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Global phase diagram ofr=2 quantum Hall bilayers in tilted magnetic fields
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2Lucent Technologies Bell Labs, Murray Hill, New Jersey 07974, USA
(Received 7 January 2004; revised manuscript received 9 June 2004; published 24 September 2004

We consider a bilayer quantum Hall system at total filling fractier® in tilted magnetic field allowing for
charge imbalance as well as tunneling between the two layers. Using an “unrestricted Hartree Fock,” previ-
ously discussed by Burkov and MacDondlBhys. Rev. B 66, 115323 (2002], we examine the zero-
temperature global phase diagrams that would be accessed experimentally by changing the in-plane field and
the bias voltage between the layers while keeping the tunneling between the two layers fixed. In accordance
with previous work, we find symmetric and ferromagnetic phases as well as a first-order transition between two
canted phases with spontaneously brokémh)dymmetry. We find that these two canted phases are topologi-
cally connected in the phase diagram and, reminiscent of a first-order liquid-gas transition, the first-order
transition line between these two phases ends in a quantum critical point. We develop a physical picture of
these two phases and describe in detail the physics of the transition.

DOI: 10.1103/PhysRevB.70.115325 PACS nunier73.43.Nqg

I. INTRODUCTION In 1997, Zheng, Radtke, and Das Sar@RD)%° pre-

Over the last fifteen years, one of the most exciting fron_dlcte_d that the bllaye_r quantum Hall systems at total filling
tiers in two-dimensional electron physics has been the studffaction »=2 can exhibit a novel spontaneously symmetry-
of quantum Hall bilayers.Stacking two quantum Hall sys- Droken phase. ZRD performed a time-dependent Hartree-
tems a small distance away from each other serves two mafnock study of spin-density excitations of the=2 bilayers
purposes: First of all, it is a way of creating a multicompo- and found that, under experimentally attainable conditions
nent system in which the layer index of the electron plays théat finite Zeeman energy and interlayer tunnejjrthe spin-
role of an isospin. Secondly, it is a step in adding anothedensity mode softens, signaling a phase transition to a
dimension to the traditionally two-dimensional quantum Hallsymmetry-broken quantum Hall state. The state was found to
medium. have a finite magnetization, similar to the simple ferromag-

A striking phenomena that illustrates the richness of thenetic state(F) that occurs in the limit of large Zeeman en-
physics of bilayer quantum Hall systems is theergy: it also exhibited interlayer phase coherence, similar to
commensurate-incommensurate transition observed in Sygne spin-singlet statéS) stabilized by strong interlayer tun-
tems I’Yéth filling fraction»=1 subjected to tilted magnetic nqjing. In addition, the state was found to possess antiferro-
fields.™ For typical parameters in these systems, the Spif,aqnetic correlations. ZRD dubbed the novel state “canted,”
gggre$s c;)f freed?rp arde fro.zetrr]] Oll‘t and t only llr_rp]portangince schematically the state can be viewed as one in which

iscrete degree of freedom is the layer indsospin. Thus éhe spins in the opposite layers are canted away from the

only two processes are important: interlayer tunneling an o . ) ot
Coulomb interactions. When such a bilayer system is Subr_nagnenc field in opposite d|rect|ons.. The C?”ted ground
state breaks the @) symmetry associated with rotations

jected to tilted magnetic fields, the electrons tunneling be: L oo .
tween the layers enclose flux quanta. In the presence of ound the direction of the magnetic field; this spontaneously

sufficiently strong in-plane magnetic field it may be favor- Proken symmetry is behind the formation of the s@obld-
able for the system to forgo tunneling in order to escapéton® spin-density mode found by ZRD. o
destructive interference induced by the in-plane field. This_ The canted state is a pure many-body state, stabilized by
creates an Opportunity for a phase transition to occur beCOUlomb interactions. In the absence of the interactions,
tween a phase in which tunneling plays the central role and ghere would be a first-order phase transition between the fer-
phase in which tunneling is effectively zero. romagnetic phase and the spin-singlet state. Coulomb inter-
Recently, it has been shoWwthat a somewhat different actions effectively mix the ferromagnetic state and the spin-
phase transition can occur in bilayer systems with a totakinglet state around the would-be first-order phase transition
filling fraction v=2. Thev=2 bilayer system is enriched not (when the energy splitting between these states is mall
only by the presence of two electrons per flux quantum, bugiving rise to the canted phase. Because Coulomb interac-
most importantly by the role of real spin. In contrastito tions somewhat favor the ferromagnetic state, a finite amount
=1 bilayers where the real spin degrees of freedom are frosf tunneling is crucial for the stability of the canted phase.
zen out, inv=2 bilayers, spin degrees of freedom ae- Brey, Demler, and Das SarngBDD),'° however, showed
tangled with the isospin degrees of freedom as a result ofthat the canted phase can be extended to the region of finite
Fermi statisticgPauli exclusion principle, in other words Zeeman energy and infinitely small tunneling by creating a
Thus, ther=2 bilayers exhibit a richer phase diagram evencharge imbalance between the layers. The charge imbalance
in perpendicular field, and, as we will see later, an even morean be induced by an external bias voltage applied perpen-
intriguing phase diagram in the tilted field. dicularly to the system. In the charge-unbalanced regime,
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another many-body phase with a spontaneously brok@m U of the | state to give a simple explanation to the spin com-
symmetry, but with vanishing antiferromagnetic order pa-mensuration at high in-plane fields. The similarities between
rameter, was discovered at zero tunneling. This phase+-thethe novel first-order transition of the=2 bilayers and the
phase—is continuouslywithout a phase transitigncon-  commensurate-incommensurate transition of kel bilay-
nected to the antiferromangetic canted phase. MacDonalérs help us understand many aspects of our and BM’s nu-
Rajaraman, and Jungwiffh(MRJ) pointed out in their thor- merical findings, such as the confinement of the phase tran-
ough Hartree-Fock study of the=2 bilayer phase diagram sition to the canted phase and the absence of the new
that thel phase is akin to the spontaneous interlayer phastansition in charge-balancad=2 bilayers.
coherent phase that occurs in thel bilayers in the absence This paper is organized as follows. In Sec. Il, the bilayer
of tunneling? MRJ therefore suggested that the spontaneouslamiltonian under the influence of tilted magnetic fields is
interlayer phase coherence of thphase may lead to inter- presented. In Sec. lll, the Hartree-Fock procedure, used by
esting effects in tilted fields, closely related to the Das Sarma, Sachdev, and Zh&DSZ) to obtain the phase
commensurate-incommensurate transition of thesl  diagram of the charge-balanced2 bilayer system in per-
bilayers3-6 pendicular field, is extended to the present case of a charge-
In a recent paper, Burkov and MacDonal@8M) explore  unbalancedv=2 bilayer in tilted field. A similar procedure
this possibility. Indeed they find that a tilted field applied to was outlined by BM, who dubbed it the “unrestricted”
a charge-unbalanceg=2 bilayer system induces a quantum Hartree-Fock approximation. In Sec. lll, a detailed presenta-
phase transition within the canted phase. Their “unrestrictetion of this, unrestricted, Hartree-Fock procedure is given.
Hartree-Fock” analysis shows that the phase transition is first In Sec. IV, the global phase diagram of the 2 bilayers
order and is between two commensurate phases: At low tilin tilted field is presented. The phase diagram of the2
angles the phase is a simple canted commensurate phase bifayers in perpendicular field has been previously reported
which the layer degree of freedogisospin is commensurate and discussed by several groups of autlfotsMRJ in par-
with the in-plane component of the magnetic field. At higherticular, have obtained the full Hartree-Fock phase diagrams
tilt angles a phase transition occurs to a phase, in which natf the »=2 bilayers for various combinations of
only the isospin, but also thspin becomes commensurate parameter$! MRJ used a very elucidating reduced Hartree-
with the in-plane field(Fig. 4). Thus, BM conclude, the Fock solution, consisting of only three variational param-
phase transition is not a commensurate-incommensuraters, which elegantly captures the physics ofith@ bilay-
transition. ers. The only shortcoming of their approximation is that it
In this paper, their results are extended and given a physdoes not always give the exact Hartree-Fock ground state
cal explanation. Using the “unrestricted Hartree-Fock” ap-that is crucial for obtaining the correct collective mode dis-
proximation, we find that the first-order phase transition terpersions from the time-dependent Hartree-Fock solutamn
minates with a quantum critical transition embedded withinwill be presented in Ref. 2In particular, as we will discuss
the canted phasg@-ig. 3). The simple commensurate and the further below, the approximation of MRJ gives an approxi-
spin-isospin commensurate canted phases are continuoustyate ground state for the canted ph&sen which, as will
connected to each other—very similar to the familiar ex-be shown in Sec. V, the most interesting phenomena happen
ample of water and its vapor, the two phases possess thvehen the magnetic field is tilted. In addition, some aspects of
same symmetry properti¢the spontaneously broken'lJ in the phase diagram, such as the properties of the zero-
our casé To illustrate the first-order transition and the quan-tunneling| phase have been essentially uninvestigated. In
tum critical transition that terminates it, we present a serieSec. IV some of these properties are discussed in detail.
of phase diagram@-ig. 3). Each phase diagram is obtained In Sec. V the main results of this paper are presented. In
for fixed perpendicular-field Zeeman energy and tunnelinghe first part of this section, the physics of the
strength, and the axes on the phase diagrams are the in-placemmensurate-incommensurate transition of tkel bilay-
field and the bias voltage. We find this choice of axes parers in tilted fields is reviewed. In the next part, the possibility
ticularly suitable, since current experimental techniques alof a similar transition inv=2 is discussed. Next, the quanti-
low us to vary the bias voltage and the in-plane figlgitu  tative Hartree-Fock results are presented and explained. The
over a wide range of values. All the phases on a given phasesults are summarized in Figs. 3-5. Figure 4 illustrates the
diagram can therefore be accessed on a single sample; tkiemmensuration of spin with the in-plane field at large tilt
should facilitate the detection of the novel phase transitionsingles. Figure 3 presents a set of global phase diagrams of
and the new phases. In an upcoming publicatfomg obtain  the v=2 bilayers in tilted magnetic fields, which show the
the collective modes in various parts of the phase diagranemergence and the evolution of the phase transition, induced
thus providing signatures of different phases and phase tray the in-plane field. Figure 5 llustrates the close relationship
sitions for possible light-scattering experiments. between the novel commensurate-commensurate transition
In addition to our new Hartree-Fock results, we present gwith the involvement of the spjn and a “naive”
detailed physical discussion of the surprising behavior of theommensurate-incommensurate transitionwhich the spin
v=2 bilayers in the tilted magnetic field. We show that theis not involved.
exotic spin-isospin commensurate canted phase is closely re- Section VI gives a short summary of the results presented
lated to thel phase, as illustrated by a comparison of orderin this paper. We also qualitative discussion of phenomena
parameters in the two phasé¢Big. 5). In fact, the spin- beyond the Hartree-Fock results as well as discussing pos-
isospin commensurate phase rapidly converges tb piiase  sible effects of finite temperature and the possibility of ob-
as the tilt angle is increased. We use the symmetry propertieerving similar physics in other related physical systems.
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Il. THE BILAYER HAMILTONIAN 1
_ - Hy== 2 Avl} == SA/(Nr =Ny, (5)

