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Translational symmetry breaking in the superconducting state of the cuprates:
Analysis of the quasiparticle density of states

Daniel Podolsky, Eugene Demler, Kedar Damle, and B. I. Halperin
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!Received 30 March 2002; revised manuscript received 4 October 2002; published 31 March 2003"

Motivated by recent scanning tuneling microscopy !STM" experiments on Bi2Sr2CaCu2O8!# $J. E. Hoffman
et al., Science 295, 466 !2002"; C. Howald et al., cond-mat/0201546 !unpublished"; J. E. Hoffman et al.,
Science 297, 1149 !2002": K. McElroy et al. !unpublished"; C. Howald et al., cond-mat/0208442 !unpub-
lished"%, we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a
d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasipar-
ticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O8!# cannot be
explained using a simple charge density wave order parameter, but are consistent with the presence of a
periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and
pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss
implications of weak translational symmetry breaking for angle resolved photoemission spectroscopy experi-
ments.

DOI: 10.1103/PhysRevB.67.094514 PACS number!s": 74.25."q, 75.10.Jm, 76.50.!g

I. INTRODUCTION

Puzzling properties of the high-Tc cuprates have often
been attributed to the existence of competing instabilities and
proximity !or even coexistence" of several ordered states.
Possible instabilities that have been discussed in this context
include charge density wave !CDW" order, non-two-
sublattice spin density wave !SDW" order,1–4 spin Peierls
order,5 and orbital magnetism.6,7 Neutron scattering experi-
ments on La1.6"xNd0.4SrxCuO4,8 LaxSr1"xCuO4,9,10 and
La2CuO4!x

11 demonstrated the coexistence of magnetism
and superconductivity, while recent experiments on strongly
underdoped YBa2Cu3O6.35 !Ref. 12" have seen evidence of
CDW order coexisting with superconductivity. Particularly
striking in this context are recent scanning tunneling micros-
copy !STM" experiments on Bi2Sr2CaCu2O8!#

13–15 which
see spatial structure in the tunneling density of states with a
period of four lattice constants. This structure was originally
observed in the experiments in a magnetic field by Hoffman
et al.13 and later also seen in zero field by Howald et al.14,15
Modulo certain experimental subtleties, these experiments
can be thought of as measurements of the spatial Fourier
component !at the ordering wave vector Q) of the energy
dependent local density of states !LDOS" &Q(').
In this paper, we demonstrate that the energy dependence

of &Q(') provides important information about the nature of
charge ordering in these materials. It allows us to separate
simple charge density wave order, that has only the Hartree-
Fock potential modulation, from the more unusual charge
orders that involve modulation of the electron kinetic energy
!dimerization" or the pairing amplitude !anomalous dimer-
ization". For example, when Q#(2(/4,0) !as observed in
slightly overdoped Bi2Sr2CaCu2O8!#), there is a change of
sign in &Q(') for energies around 40 meV when dimeriza-
tions are present, but not in the case of a simple CDW. When
several of the simple distortions are present simultaneously,
we can understand the resulting &Q(') as !roughly" a super-

position of the corresponding simple cases, since the induced
&Q(') is approximately linear in the order parameter for
small distortions. Such a superposition is necessary to under-
stand the experiments of Refs. 14, 15.
This superposition principle also applies when we have

potential modulation at several wave vectors and &q(') can
be analyzed separately for each wave vector q. This is nec-
essary, for example, when we have randomness that pins the
charge order, so that the single particle potential is not a delta
function in momentum space but has a narrow distribution
centered at the ordering wave vector Q. This leads to a finite
&q(') for a range of wave vectors around Q and, as we
discuss below, taking a reasonable value of the CDW corre-
lation length reproduces well the ‘‘weak dispersion’’ of the
CDW peak observed in Ref. 15. Our analysis can be ex-
tended to systems with no charge order but, instead, with
localized defects, e.g., impurities. In this case we have a
potential that is essentially momentum independent and we
find strongly dispersing peaks in &q(') for a wide range of
wave vectors. Such peaks have been observed in the STM
experiments in Refs. 16,17 and discussed theoretically in
Refs. 18,19. We provide a qualitative comparison of the
STM spectra for systems with disordered CDW and impurity
scattering.
It is common to discuss spin density wave order as the

primary competitor to superconductivity in the underdoped
cuprates.1,3,20–22 An order parameter for non-two-sublattice
magnetism is

S! !r"#)! eiQs•r!)! *e"iQs•r, !1"

where the complex-valued vector )! acquires an expectation
value in a state with broken spin symmetry. When the SDW
order in Eq. !1" is collinear, it has an associated spin singlet
order parameter that only breaks translational symmetry and
can be described as a generalized charge density wave22

#&!r"#*eiQc•r!**e"iQc•r. !2"
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Symmetry arguments determine the wave vector Qc#2Qs of
such generalized CDW, but they do not clarify its internal
structure. For example, modulation of the local Hartree-Fock
potential of the electrons and modulation of the electron ki-
netic energy !hopping" are both spin singlet order parameters
that can be defined at the same wavevector and described by
Eq. !2". Modulation of the electron pairing amplitude also
belongs to the same class of translational symmetry breaking
since, in the superconducting state with condensed Cooper
pairs, order parameters with charge two and zero are not
orthogonal. It is important to note, however, that a long-
range SDW order is not a prerequisite for translational sym-
metry breaking. One can have a situation where quantum or
thermal fluctuations destroy the spin order but preserve a
long-range order in the charge sector.23 This was observed,
for example, in underdoped YBa2Cu3O6.35 ,12 where neutron
scattering found period eight CDW but no static spin order.
For slightly overdoped Bi2Sr2CaCu2O8!# , on which most of
the tunneling experiments have been performed, neutron
scattering experiments suggest dynamic spin fluctuations.24
In our analysis we then assume that there is no SDW order
and concentrate on the effects of spin singlet translational
symmetry breaking. Another possible origin of a generalized
CDW with no spin symmetry breaking comes from pinning
of SDW by disorder19,25 or vortices.22,26
We restrict our analysis to the case of weak translational

