in
temperature.28

Finally, we turn to the issue of whether some of these
effects could be seen in other material systems with similari-
ties to bilayers—such as a two-subband systems. While, it
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certainly seems likely that such other systems could display
analogs of ferromagnetic, spin-singlet, and canted phases(in-
deed, such phases are often observed in a variety of spin
systems, see Ref. 29 for a review), a unique property of the
bilayer state is the spatial separation between the two layers
that allows us to thread a flux between and thus associate an
Aharonov-Bohm phase with the tunneling processes. It is the
accommodation of this phase that creates theC1 and C2
phases and the rich physics of the transition between the two.
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