We model thev=2 bilayer quantum Hall system in tilted X 2
magnetic field by a simple Hamiltonian which includes the . o
five most important aspects of the system: Landau |eveyvhereAV is the potential difference between the layers, and

quantization, Zeeman energy, tunneling between the layer®L @1dNr are the total number of particles in the left and
an external bias voltage, and the Coulomb interactions bJ—'ght wells, respectively. The bias voltage clearly acts as an

tween electrons. Disorder will be completely neglectedeﬁec_uvf‘:‘ eXte”?a' f|e|_d t_hat couples_ to t_he 1Sospin.
throughout this work. Within the tight-binding approximatiotf, tunneling be-

. > tween the layers can also be expressed as an effective exter-
We chpose to work in the gaqu(F)T(O_,BLx,—BHx),_ nal field coupling to the isospin. When the magnetic field
whereB, is the component of the magnetic field perpendicu-gpplied to the system is perpendicular tgsio that the elec-
lar to the plane of the sample ais the in-plane compo-  ons tunnel along the direction of the magnetic field and

; ; R —./m2 2
nent of the field(the total field isBi= VBT +Bj). If the  neyer see any magnetic flysthe tunneling term can be writ-
layers are assumed to be infinitely thian approximation (en as

used throughout this woykthe lowest-Landau-level single-

electron wave functions for each layer in the gaég® are HP=0= - A2, >V 1% (6)
X
INGE 1 eiXy/IZe—(x— X)2/212 (1) o
VLV _ ASASE " +of 2 7)
- 2 o ReXCLsX LsXCRsX 1

where X:—kyl2 are the guiding centers of these Landau-
gauge wave functiond;=v#Ac/eB, is the magnetic length i.e., it acts as an external field acting on the isospin inlthe
and L, is the length of the system in thg direction. direction. The coefficient A2,s is the symmetric-
Throughout this paper, we assume that the cyclotron energyntisymmetric gap induced by the tunneling in the absence of
is much larger than all other energy scales in the system anghe other external fields and interactions.
restrict our arguments to the lowest Landau level. When the magnetic field is tilted with respect to the nor-

In addition to the orbital degrees of freedofnelectrons  mal to the sample, the electrons tunneling between the layers
in the bilayer systems possess a spin and can be localized pick up an Aharonov-Bohm phagée/c) fA -dl]. As a result,
either layer. The layer index serves as an additional discretghe tunneling term acquires phase factors
degree of freedom—the isospin—in bilayer systems. As a
result, the electron creation operatars, are labeled by Hr=— Agas, [€9%choCloxt €79%¢ ored ()
three indices: the orbital index, the spin indexs=1 (or +1) X.s
and| (or —1), and the layer index that can take on values
SR(_or +1) andl__ (or _ 1).To fac_llltate the analogy b_etweerj the _ __ ALASE [ + 610X, )

pin and 'Ehe isospin, we define the electron spin and isospin 2 < X X
operatorsS, andly:
where the operator§*=1*%il¥ are the isospin raising and

.1 . . > . .
Sc= 52 CLstsgcus'x, (2)  lowering operators. The wave vectQy is defined as
s -
re - ZXB
1 QH = (B IZ/d) (10)
> 1
IX = _E CT SX;/.LVCVSXY (3) . . .
250 H with d the distance between the two lay¥rgand the in-