symmetry breaking, when the new order parameter can be
treated as a small perturbation to the superconducting mean-
field Hamiltonian. This limit clearly applies to the experi-
mental situation in Refs. 13–17, where the measured modu-
lation is weak, and allows us to obtain explicit approximate
expressions for &Q('). $This circumvents solving a compli-
cated set of equations numerically, as, for instance, carried
out in Ref. 25.% Furthermore, we do not address the issue of
the origin of charge order, but introduce it phenomenologi-
cally and study its consequences for the STM experiments.
Our basic motivation is that a comparison of the energy de-
pendence of &Q with experimental data can, in principle, be
used to identify the correct order parameter!s" which, in turn,
is crucial for understanding their origin.
This paper is organized as follows. In Sec. II we introduce

mean-field Hamiltonians that describe several kinds of trans-
lational symmetry breaking in a lattice system. For these
generalized CDW’s we derive an explicit formula for the
Fourier component of the tunneling density of states at the
ordering wave vector. Section III displays numerical results
of this expression in the case of Bi2Sr2CaCu2O8!# type band
structure and period four charge order. We show that recent
STM experiments by Refs. 14,15 are consistent with a gen-
eralized CDW that has modulation of either the electron hop-
ping or the pairing amplitude. We also consider period eight
structure that may be relevant to YBa2Cu3O6.35 . In Sec. IV
we extend our analysis to phases with randomness and show
that a realistic value of the CDW correlation length (20a0,
with a0 the unit cell size" provides good agreement with the
‘‘weak dispersion’’ of the CDW peak observed in Ref. 15. As
a different application of our formalism we also consider
localized perturbations in the crystal, such as impurity poten-
tials, and demonstrate that these can account for the strongly

dispersing peaks observed in Refs. 16,17 at wave vectors not
corresponding to the CDW order. In Sec. V we review how
to include a more realistic model of the atomic wave func-
tions, whose main effect is to introduce a momentum depen-
dent structure factor. An important implication of this result
is that the signal at wave vectors differing only by a recip-
rocal lattice vector should have peaks at the same energies,
although their amplitudes may differ. We also discuss com-
plications in the analysis of the STM data introduced by the
normalization procedure used in the experiments. Finally, in
Sec. VI we discuss several sum rules for the Fourier compo-
nents of the density of states that may be useful for analyzing
experiments.

II. ORDER PARAMETERS AND MEAN-FIELD
HAMILTONIANS FOR GENERALIZED CHARGE

DENSITY WAVE PHASES

Our starting point is a two-dimensional one-band mean-
field Hamiltonian that is commonly believed to be a good
model for the physics of the dx2"y2 superconducting state of
the cuprates

H#+
k,

'kck,
† ck,!+

k
-k!ck↑

† c"k↓
† !c"k↓ck↑". !3"

Here 'k#"2t$cos(kx)!cos(ky)%"4t1cos(kx)cos(ky)"., -k
#(-0/2)(cos kx"cos ky) !from now on the unit cell size is set
to unity", cr,#N"1/2+kck,eik•r, and N is the number of sites
in the lattice. The Hamiltonian !3" can be diagonalized using
the Bogoliubov transformation ck↑#uk/k↑!vk/"k↓

† , c"k↓
#uk/"k↓"vk/k↑

† with uk
2!vk

2#1, ukvk#-k/2Ek , and Ek
#('k

2!-k
2)1/2.

Weak charge order may be introduced into the state !3" by
assuming the appearance of one or more of the additional
order parameters listed below. We note that distinction be-
tween site and bond centered orders discussed below is only
defined for CDW with integer periods.
Site-centered charge density wave. The local Hartree-

Fock potential is modulated along x with potential
extrema on the lattice sites $see Fig. 1!a"%: -H1
#V0+, ,k(ck!Q,

† ck,!ck,
† ck!Q,).

Bond-centered charge density wave. The local Hartree-
Fock potential is modulated along x with the extrema of the
modulation at midpoints of the horizontal bonds $see Fig.
1!b"%: -H2#V0+, ,k(0*ck!Q,

† ck,!0ck,
† ck!Q,), where 0

#eiQ/2.
Longitudinal dimerization. Single electron tunneling am-

plitudes are modulated on the horizontal bonds and the wave
vector of modulation is along the same direction !i.e., along
x). The bond centered version, in which the extrema of the
modulation lie on the bonds $see Fig. 1!c"% corresponds to
-H3#V0+, ,k cos(kx!Q/2)(0*ck!Q,

† ck,!0ck,
† ck!Q,).

Transverse dimerization. Single electron hopping is
modulated on the vertical bonds, and the wave vector of
modulation is along the horizontal direction !i.e., along x).
The site centered version !i.e., with extrema of the modula-
tion realized on the vertical bonds" is shown in Fig. 1!d", and
corresponds to -H4#V0+k,cos ky(ck!Q,

† ck,!ck,
† ck!Q,).
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Anomalous longitudinal dimerization. The x components
of the dx2"y2-wave pairing amplitudes are modulated in the x
direction. The bond centered version, shown in Fig. 1!c",
corresponds to -H5#V0+, ,k1cos(kx!Q/2)(0*ck!Q↑

† c"k↓
†

!0ck↑
† c"k"Q↓

† )!H.c.2.
Anomalous transverse dimerization. The y-components of

the dx2"y2-wave pairing amplitudes are modulated in the x
direction. The site centered version, shown in Fig. 1!d", cor-
responds to -H6#V0+, ,k1cosky(ck!Q↑

† c"k↓
† !ck↑

† c"k"Q↓
† )

!H.c.2.
Note that these subdominant order parameters may appear

either as a result of a phase transition in the bulk, or due to
pinning by vortices, impurities or any other defects !see dis-
cussion in Sec. IV". Following experimental observations in
Refs. 14,15,27, we assume that the order is unidirectional,
and choose the ordering wavevector to be Q#Qêx .28 How-
ever, even if we were to assume checkerboard order, our
analysis is carried out to linear order in perturbation theory
and, by linear superposition, our results would be identical to
those obtained for unidirectional order. For the STM experi-
ments in Bi2Sr2CaCu2O8!# ,13,14 Q#2(/4, while the neu-
tron scattering experiments on YBa2Cu3O6.35 !Ref. 12" cor-
respond to the smaller value Q#2(/8. We point out that the
six cases listed above are, in general, not orthogonal to each
other in a symmetry sense. As a result it is conceivable that
more than one order parameter could be simultaneously non-
zero; for example, in a microscopic model without particle-
hole symmetry, a simple CDW would be expected to induce
dimerization as the two order parameters are linearly
coupled.29
Upon expressing the Hamiltonians -H in the basis of

Bogoliubov quasiparticles, they reduce to the generic form

-Hi#+
k,

$Ak
i /k,
† /k!Q,!Ak

i*/k!Q,
† /k,%

!+
k

$Bk
i /k↑
† /k!Q↓

† !Bk
i*/k!Q↑

† /k↓
† !H.c.% , !4"

where

Ak
1#V03k , Bk

1#V04k ,

Ak
2#V003k , Bk

2#V004k ,

Ak
3#V00 cos! kx! Q

2 "3k , Bk
3#V00 cos! kx! Q

2 "4k ,

!5"

Ak
4#V0cos!ky"3k , Bk

4#V0cos!ky"4k ,

Ak
5#"V00 cos! kx! Q

2 "4k , Bk
5#V00 cos! kx! Q

2 "3k ,

Ak
6#"V0cos!ky"4k , Bk

6#V0cos!ky"3k ,

in terms of the coherence factors 3k#uk!Quk"vk!Qvk and
4k#uk!Qvk!vk!Quk .
STM experiments measure the local density of states

&(r,')#+n,1#5n#cr,
† #06#2#('"'n0)!#5n#cr,#06#2#('

!'n0)2, where the summation over n ranges over all excited
states. In particular, we are interested in the Fourier trans-
form

&q!'"#
1
N +

r
e"iq•r&!r,'"

#
1
N +

nk,
$50#ck!q,#n65n#ck,

† #06#!'"'n0"

!50#ck,
† #n65n#ck!q,#06#!'!'n0"% . !6"

Although a full treatment of all terms in Eq. !4" is compli-
cated, progress can be made if we assume that the ordering
represented by -H is weak, allowing us to obtain an analytic
expression for the Fourier transform that is exact to linear
order in V0. This is then the sum of two contributions

&Q!'"#&Q
A !'"!&Q

B!'"!O!V0
2", !7"

where &Q
A (') is obtained by ignoring the Bk term in the per-

turbation !4" and vice versa.
A small value of V0 leads to another important simplifi-

cation: We only need to consider the pairwise mixing be-
tween states connected by -H. For instance, in computing
&Q
A (') for Q#2(/4 one would have to analyze coupled
equations for four quasiparticles (k, k!Q, k!2Q, and
k!3Q#k"Q) connected by the perturbation. However,
in the limit when V0 is small, there is at most one pair of
quasiparticles that have similar energies, and that will be
hybridized appreciably by -H. This hybridization can be
analyzed by diagonalizing the corresponding two-by-
two Hamiltonian, which gives the new eigenstates #0k!6

FIG. 1. Order parameters with wave vector Q#(2(/4,0) con-
sidered in this paper. !a" and !b" correspond to site and bond cen-
tered CDW, respectively. Black circles correspond to sites of higher
electron density, white circles to sites of lower electron density, and
gray circles to sites with the average electron density. !c" and !d"
describe longitudinal and transverse dimerizations, respectively.
Heavy lines correspond to bonds with higher tunneling amplitude,
and dotted lines to bonds with lower tunneling amplitude. Anoma-
lous dimerization may be shown schematically as on !c" and !d",
with heavy and dotted bonds describing higher and lower pairing
amplitudes.
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and #7k!6 with energies Ẽk$#(Ek!Ek!Q)/
2$1$(Ek"Ek!Q/2)%2!#Ak#221/2. Note that these states
satisfy 50#ck!Q,#0k!650k!#ck,

† #06# 1
2 ukuk!Qsin 28ke"i9k,

50#ck!Q,#7k!657k!#ck,
† #06#" 1

2 ukuk!Qsin 28ke"i9k, where
we have defined Ak##Ak#ei9k, and tan 28k#2#Ak#/(Ek
"Ek!Q). From these results one easily finds

&Q
A !'"#

1

N +
k

Ak*

!! Ek"Ek!Q

2 " 2!#Ak#2

%1ukuk!Q$#!'"Ẽk!""#!'"Ẽk""%

!vkvk!Q$#!'!Ẽk!""#!'!Ẽk""%2. !8"

When considering &Q
B , one would naively expect that it is

always smaller than &Q
A , because the perturbation terms of

the form /k$Q↑
† /"k↓

† connect states that differ in energy by
Ek!Ek!Q , a factor that is never small. However, in some
cases the coherence factors in Ak vanish at important regions
of the Brillouin zone, making &Q

A (') anomalously small. In
addition, as we discuss below, both &A ,B(') are large at bi-
ases corresponding to the saddle points on the degeneracy
lines Ek#Ek!Q and van Hove singularities of the Bogoliu-
bov quasiparticles ':-0. A nearly identical analysis of the
one above for &A yields

&Q
B!'"#

1

N +
k

Bk*

!! Ek!Ek!Q

2 " 2!#Bk#2

%$ukvk!Q#!'"Êk!"!uk!Qvk#!'"Êk""

"uk!Qvk#!'!Êk!""ukvk!Q#!'!Êk""% ,

!9"

where Êk$#$(Ek"Ek!Q)/2!1$(Ek!Ek!Q)/2%2
!#Bk#221/2. Equations !8",!9", are two key results of this pa-
per. In combination with Eqs. !5", they provide an explicit
expression for the energy dependence of the Fourier compo-
nent of the local density of states &Q(') when the transla-
tional symmetry breaking is weak.
From the form of Ak and Bk , it is obvious that when there

is no mixing between bond and site centered CDW, &Q(')
can be made real at all energies by an appropriate choice of
the overall phase, i.e., by a shift in the origin of coordinates
when doing the Fourier transform. One obvious observation
is that the results for the site-centered and bond-centered
CDW are identical modulo an overall phase factor of eiQ/2. If
one defines the Fourier transform in such a way that it is real
in both cases, the origin will coincide with one of the sites of
the lattice for the site-centered CDW, and it will be at the
center of a bond for the bond-centered CDW. Hence careful
analysis of the STM data allows one to distinguish two kinds
of CDW, a task that is not possible in neutron scattering

experiments with current resolution. Mixing site and bond-
centered orders breaks inversion symmetry and leads to a
complex-valued &Q(').