. R _ ' . plane magnetic field, in our gauge, pointing in thelirec-
Wh'?rec‘i’ ?ndg ﬁre sets ﬁf Pauli lmatn%%s_ﬂ,_hand thle spin Opdera'tion). Note thatlQ,| is proportional to ta#=B,/B , where
tor s de |rf1e o ere in the ”SU% r?and o € thota spin %r; is the tilt angle. Interference between the electrons tunneling
Isospin of the system are defined Dy the operatdrs i, e presence of an in-plane field results in the reduction of

=240y, whereO=1,S . X : -
’ ; T : the effective symmetric antisymmetric
The term in the Hamiltonian representing the Zeeman en- y y dép

ergy is simply Acas= AgAse—QﬁIZMI (11)
__ _ 1 _ We note that, had we chosen a different gauge, the Gaussian
Hz= % AzSc= R 22N =Ny, @ decay ofAgas would have remained although the form of

this term would have been different, and the phase factors
where Az=gugBio is the Zeeman splitting and; and N, could disappear from the tunneling term and reappear in
are the total numbers of down and up spins in the systenother terms in the Hamiltonia(see Sec. V A

Very similarly, the term representing the bias voltgge., The three terms of the HamiltoniafH,, Hy, and H,)
the difference in electrostatic potential between the Igyisrs given above all describe single electrons and comprise the
written as noninteracting part of the Hamiltonian
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HO = HZ + HV + HT
== | A+ AL+
X

%’*g(é‘?uxl; +eX) |

(12)
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{mev nxr} 5mn5xx’ (19)
is equivalent to an orthonormality constraint on ihé
2 ( ,uo’X) pnoX — 5nm- (20)

no

The Coulomb interactions between the electrons are taken

into account by an additional term

212
H, = 5 > S duagdtizy, | (q)
X Xp g
Znz
701,02
cl c! c 2C . (13)

T Xy Oy 127 o0 Xo a0 X o I T g 01X

where intralayer and interlayer Coulomb interactions are

e2 2m€?

Vrr(Q) = » Vri() = Ee -da, (14

respectivelyd is the distance between the layers, dhds

the area of the sample. The total Hamiltonian is therefor

simply
H= HO + H| . (15)

Ill. THE UNRESTRICTED HARTREE-FOCK
APPROXIMATION

A. Trial ground state

The Coulomb-interacting Hamiltonian in E¢L5) is not

Each element of ) specifies four orthonorma\" spinors.
When the filling fraction isv=2, the two states with lowest
mean-field energiegvhich we label 1 and 2 throughout the
papey are occupied®

The unrestricted Hartree-Fock ground state given by Eq.
(17) is very general. The freedom provided by the coeffi-
cientsw, , includes a possibility of nonuniform states, such
as stripe states. In this paper, we restrict our attention to
states with uniform density and uniform spin density, ignor-
ing the possibility of charge density waves or spin density
waves. We note that Ref. 16 considered the possibility of
nonuniform phases in bilayer quantum Hall systemg=a2
in the case of equal electron densities in the two layers. The
conclusion of that work was that charge or spin density wave

hases were never stabilized in the realistic range of param-

ters. The excitation spectra above the uniform-density
states, which we present in Ref.)l&lso support the absence
of stripe or spin density wave instabilities.

We note that while the three parameter variational ansatz
of MRJ (Ref. 11 captures all the physics qualitative{gt
least in perpendicular fieJdt is not sufficiently general to
obtain the exact Hartree-Fock ground statéaich is crucial
for properly obtaining the correct excitation spettita the
canted phases. In order to have a state of uniform spin den-
sity and uniform real density in each layer, the occupation
numberN,,,x of each statg.oX

tractable exactly, and we solve it using the Hartree-Fock ap-
proximation. In the usual manner, we assume that the many-
body ground statdG) is a Slater determinant of single-
particle states and perform a functional minimization of thehas to be independent of the positish Thus, we may
expectation value(G|H|G) with respect to these single- writel? '
particle states. Under the assumption of translational invari-
ance in they direction, the most general single-particle state W' = @ bucA
is a superposition of all the combinations of spin and isospin pox me
degrees of freedorRT, R|, LT, andL| which can be de- whereZ) ’s are independent of position and the only posi-
scribed as a normalized four-spinor tional c{épendence arises in the phases. In the case of zero
in-plane field(B,=Q,=0), it will be very easy to see below
that the lowest energy solution should have no positional
dependence of the phases, so #g}(X) can be taken to be
zero. However, in the more general case of nonzero in-plane
field a nontrivial positional dependence will be favored.
Following BM,” we use a simple trial form for the posi-
tional phase dependence

N/w'X = ‘W}LUX|2 + | ,uo'X|2 (21)

(22)

W:(WRT!WRl!WLT!WLL)' (16)

Such a normalized complex four dimensional vector trans
forms under W). To make av=2 Slater determinant state,
we occupy each orbitaX by two particle$

1G) =11 fixfix(0), (17
X
Bue(X) = QX (23)
where )
or, equivalently,
flx= 2 W oxChox (18) ,
n PP fox= >, (Z?w') * e_'QWXC,wx (24)
mo

creates a particle described by E§6). The requirement that
the operatorsfgx obey the fermionic anticommutation rela- A ground statdEq. (17)] with nonzeroQ,,, possesses spin-
tions isospin-wave order, discussed at length in Sec. V D.
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As was mentioned above, the proposed ground $Eais. B. Hartree-Fock minimization
(24) and (17)] is not the most general Slater determinant L ) o
(Hartree-Fock state. Indeed, having made a specific choice. W& minimize the expectation value of the Hamiltonian
[Eq. (23)] of the positional dependence of the phase, this triali-€- the trial ground state enengwith respect to the varia-
state is not even the most general state with uniform densitjonal parameterg) , andQ,,,. Since
and spin densi&:’zin each layer. However, our analysis of the
collective modes around the ground states obtained by the I n
minimization of(G|H|G) indicate the stability of these states (ChsxCusr) = Q5w _2 (Zu9) * Zg), (25
against second-order transitions that cannot be described L
within the Hilbert space defined by our ansatz. The possibil-
ity of phase transitions into a soliton-lattice state will be the expectation value of the ground state energy per unit flux
discussed in the concluding Sec. VI. in our nonuniform ansatz is

1 1 2 . n
6<G|H|G> =75 D (878,05 +Avdse oo+ Asasfss €0$(Q) — Qrs+ QuoIX]7,, + siM(Q; — Qrs* QL X]7,,) > (209 * 7,5
n=1,2

;LVSS’
1 .
tHY X |zzsz[ > \z':5,|2—1} -5 2 Ful- Q= Q)b X (9% 24(Z0)* 7 (26)
us n=1,2 s/ m=1,2 uv,ss m,n=1,2
[
whereg is the Landau level degeneragy /212, and To find a variational minimum of this Hamiltonian, we

differentiate(1/g)(G|H|G) with respect to(z},)* (Ref. 18
a2k a» o under the orthonormality constraints &' [Eq. (20)]. The
F,.(0) :f ——e ¥y (keI resulting set of minimization conditions can be arranged in
(2m) the form of a Schrodinger equation

dk _
- f 2_e_k2|2/2VM,,(k) k\]o(kqlz), (27) MZ" = enZ”, (30)
4 whereZ"=(zg;,25,2.1,7|) andM is a 4x 4 matrix, which
is just the mean-field single-particle Hartree-Fock Hamil-