III. CHARGE ORDER WITH NO RANDOMNESS

A. Period four CDW in Bi2Sr2CaCu2O8¿"

We first focus on modulations at Q#(2(/4,0) that is rel-
evant to Bi2Sr2CaCu2O8!# .13,14 Figure 2 shows results of
the numerical evaluation of formulas !7", !8", and !9" for
various perturbations !5". $As transverse and longitudinal
dimerization curves are qualitatively similar, curves corre-
sponding to the former are not displayed.% We choose the
band structure and the value of -0 in Eq. !3" appropriate to
Bi2Sr2CaCu2O8!# : t1 /t#"0.3, ./t#"0.99 !this corre-
sponds to 14% doping", -0 /t#0.14 and -0#40 meV.30 We
set V0 /t#0.02, although its precise value is inconsequential,
as &Q(') scales linearly with V0 when the latter is suffi-
ciently small.
If we turn our attention to the expression for &A, Eq. !8",

we see that the energy denominator is smallest for those
quasiparticles lying close to the degeneracy points Ek
#Ek!Q , which are strongly hybridized by the Ak part of the
perturbation. Figure 3 shows the four loci of such points, a
through d, that are degenerate with a! to d! respectively. The
pairs aa! and bb! are obvious, since they have kx#$(/4
and kx#$3(/4 !for the same ky); the other two require a
more detailed analysis of the band structure. Out of the set of
degeneracy points, we expect large contributions from the
neighborhood of points A and B, as the dispersion of hybrid-
ized energies Ẽk$ is flat at these points. These same regions

FIG. 2. Energy dependence of the Fourier component of the
local density of states &Q(') at Q#(2(/4,0) for various cases of
charge ordering. Bi2Sr2CaCu2O8!# type band structure is assumed.
We show a direct calculation based on formulas !7"–!9". The curves
correspond to the CDW !solid", longitudinal dimerization !dashed",
and anomalous longitudinal dimerization !dotted" orders. To sim-
plify the comparison, &Q(') is multiplied by "1 for CDW, and by
1
2 for anomalous longitudinal dimerization. In addition, subsequent
curves are shifted vertically by 0.6. Results for both kinds of trans-
verse dimerization are qualitatively similar to corresponding longi-
tudinal results and are omitted for visual clarity.
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of the Brillouin zone will dominate the &B contribution, since
the energy denominator in Eq. !9" will be small only if both
k and k!Q lie close to the Fermi surface, which occurs only
in the neighborhood of points A and B. In addition we ex-
pect, for both &A and &B pieces, a large contribution at '
#-0, where a van Hove singularity for the Bogoliubov qua-
siparticles yields a logarithmic divergence in the density
states.
We turn now to the numerical results displayed in Fig 2.

Consider first the simple CDW curves. The sharp features
that dominate the CDW plots can be understood in terms of
the degeneracies mentioned above: the peak at energies
around 0.5-0 comes from the vicinity of the A point, the
peak around 0.7-0 comes from the vicinity of B, and the pile
around -0 comes from the van Hove singularity near the
(0,() and (( ,0) points. The longitudinal dimerization results
can be similarly understood by taking into account the addi-
tional minus sign in the vicinity of the point B due to the
cos(kx!(/4) factor in Ak and Bk . The results for the anoma-
lous dimerization can also be understood in this framework
after taking into account the extra sign modulation in ukvk ,
which changes sign whenever -k does. Note that, for all
perturbations considered, &Q(') displays approximate
particle-hole symmetry for small biases, as observed in STM
measurements.14 This is not a generic property of &Q('); for
example, for a diamond-shaped Fermi surface .#t!#0 the
CDW signal is exactly antisymmetric. Finally, note that
&Q(') goes to zero at '#0 in all cases; this reflects the
vanishing density of low-energy quasiparticle states in an
ideal d-wave superconductor.
While the results in Fig. 2 describe a system with infinite

quasiparticle lifetime and no disorder, in a real system disor-
der will smear the sharp features in &Q('). To model this,
these curves are redisplayed in Fig. 4 after smearing over an
energy width w#0.2-0. This procedure smooths the sharp
features in the spectra, and generates finite intensity at low

energies. Notice that the smeared CDW curve does not have
the two large peaks surrounding zero bias, nor does it have
clear zero crossings at #'#:-0, the dominant features of the
STM spectra observed in Refs. 13,14. By contrast, the signal
related to longitudinal dimerization or, especially, to either
kind of anomalous dimerization, share many of the qualita-
tive properties of the data. However, neither curve by itself
accounts for all the observed features in the data. This
prompts us to consider a combination of several kinds of
order. For example, if we assume that no pairing modulation
is present, the combination of longitudinal dimerization and
CDW, (long. dim.)!1.05 (CDW), shown as a solid curve in
Fig. 5 reproduces the STM results reasonably well, with only
a small difference in the position of the peaks ($17 meV,
compared to experimentally observed $25 meV). Alterna-

FIG. 3. Fermi surface for Bi2Sr2CaCu2O8!# . Dashed lines cor-
respond to the quasiparticles that satisfy Ek!Q#Ek and are strongly
affected by -H when Q#(2(/4,0). Quasiparticles on line a hy-
bridize with quasiparticles on line a! !and similarly for lines b and
b!, and curves c, c! and d, d!). Crossings of these lines with the
Fermi surface !points A and A!, B and B!) give the minimal energy
of such quasiparticles: 0.5-0 and 0.7-0 respectively. Contributions
from these points produce sharp peaks at energies 20 and 30 meV
in Fig. 2. The Van Hove singularity for the Bogoliubov quasiparti-
cles at energy -0 leads to a peak at 40 meV.

FIG. 4. The results in Fig. 2 are shown after smearing over an
energy range of 8 meV. To simplify the comparison, &Q(') was
multiplied by "1 for CDW and anomalous transverse dimerization,
and by a factor of " 1

2 for transverse dimerization.

FIG. 5. &Q(') for Bi2Sr2CaCu2O8!# type band structure, order-
ing wave vector Q#2(/4 and a combination of charge orders:
longitudinal dimerization and CDW, 1.05 (CDW)!(long. dim.)
!solid line"; anomalous longitudinal dimerization and CDW,
(anom. long. dim.)!0.2 (CDW) !long-dashed line". The same
smearing is assumed as in Fig. 4. For clarity, curves have been
offset vertically by 0.25.
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tively we can match experimental data by considering the
combination of anomalous longitudinal dimerization and
CDW, (anom. long. dim.)!0.2 (CDW), shown as a dashed
curve in Fig. 5. It slightly overestimates the peak bias to be
$29 meV, and yields a low intensity at zero bias. Any in-
termediate combination between these two scenarios also
gives good agreement with experiments. Although CDW was
used in both combinations discussed above, it can be substi-
tuted by transverse dimerization, which yields a qualitatively
similar &Q(') to CDW. We note that, for ';3-0, the results
come from the vicinity of the Fermi surface and are robust
against variations in the band structure that do not alter
qualitatively the shape of the Fermi surface !e.g. the a and b!
lines do not move below the Fermi surface".
We note, however, that a certain care should be exercised

when comparing our results to the STM spectra in Refs.
13–17. An additional complication of the experiments is that
for every point on the surface of the sample the height of the
STM tip is adjusted to keep the tunneling current at a certain
voltage fixed. This implies that the local density of states is
not measured directly, but instead its product with some
space dependent function is measured. In Sec. V we review
how this normalization procedure can be included in analy-
sis.

B. Period eight CDW in YBa2Cu3O6.35
To model YBa2Cu3O6.35 for which CDW-type peaks have

been observed at Q#2(/8 !Ref. 12" we take the same band
structure t1 /t#"0.3, but a different value of the chemical
potential ./t#"0.815 !this corresponds to 6% doping". We
use the same value of -0 /t#0.14, -0#40 meV, V0 /t
#0.02, and keep the energy smearing w#0.2-0. The main
difference with the charge order at Q#2(/4 is that the ana-
log of line a in this case is inside the Fermi surface, so that
the only contributions will come from the vicinity of point B
at energies around 0.8-0. This leads to less structure in
&Q(') and smaller intensity at zero energy !see Fig. 6".

IV. DISPERSION OF THE STM SPECTRA

Recent experiments16,17 demonstrated that the STM spec-
tra of Bi2Sr2CaCu2O8!# cannot be explained by charge or-
der at a unique wave vector. Peaks in &q(') have been ob-
served away from (2(/4,0) and the wave vectors of the
peaks are energy dependent. In this section we review and
compare two possible scenarios for such dispersion of the
STM spectrum: !1" randomness and pinning of charge order,
!2" scattering of BCS quasiparticles by impurities and crystal
defects. Both cases can be described using an extension of
the formalism presented in the previous section. We consider
a single particle Hamiltonian that generalizes Eq. !4"

-H# +
k,q,

$Vk,qck,,
† ck!q,,!H.c.!Wk,q!ck,,

† c"k"q,",
†

!c"k,",ck!q,,"!H.c.% . !10"

Here q describes the wave vector of the potential modula-
tion, and the k dependence of V and W gives its internal

structure !e.g., simple CDW vs dimerization".31 In Sec. II we
considered charge order at a unique wave vector that corre-
sponds to taking potentials V and W as #(q"Q). In the case
of a disordered CDW we expect that these functions are no
longer # functions but are centered narrowly around some
particular wave vector. By contrast, when translational sym-
metry breaking comes from impurities, we expect to find V
and W that extend over a wide range of wave vectors q. A
crucial property of Eqs. !8" and !9" is that &q(') depends
linearly on the perturbations Vq and Wq , hence the formal-
ism for computing &q(') can be applied independently to
each wave vector q.
The charge order observed in Bi2Sr2CaCu2O8!# !Refs.

14,15" had strong signatures of randomness and pinning in
the form of lattice defects. The correlation length estimated
from the distance between defects was :20a0. If we assume
the charge order to be of the form 1.05 !CDW"!!long. dim.",
we can describe it as

Vk,q#V0!q"$1.05!cos! kx! qx
2 " % , Wk,q#0, !11"

where V0(q) is a Gaussian distribution function centered at
(2(/4,0) with a width 2(/20a0. We display in Fig. 7 the
signal produced by a perturbation of this kind, for bias volt-
ages 8, 12, 16, and 20 mV, as a function of wavevectors
along the (0,0) to (( ,0) direction. The resulting dispersion
agrees closely with that observed in Refs. 15,16.
In experiments of Hoffman et al.16 and McElroy et al.17

peaks in the LDOS were observed at very different wave
vectors from (2(/4,0) !including some in diagonal direc-
tions". This suggests that either Vk,q or Wk,q must be nonzero
over a fairly wide range of values of q, and the most natural
candidate is scattering by impurities.16–18 For concreteness,
we assume that the impurity induces a higher chemical po-
tential at a single site, so the perturbation used corresponds