1 21 —gdd tonian
H_(q) = —5[Verr@) = VrU(@)] =~ . (28
4l el 2ql _ 2 1
MVS’;,uS_ - Az5,w05g = Aydsy Tf,,y = AsasOsy 62 cog (Q,
X

so that H.=H_(0)=(e*/&l)(d/2l). The functionsF,, are 1
monotonically decreasing functions gfand therefore the - QIX]7,, + = sin(Q - QI)X]T;VW}
higher the wave vector of the spin-isospin-wave order, the 9 x
lower the contribution of exchange to the ground-state en- D S
ergy. The exchange term thus favors a uniform state. The *2H- ! 5/“*555“[ ) |Z,uS’| - 1] ~Fu
tunneling term, however, does not contribute to the ground- a s.m=1,2
state energy, unlesQRs—Q_LS:QH, ar_lc_i therefor_e fav_ors ~[Q/2(1 - v) + Qg 2(s- 818, > () z..
isospin-wave order. It is this competition that gives rise to net2 "

the novel first-order transition discovered by BRef. 7) (31)
and is presented in more detail in the next section. Using the
results of BM/ we make a simplifying assumption that  The Schrédinger equatiof80) is solved iteratively. At
Qrs—QLs=Q, for botho=T and |, and thatQ,,;-Q,,; =Qs, each iteration, the two eigenstates corresponding to the low-
for =R andL. In other words, we reduce the number of est eigenvalues are fillg@le., chosen to be states 1 and 2
phase parameters from three to two and write These lowest-energy eigensta@®sand Z? are then used to
obtain the matrixM for the next iteration. The procedure is
P o repeated until a self-consistent solution is achieved. This
Quo= EQ' + EQS’ (29) solution—a set of eigenspino®' sorted according to their
eigenvalues—defines the lowest energy trial state among the
Slater determinants defined by E@$7) and(24) subject to
where a finiteQ, indicates the presence of an isospin-wavefixed values of the&Q,'s. The eigenvalues, give the bind-
order, while a finiteQg reflects the real spin-wave order. ing energy of a particle in the subbangdli.e., the energy lost

115325-5
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1.6 - - diagram exhibits four phases: ferromagnéticspin-singlet

S, cantedC, and the spin-isospin-entangled noncanted phase
I (represented by the thick line annt(iAS: 0). As expected,
when both the bias voltagA, and the tunneling strength

[\
w
L

A (2D
=)
x

c A2, are small, the Zeeman energy dominates and gives rise
04l i to the ferromagnetic phase. In the opposite limit, of large
E A2, and A, the spin-singlet phase is stabilized. In the in-
0 . . termediate regime, the Coulomb interactions give rise to the
0 02 04 06 canted phase whea2,.#0 and to thel phase whem2,¢

Agpgl €7D =0.
The topology of the phase diagram is the same for all
FIG. 1. Global phase diagram forig=2 bilayer sample in per-  other finite values ofA. For larger values oA, the phase
pendicular magnetic field. The Zeeman energjs=0.01e?/¢l)  space volume of the ferromagnetic phase increases, and the
and the interlayer spacing é=I. The tunneling s'[rengtbgAS and spin-singlet phase is shifted to higher vaIues\é);S andAy;
the bias voltage\, are given in units ofe?/¢l). The phasé&is the the width of the canted phagslowly) decreases. For smaller
spin-singlet phase; is the ferromagnetic phase, a0ds the canted /51 e5 ofA9, the opposite effect takes place: the volume of
phase. The thick line alonds,s=0 represents thephase. the ferromagnetic phase decreases and the canted phase be-
comes wider. The ferromagnetic phase does not disappear
when the particle is taken out of the system. The sum ofrom the phase diagram untibgzo, when, within the
individual blndlng energies does not give the grOUﬂdStatﬁHartree-Fock approxima’[ion, a many-body phaﬁm Ag
energy; the ground state energy is evaluated usingZf).  _, 0 limit of the canted phaséills the low-A2,c— Ay, region
The minimization of the energy of the ground state over thesompletely!® In real bilayer sample\? is always finite,
Q,ss is done last. Thus, we find the Hartree-Fock ground \hile 0< A2,c=<0.08€/¢l). As was proposed by Brey,
state i_n two steps: Fir§t, for fixed values Qf andQs, we  pemler, and Das Sarnid,and is clear form Fig. 1, by
minimize the expectation value of the ground-state energgeeping the external bias voltage one can probe the three
with respect to(Z,,)*. Then, we minimize the ground-state phases of the'=2 bilayer system that occur in the presence
energy with respect t@, and Qs. The results are summa- of finite tunneling: ferromagnetic, canted, and spin singlet. In
rized in the following sections. tilted fields, thel phase can also be attained in the limit of a
large tilt angle(see Sec. V I

IV. GLOBAL PHASE DIAGRAM OF THE w»=2 BILAYERS
IN ZERO IN-PLANE FIELD A. Ferromagnetic phase

We start by considering the zero in-plane field case. As The simplest phase in the phase diagram is the ferromag-
was mentioned in the introductory section, the phase diagrametic phase. The ferromagnetic ground state has the simple
of the v=2 bilayers in perpendicular field has been studied inform |F):HXCJ,;TXCLX\O>. It is effectively a single-particle
some detaif'*In this section, we highlight the properties of state, which could occur in the absence of interactions. The
the zero in-plane field phase diagram that help elucidate the=2 system in the ferromagnetic state can be viewed as two
physics of thev=2 bilayers in tilted field and discuss a num- decoupled spin-polarized’=1 monolayers. The state is
ber of issues, to which little attention has been paid to dateclearly not interlayer phase coherent, therefore, an in-plane

The Zeeman splitting for a typical bilayer GaAs sample field would not affect it.
with filling fraction »=2 in perpendicular field isAY
~0.01(€?/l); it is set by the properties of the materitieg
factor and the effective electron mas&d the density of the
2DEG'’s. We assume that, in the absence of an external bias The spin-singlet state is also a single-particle state. It is
voltage, the density of the 2DEG's in the two layers is thestabilized by largeA2,s and/or Ay. The spin-singlet state
same. Applying a finite bias voltags, perpendicularly to  |S)=Ilx(zzch x+ 2. ¢l 1) (ZaCh xt2.¢ |0} is interlayer
the layers, one can induce a charge imbalance between tiphase coherent unless2,c=0. When A2,.=0, the spin-
layers. We assume that the charge imbalance can be creatsidglet state is simpl%}zﬂxcﬁTxcLMO), a v=2 monolayer
while keeping both the filling fraction and the magnetic field quantum Hall state. In the presence of interlayer tunneling,
constant. The tunneling streng‘ﬂf@,AS is assumed to be un- the v=2 bilayer system in the spin-singlet state can be
affected by the induced charge imbalance. viewed as two oppositely spin-polarizee 1 bilayer systems

It is apparent from Eq(27) that, when the magnetic field that possess interlayer phase coherence. The main difference
is oriented perpendicularly to the plane of the bilayer samplebetween ther=2 bilayer system in the spin-singlet state and
i.e., Q=0, spin- or isospin-wave order is not favored. a set of twov=1 bilayer systems is that in the latter case the
Throughout this section, we therefore assume QatQs  interactions play an important role alongside tunneling in
=0. creating the interlayer phase coherence; in the spin-singlet

Under these conditions, we obtain the global phase diastate of thev=2 bilayers interactions are not important. The
gram for ther=2 bilayers. A cross section of the phase dia-phase space region where the interactions play an active role
gram forA%z0.0](ezlsl) is presented in Fig. 12 The phase in v=2 bilayers is the region of stability of the canted phase.