FIG. 6. YBa2Cu3O6.35 type band structure and ordering wave
vector Q#(2(/8,0). The inset shows &Q(') for CDW !solid line",
dimerization !dashed line", and anomalous dimerization !dotted
line" separately. Main figure has the linear combination (ald)
!0.2 (CDW), which was displayed for Bi2Sr2CaCu2O8!# in Fig. 5
!the other linear combination is nearly zero and thus omitted". The
same smearing is assumed as in Fig. 4.
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to a simple CDW which is uniform in q, Vk,q#V0 , Wk,q
#0. In Fig. 8 we show the signal computed along the (0,0)
to (( ,0) direction at bias voltages 8, 12, 16, and 20 mV. In
all cases there is a pronounced peak that disperses with the
applied bias voltage. To find the positions of these peaks we
reverse the arguments given in Sec. II. There, we started with
a potential at wave vector Q and found that only quasiparti-
cles at certain energies were strongly affected by it. Now we
need to find the modulation wave vector that affects quasi-

particles at a given energy. From the band structure of
Bi2Sr2CaCu2O8!# we find for the peak positions !in units of
2(): 0.35, 0.32, 0.29, and 0.26. The curves on Fig. 8 show
general agreement with this ‘‘quasiparticle scattering’’
argument,16,17 except for a consistent small shift to lower
wave vector, which comes from the energy smearing proce-
dure. This dispersion is stronger than that displayed in the
data at wave vector (2(/4,0), but is in good agreement with
the dispersion observed at other wave vectors.
In the discussion above we considered two situations: or-

dered CDW and noninteracting electrons with impurities.
There may also be an intermediate regime with interacting
electrons close to the CDW instability and with disorder.19,32
Qualitatively, this case may be described by Eq. !10" but
with the potentials Vk,q and Wk,q coming not only from the
external fields but also from the density induced in the elec-
tron system. For simplicity let us take only one of the chan-
nels discussed in Sec. II, e.g., simple CDW !the generaliza-
tion to the case of several channels is straightforward". Then

-H#+
q

&̂q
†Uq&̂q!+

q
Vq
ext&̂q

†!H.c. !12"

with

&̂q#+
k,

ck,
† ck!q, .

The response of the quasiparticles to Eq. !12" in the Hartree
approximation is determined by the effective perturbation
Hamiltonian

-H# +
k,q,

Vq
effck!q,

† ck,!H.c.

Vq
eff#Vq

ext!Uq5&̂q6#
Vq
ext

1"Uq90!q,3#0 "
, !13"

where 90(q,3#0)#5&̂q&̂q
†6 must be computed for the non-

interacting system. This corresponds to contributions to the
LDOS from the class of diagrams in Fig. 9!a". When the

FIG. 7. Dispersion in the (0,0) to (( ,0) direction in a system
with charge order with randomness !momentum is measured in
units of 2(). Charge order is assumed to have Gaussian distribu-
tion centered around wave vector (2(/4,0) with the width 2(/20.
The function V0(q) in Eq. !11" is shown, up to a scale, as the thick
solid curve. For visual clarity, only results corresponding to the
linear combination 1.05 (CDW)!(ld) are displayed. Each curve
corresponds to a different bias; starting from the bottom, the biases
are 8, 12, 16, and 20 mV. Throughout, the quasiparticle smearing is
fixed at 8 meV.

FIG. 8. Dispersion in the (0,0) to (( ,0) direction in a model
with impurity induced quasiparticle scattering !momentum is mea-
sured in units of 2(). Each curve corresponds to a different bias;
starting from the bottom, the biases are 8, 12, 16, and 20 mV.
Unlike other computations in this paper, the quasiparticle smearing
is fixed at 2 meV. This is done since the main features in these
curves are averaged out for the usual smearing of 8 meV.

FIG. 9. !a" Diagram of Hartree type used in computing the RPA
response for a system of interacting electrons in the vicinity of a
CDW instability. An external field !e.g., an impurity potential" pins
the CDW. !b" and !c" Contributions beyond the Hartree approxima-
tion, which may be subdominant depending on the model used.
Their inclusion leads to a frequency-dependent self-energy.

TRANSLATIONAL SYMMETRY BREAKING IN THE . . . PHYSICAL REVIEW B 67, 094514 !2003"

094514-7



system is close to the CDW instability, the denominator of
Eq. !13" approaches zero around some particular wave vector
Q. Hence, Vq

eff may be peaked around Q even when Vq
ext is

momentum independent. In principle we can go beyond the
Hartree approximation, including diagrams such as those
shown in Figs. 9!b",9!c". These will introduce a frequency-
dependent self-energy, as in the case of pinned spin density
fluctuations considered in Ref. 25.
It is interesting to ask whether by analyzing experimental

data one can separate contributions of disordered CDW’s
from those due to quasiparticle scattering off impurities. Ref-
erence 15 pointed out that the presence of a weakly dispers-
ing signal at wave vector (2(/4,0) makes charge order a
likely candidate at that wave vector. Here we build on this
idea and suggest that a more consistent approach is to ana-
lyze &q(') at many different wave vectors using a reasonable
set of basis functions, e.g., simple CDW and dimerization.
Such analysis will give the q dependence of various compo-
nents in the potentials Vk,q or Wk,q . We expect that some of
them will be almost uniform in momentum space and corre-
spond to localized defects, such as impurities; whereas others
will be centered around particular wave vectors and arise
from the existence or at least proximity of charge order.
When the field of view of the STM measurement contains

more than one impurity there are several important questions
that we need to address. We must ask how the contributions
from different impurities add up and whether the system re-
tains the property of uniformity of phase of &q(') at fixed q
but different ' . We consider impurities that cause an arbi-
trary potential Vk,q in Eq. !10", i.e., they may modify the
chemical potential, the electron kinetic energy, or the pairing
amplitude, but first we assume that all impurities are identi-
cal. The Fourier component of the LDOS is proportional to
Vk,q
tot #Vk,q+rae

iq•ra, where ra runs over impurity positions.
If one impurity does not break parity symmetry, we can
make Vk,q real by choosing the origin at the position of this
impurity !see also discussion in Sec. II". This implies that
Vk,q
tot has a phase that depends on q only and is the same for
all k, which in turn proves that, at fixed q, &q(') has con-
stant phase !modulo () for all values of ' $see Eqs. !5"–!9"%.
So, in the case of identical impurities we have only one
phase to worry about and we can always make &q(') real by
an appropriate choice of origin. When impurities are differ-
ent, we will have an intrinsically complex &q('), with pos-
sibly energy dependent phase at different bias voltages. In
either case, interference among the impurities leads to an
appreciable suppression of the amplitude of &q('). When
there are many impurities in the area A of the STM field of
view, and their positions are uncorrelated, each impurity in-
troduces a random phase to Vk,q

tot , whose amplitude can be
analyzed in terms of a random walk. Therefore, in a typical
experiment we expect that with increasing the system size,
5#&q(')#6 will decay as 1/!A , with statistical fluctuations of
the same order. This argument also applies to the case of
disordered CDW, where the role of impurities is played by
defects in the CDW lattice.

V. EXPERIMENTAL CONSIDERATIONS

Our discussion in the earlier sections was restricted to
models on a square lattice for which we calculated the lattice

density of states in the presence of several kinds of transla-
tional symmetry breaking. In analyzing actual experimental
data, additional effects need to be taken into account: the real
space structure of the atomic wave functions, and the current
normalization condition used in the STM measurements.13–17
These are reviewed below.

A. Structure factors

For lattice Hamiltonians, wave vectors that differ by the
reciprocal lattice vectors G are equivalent. For the Fourier
components of the local density of states &q this implies that
&q!G
lattice(')#&q

lattice(') for any G. To understand why this
equivalence is not observed in experiments we must take into
account the real space structure of the Wannier wave func-
tions of electrons in the conduction band. Here we study the
effects of a single-band tight-binding model, in which Bloch
states at the Fermi level can be written as a superposition of
localized atomic orbitals <k(r)#+Reik•R)(r"R).
We begin by projecting the Bogoliubov–de Gennes

!BdG" wave functions in terms of the single-band wave func-
tions

un!r"#+
k
ak
n<k!r",

vn!r"#+
k
bk
n<k*!r".

If we know how an operator =̂ acts on the Bloch wave
functions <k , =̂<k#+k!=k,k!<k! , then the above relation
induces an action on ak through =̂ak#+k!ak!=k!,k !and
similarly for bk). Thus, the solutions to the BdG equation

! cc >̂!V̂ -̂!Ŵ

-̂†!Ŵ† " >̂"V̂
" ! aknbkn" #En! aknbkn"

will be independent of the Wannier wave function )(r) once
we determine the action of the BdG operator on the Bloch
wave functions <k .
For positive biases '&0 !the ''0 case can be analyzed

analogously", the LDOS is given by

&q
phys!'"#& d2reiq•r+

n
un*!r"un!r"#!'"En"

#+
n

#!'"En"+
k,k!

ak*nak!
n J!k,k!,q",

where

J!k,k!,q"#& d2r eiq•x<k*!r"<k!!r"

#+
G

#$q"!k"k!"!G%

%+
R
eik!•R& d2r eiq•r)*!r")!r"R".
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If we assume that the relevant electronic wave function is
well localized, we can ignore terms involving the overlap
across different sites (R?0) in the last integral. Then, the
only dependence of J on k and k! is through the crystal
momentum conservation condition, and we find

&q
phys!'"#Sq&q

lattice!'" !14"

with

&q
lattice!'"#+

k,n
#!'"En"ak*nak!q

n

Sq#& d2r#)!r"#2eiq•r.

One immediately recognizes that in Eq. !14" &q
lattice(') is the

Fourier component of the lattice density of states that we
analyzed in the earlier sections and Sq is the structure factor
determined by the atomic wave functions. Peaks in the STM
spectra arise from &q

lattice('), whereas Sq only provides addi-
tional wave vector dependence. Hence in our tight binding
model we expect that wave vectors which differ only by
reciprocal lattice vectors have peaks at the same energies, but
with generally different intensities.

B. Current normalization condition

An additional subtlety of STM experiments in Refs.
13–17 is the space-dependent normalization used. It is natu-
ral to assume that the tunneling matrix elements do not
change appreciably with energy over the energy range of
interest. Thus, if z is the height of the STM tip above the
sample, and r is its two-dimensional 2D coordinate along the
plane of the sample surface, then the differential tunneling
conductance g can be written as

g!r,z ,'"# f !r,z "&phys!r,'",

where &phys(r,') is the 2D density of states in the CuO plane.
The experiments in Refs. 13–17 adjust the z coordinate at
every point r along the surface, so as to keep the current at
V f fixed at a predetermined value I f . The differential con-
ductance normalized in this fashion is

gmeas!r,'"# f !r"&phys!r,'",

where f (r)#I f /@0
eV fd' &phys(r,'). Let us now discuss some

properties of gmeas(r,').
The spatial variation in f (r) is dominated by the inhomo-

geneous quasiparticle weight within a unit cell. To see this,
write

&phys!r,'"#&per!r,'"!&TSB!r,'",

where &per(r,') is periodic with the lattice and is of order
one, whereas &TSB(r,') breaks lattice translational symmetry
and is of order V0 in our formalism. If we define f per(r)
#I f /@0

eV fd' &per(r,'), then

f !r"# f per!r"$1"H!r"%

in terms of a TSB function H(r) of order V0.
It is convenient to absorb f per into & by introducing a new

function &!(r,')A f per(r)&phys(r,'). Due to the symmetry
properties of f per , &! is simply related to & lattice through a
modified structure factor

&q!!'"#Sq!&q
lattice!'"

Sq!#& d2r f per!r"#)!r"#2eiq•r.