B. Spin-singlet phase

115325-6
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channels such as the ferromagnetic or the spin-singlet ground
states. The canted ground state is therefore interlayer phase
coherent, which is confirmed by a nonzero value(@f)?

+(1")?).

D. | phase

While the canted phase has attracted the most
attention®-122the many-body phase that occurs in charge-
unbalanced systems in the absence of interlayer tunneling is
no less interesting. In the absence of tunneling, the interac-
tions give rise to apontaneouslinterlayer phase cohereht
state(Refs. 10 and 1jl(with the antiferromagnetic order pa-
rameterOQ,,=0). The interlayer phase coherence of ttetate
is spontaneous since the single-particle fiekgsand Ay do
not stabilize interlayer phase coherent states. Theound

state has a simple forml)=Tlxcx(zr Ch x*21C] 1%)]0),
which manifests the interlayer phase coherence of the state,
range of tunneling amplitudes. The dashed line represents the eH—S SpIn-ISospin _entanglement, a_nd the1)) spontaneous
ergy of the ferromagnetic state. The long dashed line is the ener ymmetry _brea"'”g- Simply speaking, th(élws_ymmetry of

of the spin-singlet state. In the absence of interactions, there woul el St"’_‘te is the freed_om to choose the relative phaszmof

be a first order phase transition at the intersection of the two dasheddZ., in the expression folt). One can also formally con-
lines. The interactions effectively “smooth out” the profile by sta- Sider the W1) symmetry associated with rotation arouricr
bilizing the canted phase. around & (applying g or dfS clearly gives the desired
effec. It is important to note that the stal¢ does not break

The boundaries of the canted phase therefore mark th#€ U1)xU(1) symmetry of spin and isospin rotations
boundaries of the influence of the interactions. Moreovercompletely?! This state is an eigenstate Bf+S* with an
unlike in the v=1 bilayers where tunneling and exchangeeigenvalueg (the degeneracy of the Landau Leyebut it
work cooperatively, in thev=2 bilayers tunneling and ex- Mixes states with differenft—S* quantum numbers. Sq the
change are in competition, since the Coulomb interaction§tate|l) breaks theJ(1) x U(1) symmetry down to the diag-
favor the ferromagnetic statédue to their intralayer- onal Ud).
interlayer anistrophy The feature of the statg) to be an eigenstate df+S
will prove useful in the following discussion of the many-
body phases in the presense of an in-plane field. In fact, all
the possible ground states of the 2 bilayers in the absence
While the ferromagnetic and the spin-singlet phases argf tunneling are eigenstates B# S If the bias voltage and
essentially single-particle phases, stabilized by singlethe zeeman energy are positive, all the possible zero-
particle fields, the canted phase is a many-body phase staljinneling ground states ar@ocally—for a given orbital
lized by the interactions. As was mentioned in the Introduc-quamum numbeX) linear combinations of &=+1 spin
tion, in the absence of the interactions there would be a firstyjp|et and anl%=+1 isospin triplet(the ferromagnetic and
order phase transition between the spin-singlet and thghe spin-singlet states being the two extremes with only the
ferromagnetic phases. The interactions can lower the energyin triplet or isospin triplet contributing, respectivelyn
of the system by creating the canted phéSig. 2), and the  this case, all the zero-tunneling ground states are eigenstates
ground-state energy and width of the canted phase depend @f |2+ 5 with an eigenvalue, whereg is the Landau level
the strength of the interactiod$As will be shown in Sec. V,  degeneracy.
the importance of the interactions in the canted phase implies gyen thougH?+ S is a formal construction, whose expec-

that the phase can be nontrivially affected by the in-plangation value cannot be directly measured, it can help advance
component of the magnetic field. _ _ our understanding of the physics of theophase and of the

In the canted phase, the interactions effectively mix thecanted phase in the presence of small interlayer tunneling.
ferromagnetic and the spin-singlet stafegiving rise to a Thus, since applying a rotaticgt® S to the statdl) gen-
finite magnetizatiodS") and antiferromagnetic spin correla- erate’s a trivial phase factd?+S can be treated as the ef-

tions [(SX Sp—(S X §.) #0, whereS;, is the unit vector in  fective direction in which thé state “points.” In contrast, if
the spin-up direction in the layee.® (One often defines an tunneling is added to the systemd+ S does not commute
antiferromagnetic order parameté,"'* where 0,4=(S*  with the Hamiltonian. The operat@®'“S) then generates a
®17), which is finite only in the canted phagélhe U1)  nontrivial rotation of the canted state aroutféS. When
symmetry associated with rotations arou&dis spontane- interlayer tunneling is small, the canted ground state has a
ously broken. The canted ground sté@ has the most gen- large overlap with an state, and can be visualized in its
eral form, Eq.(17), and is spin-isospin entangled—i.e., it Hilbert space as pointing slightly away from ttfe- S direc-
cannot be decoupled into two independent spin or isospition. The relevance of this picture to the 2 bilayer physics

FIG. 2. Energy profile of charge-balanced2 bilayers with
Zeeman energyA,=0.05€%/¢l), interlayer spacingd=I, and a

C. Canted phase

115325-7



LOPATNIKOVA, SIMON, AND DEMLER PHYSICAL REVIEW B 70, 115325(2004

will become more clear in the next sectigBec. V D. isospin stiffness, both of which favor the isospinplane?

The relation between the canted phase and thiease is When the layers are separated by a distance comparable to
reminiscent of the relation between phases ofithd bilay-  the distance between the electrons in a single layer, the an-
ers in the presence and absence of tunneling. The main simisotropic Coulomb interactions support a spontaneously in-
larity is that, when there is no tunneling between the layersterlayer phase coherent ground state even in the absence of
both ther=1 and thev=2 bilayers support a spontaneously tunneling? The U1) symmetry associated with rotations
interlayer phase coherent phase. There are, however, markacbundl? is spontaneously broken. Tunneling, always present
differences. The main difference is that the symmetry propio some degree in real samples, breaks this symmetry, but it
erties of the canted phase and thghase are the same, while does not destroy the interlayer phase coherence. Instead, in
in the v=1 bilayers spontaneous symmetry-breaking occurshe absence of an in-plane field, tunneling acts cooperatively
only in the absence of tunneling. Moreover, unlike the zero-with the interactions to stabilize the interlayer phase coherent
tunneling phase of the=1 bilayers, thel phase is spin- state3*
isospin entangled. As we will show in the next section, be- A finite in-plane field introduces a competition between
cause of their similar nature, both tre1 andv=2 systems tunneling and the Coulomb interactionsiir 1 bilayers*®In
undergo essentially similar phase transitions in the tiltedhe presence of an in-plane field, the tunneling téEg. (9)]
magnetic field; the systems’ differences, however, lead tmow favors an isospin-wave ground state, in which the iso-
surprisingly different behaviors of the=1 andv=2 bilayers  spin twists around thé* direction with the wave vecto,.
in the vicinity of the phase transitions. Exchange interactions, on the other hand, favor a uniform

configuration. The competition between tunneling and ex-
change results in the commensurate-incommensurate transi-
V. GLOBAL PHASE DIAGRAM OF THE  »=2 BILAYERS tion between the isospin-wave commensurate and uniform
IN TILTED FIELD incommensurate phases.

As was discussed in the previous section, the physics of The picture of the commensurate-incommensurate transi-
the v=2 bilayers is very rich. The=2 bilayers exhibit a host tion outlined above is somewhat simplistie The transition,
of many-body phenomena, such as spontaneous symmetty cht, does not happen dlrect!y from the commensurate to
breaking, spontaneous interlayer phase coherence, and splf€ incommensurate state, but instead occurs through forma-
isospin entanglement. To further explore the many-body naUO” of a sollton-lattlce_ phase. When, as the m-plang fl_eld is
ture of the phases and phase transitions ofith@ bilayer increased, th(_a losses in exchange energy d_ue to twisting be-
system, in this section we study the behavior of the system i§oMe approximately equal to the expectation value of the
the presence of a tilted magnetic field. tunneling term, the system can optimize its ground-state en-

Tilted magnetic fields have been successfully used t&fdy by forming a soliton in an otherwise commensurate
study the role of both spin and layer degrees of freedom ifstate?®?*2*By forming a soliton the system recovers some
guantum Hall physics. In thin monolayer systems, the tiltedexchange energy while saving most of the tunneling energy.
field technique was used to investigate the spin-unpolarizedn® commensurate-incommensurate transition by means of
fractional quantum Hall ground states. The technique is_sollton—formanon is thngaIapov—Pokrovsky commensurate-
based on the fact that, in the infinitely thin limit, the orbital INCOmmensurate transitidn. _ _
motion in a 2DEG depends solely on the perpendicular com- The microscopic description of the physics of a bilayer
ponent of the magnetic field, , while the Zeeman energy is System in an in-plane field _depe_nds on a par_ucular choice of
proportional to the total field3. The Zeeman energy can the gauge, but the underlying picture of an induced compe-
therefore be increased independently of the effective interadition between tunneling and exchange is valid for any
tions in the quantum Hall monolayer by adding an in-planegauge® Thus, for example, in the gauge=(0,B , x—B,z,0),
field By. In bilayer systems, the presence of an in-plane fieldhe tunneling electrons acquire no Aharonov-Bohm phase
affects not only the Zeeman energy but also blative or-  and the tunneling term in the microscopic Hamiltonian is
bital motion in the two layers and, therefore, the tunnelingunaffectec®'* However, in this gauge it is the interlayer ex-
between the layers and interlayer interactions. change that acquires an additional phase in this case, so that

it is the interaction term that now favors an isospin wave.

A. Commensurate-incommensurate transition in ther=1
bilayers: An overview B. Possibility of commensurate-incommensurate
transition

The coupling of the tilted field to the layer degree of in v=2 bilayers

freedom is easier to demonstrate using the thoroughly stud-
ied =1 bilayerg-% as an example. Iw=1 bilayers the spin To create a framework for the interpretation of our nu-
degree of freedom is frozen out by the ferromagneticmerical results, we start by a qualitative discussion of the
exchang®and, in the absence of an external bias voltage, théehavior of thev=2 bilayers in tilted field. We consider the
physics of the system is fully determined by the interplay oftheoretical possibility of the commensurate-incommensurate
tunneling and Coulomb interactions. As was discussedransition in thev=2 bilayers, much as has been done for the
above, tunnelindEq. (9)] can be considered as an externalv=1 bilayers: We assume for simplicity that the
field that couples td*; Coulomb interactions give rise to a commensurate-incommensurate transition happens between
charging energyfrom the direct term and an anisotropic a commensurate state that maximizes tunneling at the ex-
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pense of exchangé.e., Q,=Q, and Qs=0) and an incom- interaction energies of the two states are very close; the en-
mensurate state that maximizes exchange while losing all thergy of the canted phase is lower largely due to the tunneling
tunneling energy(Q,=Qs=0). This is the scenario that we term. As the magnetic field is tilted, the isospin starts twist-
called simplistic in our discussion of the=1 bilayers since ing commensurately with the in-plane field, thereby losing
better mathematical models indicate that the commensuratgome interlayer exchange. When the losses in exchange en-
mcpmmen_surate transition occurs .thI'OUgh a succession @frgy become equal to the tunneling energy, the energies of
soliton lattice phases rather than dlreCtIy. NevertheleSS, thﬂ]e canted commensurate state and the Corresponding zero-

a good simple approximation that allows one to make EXPeripigher tilt angles, a transition to thiestate clearly would
mentally relevant predictions and explanations without any,coyr |n anticipation of this discussion, at the start of the
numerical calculations. We therefore expect that the naiv%hapter we named the zero-tunneling m,any-body phask the
commensurate-incommensurate approximation will captur X

. o C : %hase, wheré stands for “incommensurate.”
\?voeﬁ?e of the physics of the=2 bilayers in tilted fields as We also can expect that the in-plane field will not only

The naive commensurate-incommensurate transition cajyduce @ transition, but also affect the location of the second-
der phase transitions between the spin-singlet, canted, and

happen only in the canted phase, since it is the only phase | . ;
which tunneling and exchange are comparable to each othdfTomagnetic phases in the phase space. The reduced effec-

The other two phases—the ferromagnetic phase and Spi,t|i_\'/e intgrlayer interactions in the commensurate statgs will
singlet phase—essentially mark the regions in the phas@estabilize the canted commensurate phase, and its two
space where interactions are less important than the singff!aseé boundaries will move toward each other as the in-
particle fields. We therefore expect the spin-singlet phase tglane field is increased. The relative position of the bound-
be always commensurate. The ferromagnetic state is not irdfies of the incommensurate phase will be nearly constant
terlayer phase coherent and therefore the in-plane field cai!ith the increasing tilt angle. At larger in-plane fields another
not affect it. The canted phase, however, can be commens§fféct, which we so far have ignored, will become
rate at lower in-plane fields, but it may turn incommensuratdmportant—the dependence of the Zeeman energy and the
when the in-plane fields are so high that the losses in exnneling amplitude on the in-plane field. The increasing
change become greater than the contribution of the tunnelinge_eman energy and the decreasing tunneling will eventually
term. rive the system into a ferromagnetic state as the tilt angle
The naive commensurate-incommensurate transitiorP€Comes very larggAt very large in-plane fields, however,
however, cannot happen in charge-balange@ bilayers. In ~ Our infinitely-thin layer approximation loses its validity com-
order for the commensurate-incommensurate transition t_gletely, and therefore this discussion becomes purely theoret-
happen, an incommensurate state should exist, which woulgal) ) )
become lower in energy than the corresponding commensu- !N the next subsection we explain that the commensurate-
rate state as the tilt angle is increased. Since the tunnelinffcommensurate transition at=2 is sufficiently different
contribution to the energy of the naive incommensurate statfom the simple picture presented above. Hence, the argu-
is zero, the incommensurate state is equivalent to the state gients presented here should be considered only as a motiva-
the system with no interlayer tunnelirigll other parameters tion for a more detailed discussion in subsecuent sections.
unchanged In charge-balancedv=2 bilayers, the zero-
tunneling ground state is always ferromagnetic. As is clear
from Fig. 2, the energy of a ferromagnetic state created in a
system with no tunneling and given intralayer interactions is
always higher than that of a canted state created by adding a The Hartree-Fock phase diagrams are presented in Fig. 3.
finite amount of tunneling to this systefall other things The axes on the phase diagrams are the bias voliggend
being equal Therefore, there can be no naive the in-plane field wave vect@”. We find this choice of axes

commensurate-incommensurate transition in a chargeconvenient, since current experimental techniques allow one
balancedv=2 bilayer system. to tune both the bias voltage and the in-plane fieldsitu