Expressing gmeas in terms of &!,

gq
meas!'"#&q!!'""& d2k

!2("2
Hq"k&k!!'", !15"

we see that gq
meas(') gets ‘‘direct’’ contributions from struc-

ture in the LDOS at wave vector q, as well as ‘‘shadow’’
contributions from structure in the LDOS at other wave vec-
tors k, whenever Hq"k is nonzero. Whereas Eq. !15" is an
exact relation, it is useful to truncate it to order V0 by keep-
ing in the second term only those contributions coming from
the neighborhood of the reciprocal vectors k:G,

gq
meas!'"#&q!!'""0q&k#0

lattice!'"!O!V0
2", !16"

0q#+
G

Hq"GSG! . !17"

In this approximation the shadow contribution to gq
meas(')

factorizes into the space-dependent factor 0q and the space-
averaged density of states &k#0

latticeB5gmeas(')6 . From Eqs. !16"
and !17" we can verify an important property of the tunnel-
ing spectra

gq!G
meas !'"

gq
meas!'"

#
Sq!G!

Sq!

when G is a vector of the reciprocal lattice and q is not.
Hence, we expect gq

meas(') and gq!G
meas (') to have peaks at the

same energies but in general with different overall ampli-
tudes.
An interesting question to ask is whether it is possible to

analyze experimental data in a way that would allow to sepa-
rate direct and shadow contributions to gq

meas('). Below we
demonstrate that this is possible using an exact sum rule
obeyed by &q

lattice('). Regardless of the model used and the
nature of the symmetry breaking perturbation, the sum over
all frequencies of &q

lattice(') should be identically zero for all
q different from the reciprocal lattice vectors G:

&
"C

C

d' &q
lattice!'"#

1
N +

k,
50#1ck!q, ,ck,

† 2#06

A2+
G

!2("2#!q"G".

In principle, this identity can be used to remove the shadow
contribution in Eq. !15". In particular, for q?G, combining
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the approximate result !16" and our knowledge of &k#0
lattice(')

from experiment, we can fix 0q by requiring the sum rule to
be obeyed:

&q!!'"#gq
meas!'""5gmeas!'"6

&
"Vmax

Vmax
gq
meas!'"d'

&
"Vmax

Vmax
5gmeas!'"6d'

.

!18"

Here Vmax should be chosen sufficiently large so that the
ratio of the two integrals is close to its saturated value, yet it
should be small enough that we are still justified in using a
single band model and a local picture of electron tunneling.
For completeness, we also list two other sum rules obeyed

by tunneling spectra. By construction, at every wave vector
q?0 the function gq

meas(') must satisfy the normalization
condition

&
0

eV f
d' gq

meas!'"#0.

One can derive an independent sum rule if we restrict the
class of symmetry breaking Hamiltonians to effective one-
particle operators !10" $This includes all perturbations con-
sidered in this work.% Then the '-weighted average of
&q
lattice(') will be, for q?G,

&
"C

C

d' ' &q
lattice!'"#

1
N +

k,
50#1$ck!q, ,H% ,ck,

† 2#06

#
2
N +

k,
Vk,q .

For the basis functions discussed in Sec. II we find that only
the Vk,q describing simple CDW gives finite contributions
after summing over k. Hence,

&
"C

C

d' ' &q
lattice!'"#2Vq

CDW .

It is important to point out that this sum rule will be spoiled
by shadow contributions in Eq. !15", and is only of use if
these have been previously removed, using for example pro-
cedure in equation Eq. !18".
As a useful consistency check of our formalism, one can

easily verify that expressions !7", !8", and !9" satisfy both
sum rules. We emphasize, however, that although these ex-
pressions are only correct to linear order in perturbation
strength, the sum rules are nonperturbative and therefore
hold to all orders in perturbation theory. Furthermore, their
validity is not affected by the introduction of finite quasipar-
ticle lifetimes as, for any normalized symmetric distribution
g('), @d'(0!7')g('"'0)#0!7'0. By contrast, the av-
erage of &q(') weighted by any other power of ' is sensitive
to details of quasiparticle smearing. Unfortunately, these sum
rules are of limited immediate use, since the bulk of the
integration comes from large energies, whereas current ex-

periments only probe a relatively narrow range of biases
about the chemical potential.

VI. PHOTOEMISSION

Before concluding, we would like to propose a way of
identifying weak charge ordering in photoemission experi-
ments that could supplement current STM studies. A com-
mon signature of a strong charge ordering in the angle re-
solved photoemission microscopy experiments is the
presence of shadow bands: the electron spectral function at
momentum k acquires an additional peak at the energy of the
quasiparticle at momentum k!Q. For weak charge order the
shadow bands may be difficult to observe: when the energy
difference between Ek and Ek!Q is large, mixing between
quasiparticles is negligible and the intensity of the shadow
peaks is vanishingly small. Strong mixing only occurs when
states k and k!Q are nearly degenerate, although in this
case the two peaks are hard to distinguish since they are
close in energy. Thus we expect to observe an increase of the
apparent linewidth of quasiparticles when the latter satisfy
the degeneracy condition Ek#Ek!Q and are strongly af-
fected by the charge order. For example, in the case of the
Bi2Sr2CaCu2O8!# band structure shown on Fig. 3 we expect
an anomalous increase in the apparent quasiparticle line-
width at the points A, A!, B, and B! on the Fermi surface.

VII. CONCLUSIONS

To summarize, we considered the effects of weak transla-
tional symmetry breaking on the d-wave superconducting
state of the cuprates. For systems with periodic charge order
we derived an explicit formula for the energy dependence of
the Fourier component of the local density of states for sev-
eral types of order, including simple charge density wave,
electron kinetic energy and superconducting gap modula-
tions. We argued that within a one band model the STM
spectra observed in Refs. 13–15 cannot be explained by a
simple charge density wave but require the existence of some
form of !anomalous" dimerization, i.e., modulation in the
electron hopping or in the superconducting pairing ampli-
tude. We discussed a situation in which charge order has
finite correlation length due to pinning by impurities. In this
case the LDOS has Fourier components for a range of mo-
menta around the ordering wave vector Q. For different
wave vectors q, peaks in &q(') will occur at different ener-
gies, although the peak dispersion is weak, in agreement with
Refs. 16,15. We also considered systems in which transla-
tional symmetry breaking comes not from charge ordering
but from impurities. We found that the Fourier components
of the LDOS in this case have peaks for a wide range of
wavevectors and strong dispersion of these peaks is consis-
tent with the STM experiments of Refs. 16,17.
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