The situation changes if a finite bias voltage can be apacross a wide range. The other parameters of a bilayer
plied to the system. As was mentioned in Sec. IV, in thesample—the perpendicular-field Zeeman splitting, the
presence of finite bias voltage one can obtain an interlayeperpendicular-field tunneling amplituds?,s, and the dis-
phase coherent phase—th@hase—even in the absence of tance between the layets—are, to a good approximation,
tunneling. The ground-state energy of thetate depends not intrinsic to a given sample. For each phase diagram, we fix
only on the relative strength of the Zeeman energy and théhese parameters at values typical of real sampids
external bias voltage, but also on the interlayer Coulomi=0.01€?/el), A2,s=0.08/€*/¢l), andd=I. Each phase dia-
interactions. Therefore, it is straightforward to argue that, ingram in Fig. 3 therefore corresponds to a single sample with
charge-unbalanced samples with small tunneling amplitudes)2=0.01(€?/¢l), d=I, and the value ofA2,s given in the
a commensurate-incommensurate transition may be possiblewer right corner of the phase diagram.
Let us consider such a sample. In a perpendicular field, the The unrestricted Hartree-Fock calculation does provide
many-body state of the sample is a canted state. Because theidence for a phase transitfotthe dashed line in Fig.)3
tunneling amplitude is small, this canted state is just a slightvhich possesses the properties we qualitatively predicted for
perturbation of the corresponding zero-tunnelirggate. The the naive commensurate-incommensurate transition: The

C. Global phase diagram ofr=2 bilayers in tilted
magnetic field
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first-order transition occurs only within the canted phase an@nergy of the ground state in EQ1) as a function of) for

only in the presence of a finite bias voltage. Moreover, thedifferent points in the phase diagraBiQs). When we start

canted commensurate phase shrinks as the in-plane field iear the base of the first order transition and far from the

increased, but the decrease in the width of the phase stositical point(see Fig. 3, the function has two local minima:

after the first-order transition. However, instead of the in-one for Qg close to zero and the other f@g close t0Q.

commensurate phase, we find an interesting seemingly doWhen we are on th€1 side of the transition, the former is

bly commensurate phase, in which both the isospin and ththe global minimum, and when we are on G2 side, the

spin components are commensurate with the in-plane fieldlatter corresponds to the true ground state. As we move along

That is to say, throughout the interlayer phase cohererthe first order line toward the critical poitity increasing the

region—in the phases SC1, andC2 in Fig. 3—the wave gate voltagg the positions of the two local minima move

vector of the isospin-wav®,=Q,. In the canted phasa3l  together until the critical point where they merge into a

andC2, however, the spin-wave wave vector is also nonzerosingle minimum. Anywhere above the critical point the sys-

It is almost zero in theCl phase, except near the phasetem has only one local minimum B(Q). It is also useful to

transition boundary, but it is close @s=Q, in the C2 phase

(Fig. 4 and Ref. Y. The phase transition between the two

canted phases is first order, terminating at a critical point. 2

The onset of the first-order transition occurs at a critical tun-

neling amplitudeA2,s~0.015€?/¢l). As the tunneling am-

plitude A2, is increased, theC1-C2 transition becomes

more prominent and a higher in-plane field is needed to in- -

duce it. The presence of the in-plane component of the mag- o 1F 7

netic field thus leads to a phase transition that is clearly re-

lated to the commensurate-incommensurate transition, but I

possesses some unexpected properties that invite a physical -

explanation. s
We emphasize that a simple picture of the commensurate- ok L . L

incommensurate transtion should not be carried directly from

v=1 to v=2. In the former case it appears as a result of the Qy

competition between the single particle tunneling energy and 1

the exchange part of the Coulomb interaction.A&{2 we FIG. 4. Evolution of the spin-wave wave vectQg (solid line)

have Q=Q in all of the canted phasgoth C1 andC2), s 5 function of the in-plane field wave vect®y (given in units of
which optimizes the tunneling term. The origin of t& 1) The dashed line i€ =Q,, given for comparison. The wave
-C2 transtions is the competition of the exchange terms IRvector Qg is small in the phas€1 (low Q) and abruptly jumps to
Eq. (31). The wave vectors of the exchange terms in thisgg~Q, at the phase transition 162. The Zeeman energy in this
equation are given bf)s, Q-Qs, andQ;+Qs (we usedQ,  figure isA3=0.01€?/l), the interlayer spacing i¢=1, the tunnel-
=Q). So different exchange terms would be minimized foring constant isA2,,=0.06€?/¢l), and the external bias voltage is
different values ofQ.. It is useful to consider the variational A,=0.8€%/«l).
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FIG. 6. Schmatic representation of the comensu@iteandC2
states. In the left figure, ah state is represented. THestate is
shown in Sec. IV D to be an eigenstate of the operkte&- Thus,
the state is represented as a vector pointing inl&e* direction.

In the presence of tunneling, the system can satisfy the Aharonov-
Bohm phases in the tunneling term by winding around either the
|2+ axis, yielding theC2-commensurate state shown above, or by
winding around the* axis yielding theC1-commensurate state. The
C2 state asymptotically approaches ttstate in large in-plane field
where the winding becomes very fast and therefore must be very
tight (due to “spin stiffness’

X(IXQ):O and(1/g)({I1*+S)=1. The thick lines represent the
expectation values that we obtain for the system allowed to

undergo theC1-C2 transition. The expectation values ob-

point out that there is a region of metastability@f andC2 tained from _the full unrestricted Hartree_-Fock solution and
@{ose obtained under the assumption of the naive

phases around the first-order line separating them. We expe ! K - i
interesting hysteresis effects to occur in this region commensurate-incommensurate transition exhibit strikingly

similar behaviors. The main difference is that, unlike in the
phase, the expectation value of tt@ operator in theC2
phase is small but finite. This means that there is a contribu-
tion from the interlayer tunneling to the ground state energy
dJp the C2 phase. It is therefore clear that t82 phase is the
optimized version of thé phase much as the soliton-lattice

D. Canted commensurate phases iw=2 bilayers

The most surprising part of the phase diagram is@Re
phase, in which both the spin and the isospin degrees
freedom are commensurate with the in-plane fielthe lo- P X ORI
cation of theC2 phase on the phase diagram, so similar toDSr?ti 2{;‘:’_1 bilayers is the optimizeat=1 incommen-

that expected of the incommensurate phase, strongly su&- Unlike the »=1 bilayer system, the'=2 bilayer system

gests that, despite its apparent complexity, @& phase is th in d f freed hich it ¢
simply related to the naive incommensurate phase. The cloPSSESSes the spin degrees ot freedom which It can use 1o

relationship between th€2 phase and the phase becomes _optimize its ground-stat_g energy around the commensurate-
more clear if one considers the expectation values of spi ﬁommensBurﬁte trr]ansmo_n.ﬂ;l'h? syslt_emtcan bsatls_fyd_the
and isospin operators. In Fig. 5, we plot three expectatiofi® ' ONOV- ozm pZ aszes In the unneu;g Zerm y winding
values:(1%) =S (e +eRX17). (19, )12+ S for a sample either around? or I’+&. Winding around*+$ clearly does
QS T X X x/0 A7 p . ’

with A%=0.01€?/el), A%, .=0.06€%/ 1), and the bias volt- not affect the Zeeman and the bias voltage terms and in some

h Zlc_i 'ﬂ _08 e:2/ TAS_ ’ e the first-ord circumstances can cost less exchange energy:l Btate is
age nheld ab= & e ) as we move afrf’ss e first-order 4, eigenstate of thé+ S operator and, as we argued in Sec.
transition by increasin®,. The operatoty, is the tunneling

, for example, because a small amount of tunneling is
present, the state is no longer invariant under rotations
zero in the naive incommensurate state. The naive incomground|z+<, but a precession around+S does not cost
mensurate state, thestate, is an eigenstate of the operatorych exchange energgA useful analogy is a Heisenberg
1?+S with the eigenvaluey. Thus, (1/g){I*+S)=1 in this  ferromagnet with all spins pointing in the same direction
state. To distinguish thestate from the ferromagnetic state (§%)=+1/2. If thespins are made to tilt away from the posi-
and the fully charge-unbalanced spin-singlet state, which argye < direction and precess around it, very little spin-
also eigenstates df+S, we also plo(I?), which satisfies gtiffness energy is logtAs the in-plane field is increased, the
0<(1/g){I»<1 in thel state. The thinner lines in Fig. 5 winding around?+< becomes faster and tighter. This causes
represent the expectation values obtained under the assuntpe phaseC2 to asymptotically approach

tion that the system undergoes the naive commensurate- The C1 andC2 phases are both canted and have the same
incommensurate transitigithe spin-wave wave vect@sis  symmetry properties. It is therefore not surprising that they
held at Q. The discontinuity in the expectation values marksare connected on the phase diagram, i.e., they are essentially
the commensurate-incommensurate transition. As expectethe same phase. The qualitative difference betw@grand
after the transition into the incommensurate ph&séy)  C2 is in the involvement of the spin degree of freedom in the

115325-11



LOPATNIKOVA, SIMON, AND DEMLER PHYSICAL REVIEW B 70, 115325(2004

quenching of the in-plane magnetic field. In our mean-field In this paper we present a heuristic argument and numeri-
solution the wave vector of the spin wave does not alwaygal evidence that no new transition occurs déharge-
jump between the qualitatively understood case®Qef0  balancedr=2 bilayers. This is indeed consistent with the
andQg=Qy, but it can change gradually. The wave ved@y  inelastic light-scattering results by Pellegriet al?125 In
changes gradually whe@1 turns intoC2 via a crossover, at  their experiments, Pellegrirt al. used the tilted-field tech-
larger values of\,, when the canted state has a large overlap“que to sweep over a range of Zeeman enénggitu. No
with thel phase[(l/g)(lz+ ) close to 1. In fact, whenA2,, perpendicular bias voltage was applied to the bilayer system;
is very small,A%,s=<0.015€?/¢l), the first-order transition the maximum tilt angle wag=45°. Pellegriniet al. obtained
disappears altogether, since the canted phase is so closedncouraging evidence of the existence of the expected phase
thel phase that the canted phase always h@8 #avor to it.  transitions between the spin-singlet and canted phases, as
well as between canted and ferromagnetic phases. No other
VI CONCLUSIONS transitions have been reported.

To summarize, we have obtained the global phase dia- The Hartree-Fock approximation, which we used to ob-
gram of thev=2 bilayers in tilted magnetic fiel(Fig. 3. We  tain our results, had been shown to be robust for ith@
found that, in charge-unbalanced 2 bilayers, a finite in-  bilayers in perpendicular field$:2 The phase diagrams ob-
plane component of the magnetic field can induce a firsttained in the Hartree-Fock approximatigitiFA) closely
order phase transition between two commensurate cantedatch those obtained using exact diagonalizatfowhile
phasesCl and C2. The phaseCl possesses isospin-wave the Hartree-Fock approximation overestimates the size of the
order, commensurate with the in-plane field; in the pi@8e canted region on the spin-singlet side, it reproduces the
commensurate spin-wave order is induced alongside with theoundary between the canted and the ferromagnetic phases
isospin-wave order. Botitl andC2 phases spontaneously essentiallyexactly (within the numerical accuracy of the
break a global (1) symmetry, and are technically the same calculation$.2® Since the phase transition occurs closer to the
phase. Indeed, in the phase diagrams in Fig. 3, ph@4es ferromagnetic side of the canted phase, it is reasonable to
andC2 are topologically connected, and the first-order tran-assume that the quantum fluctuations, not taken into account
sition between them terminates at a critical end point. in the HFA, will not wash it out. The quantum fluctuations

The physics of the commensurate canted phases was digill probably effectively renormalize the canted phase and
cussed in detail in this paper. The behavior of ¥ bilay-  make the first order-phase transition terminate closer to the
ers in tilted magnetic fields was compared to that of their ferromagnetic-canted line. Indeed, in considering effects be-
=1 counterparts. The pha€d was found to be analogous to yond HFA, it is reasonable to assume that the gapped phases
the commensurate phaseisf 1 bilayers, while the phage2 (the singlet and ferromagnetic phagesll be relatively ro-
was linked to the incommensurate phase. As was predicteaust when going beyond HFA, whereas the gapless phases
by MRJ}! the U1)-symmetry-brokenl phase, which had (C1, C2, andl) could be strongly renormalized, or even
been predicted to exist in the absence of tunneling in chargeshanged qualitatively by disordéf.
unbalanced=2 bilayer systems, was found to play the role ~ One might also consider the effects of finite temperatures.
of a “naive” incommensurate phase#s2 bilayers[akin to  In the context of the Hartree-Fock approximation, one need
the “naive’—translationally invariant—incommensurate only think about thermaIIy exciting electrons from the occu-
phase ofy=1 bilayers(see Sec. V Al. In this paper, th&C2 pled ba5|s statet»lx and f2>< to the unoccupied basis states
phase was argued to be an optimization of the naive incomt}, and f}, [see Eq(17) and thereaftdr Indeed, one could
mensurate phase, much as the soliton lattice phase=ih  easily generalize the current work to treat finite temperature
bilayers in tilted fields is an optimization of the naive incom- in this way. Without doing this work explicitly one can quali-
mensurate phase in this system. tatively guess many of the results. In the gappedromag-

The rapid convergence of the spin-isospin commensurateetic and singlgtphases, so long as the gap is larger than the
canted phase to thHephase can be used to study thghase. temperature, there are no excitations and the state remains
Very similar to the canted phase, thphase also possesses acompletely unchanged. In the gapped phases at higher tem-
number of intriguing many-body properties. However, the peratures, or in the gapless phases at any finite temperature
phase can occur only in the absence of interlayequasiparticle excitations are thermally excitesge Ref. 12
tunneling—a condition impossible in a typical bilayer where we discuss the zero-temperature excitation spectra in
sample. Tilting the magnetic field allows one to accessl the great detajl. At high enough temperatures the proliferation
phase in an experimental setting and study its properties. (and interaction of multiquasiparticle excitations should

The possibility of the formation of an interim soliton self-consistently change the energetics and the nature of the
phase around th€1-C2 first-order phase transition cannot state. In particular, in the gapped phases, we expect the gap
be ruled out with certainty in our approximation. However, to be self-consistently destroyed at high enough temperature.
the energy of a soliton phase =1 bilayers converges to In the canted phase we have linearly dispersing spin-wave
the energy of the corresponding naigenslationally invari-  excitations, which can be excited at finite temperature. This
anf) incommensurate phag&2* much more rapidly than the should lead to a suppression in spin stiffness that is linear in
energy ofC2 converges to the energy of the corresponding temperaturé®
state. We may therefore conclude that, even if the soliton Finally, we turn to the issue of whether some of these
phase inv=2 bilayers is possible, it will not occupy a sig- effects could be seen in other material systems with similari-
nificant amount of phase space. ties to bilayers—such as a two-subband systems. While, it
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