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The contribution of cortical lesions 
to a composite Mri scale of Disease 
severity in Multiple sclerosis
Fawad Yousuf1,2, Gloria Kim1,2, Shahamat Tauhid1,2, Bonnie I. Glanz1,3, Renxin Chu1,2, 
Subhash Tummala1,2, Brian C. Healy1,3 and Rohit Bakshi1,2,3,4*

1 Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 2 Laboratory for 
Neuroimaging Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 3 Partners Multiple 
Sclerosis Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 4 Department of Radiology, 
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Objective: To test a new version of the Magnetic Resonance Disease Severity Scale 
(v.3 = MRDSS3) for multiple sclerosis (MS), incorporating cortical gray matter lesions 
(CLs) from 3T magnetic resonance imaging (MRI).

Background: MRDSS1 was a cerebral MRI-defined composite scale of MS disease 
severity combining T2 lesion volume (T2LV), the ratio of T1 to T2LV (T1/T2), and whole 
brain atrophy [brain parenchymal fraction (BPF)]. MRDSS2 expanded the scale to include 
cerebral gray matter fraction (GMF) and upper cervical spinal cord area (UCCA). We 
tested the contribution of CLs to the scale (MRDSS3) in modeling the MRI relationship 
to clinical status.

Methods: We studied 51 patients [3 clinically isolated syndrome, 43 relapsing-remitting, 
5 progressive forms, age (mean ± SD) 40.7 ± 9.1  years, Expanded Disability Status 
Scale (EDSS) score 1.6 ± 1.7] and 20 normal controls by high-resolution cerebrospinal 
MRI. CLs required visibility on both fluid-attenuated inversion-recovery (FLAIR) and 
modified driven equilibrium Fourier transform sequences. The MACFIMS battery defined 
cognitively impaired (n = 18) vs. preserved (n = 33) MS subgroups.

results: EDSS significantly correlated with only BPF, UCCA, MRDSS2, and MRDSS3 
(all p < 0.05). After adjusting for depressive symptoms, the cognitively impaired group 
had higher severity of MRI metrics than the cognitively preserved group in regard to 
only BPF, GMF, T1/T2, MRDSS1, and MRDSS2 (all p  <  0.05). CL number was not 
significantly related to EDSS score or cognition status.

conclusion: CLs from 3T MRI did not appear to improve the validity of the MRDSS. 
Further studies employing advanced sequences or higher field strengths may show 
more utility for the incorporation of CLs into composite scales.

Keywords: brain, cortical lesions, multiple sclerosis, cognition, brain atrophy, Mri, physical disability, spinal cord

inTrODUcTiOn

Multiple sclerosis (MS) was historically considered a disease targeting CNS white matter, but a 
growing body of histopathologic and neuroimaging studies have shown involvement of the cerebral 
cortical and deep gray matter tissue (1–6).
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TaBle 1 | Demographic and clinical data.

Multiple sclerosis normal controls

Number (n) 51 20

Age (years)# 40.7 ± 9.1 (21.2–55.2) 44.8 ± 6.6 (30.0–53.1)

Women, n (%)^ 35 (69%) 15 (75%)

Disease category, n (%)

Clinically isolated 
syndrome

3 (5.8%) –

Relapsing-remitting 43 (84.3%) –

Secondary progressive 4 (7.8%) –

Primary progressive 1 (1.9%) –

Disease duration (years)* 8.3 ± 7.0 (0.2–29.0) –

EDSS score 1.6 ± 1.7 (0–8.0) –

T25FW (seconds) 4.9 ± 4.9 (2.9–38.5) –

Receiving disease-modifying 
therapy (% of patients)

78.4% –

MRI variables

BPF 0.83 ± 0.30 (0.71–0.88) 0.85 ± 0.02 (0.82–0.87)

GMF 0.52 ± 0.30 (0.43–0.57) 0.53 ± 0.02 (0.46–0.56)

T2LV (ml) 13.4 ± 11.9 (2.6–49.3) 0.54 ± 0.67 (0–2.8)

T1/T2 0.42 ± 0.20 (0.11–0.82) 0.31 ± 0.28 (0–0.76)

UCCA (mm2) 81.6 ± 9.9 (62.1–103.6) 84.3 ± 10.8 (63.7–109.6)

CLs (count) 2.75 ± 3.0 (0–16) 0

Data are mean ± SD (range) unless otherwise indicated.
EDSS, Expanded Disability Status Scale; T25FW, timed 25-foot walk; BPF, global 
brain parenchymal fraction; GMF, global cerebral gray matter fraction; T2LV, cerebral 
hyperintense lesion volume; T1/T2, intra-subject ratio of total cerebral T1 hypointense 
to T2 hyperintense lesion volume; UCCA, upper cervical spinal cord area; CLs, number 
of cerebral gray matter cortical lesions.
Group comparison: #Age: p = 0.048, two sample t-test; ^Sex: p = 0.77, Fisher’s exact 
test; *Time from first symptoms.
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Magnetic resonance imaging (MRI) is an essential tool in 
clinical MS care including its role in diagnosis and longitudinal 
monitoring to assess lesions and atrophy of the brain and spinal 
cord (7, 8). Composite MRI scales are a proposed platform 
to comprehensively define structural changes related to MS 
(9–15).

For example, we have developed a Magnetic Resonance 
Disease Severity Scale, which, in its first version (MRDSS1) 
(11,  12), included three cerebral measures of MS involvement: 
T2 hyperintense lesion volume (T2LV, a non-specific measure of 
overall lesion burden) (16), the ratio of T1 hypointense lesion 
volume to T2LV (T1/T2, representing the destructive potential 
of lesions) (15), and normalized whole brain volume (represent-
ing whole brain atrophy) (17). MRDSS1 offers more concurrent 
validity and longitudinal sensitivity than the individual measures 
on their own (11, 12). In a second version of the scale (MRDSS2), 
we added measures of cerebral gray matter and spinal cord atro-
phy, which led to a higher correlation with physical disability than 
MRDSS1 (13). MRDSS2 also showed a relationship to cognitive 
dysfunction (13), tested because of the importance of cognition 
impacting on quality of life (18).

Among the range of newly discovered pathologic changes in 
MS gray matter, foci of demyelination in the cortical gray matter 
(cortical lesions, CLs) are of growing interest in representing a 
core aspect of disease pathogenesis (3, 19, 20). CLs occur early in 
the MS disease course and are related to physical disability and 
cognitive impairment (14, 21–32). In this study, we tested the 
validity of a third version of the MRDSS (MRDSS3) incorporat-
ing CLs, compared to the previous versions.

MaTerials anD MeThODs

subjects
Demographic, clinical, and MRI characteristics of all subjects 
are summarized in the Table 1. The recruitment methods and 
inclusion criteria have been described in our previous study (13), 
from which subjects were drawn for this study, after removing 
14 subjects because of technically inadequate MRI scans for CL 
analysis. As a result, this study included 51 patients with MS 
and 20 normal controls. Each patient underwent a neurologic 
examination by an MS specialist, including assessment of 
expanded disability status scale (EDSS) score (33) and timed 
25-foot walk (T25FW) (34). All patients also underwent cogni-
tive testing (see below). Informed consent was obtained from all 
subjects. This study was approved by our hospital’s institutional 
review board.

cognitive assessment
Neuropsychological evaluation, as detailed in our previous studies 
(13, 35), employed the Minimal Assessment of Cognitive func-
tion in MS (MACFIMS) battery (36). Patients were also evaluated 
for depressive symptoms using the Center for Epidemiologic 
Studies Depression (CES-D) scale (37) to adjust for the effect 
of depression on the relationship between MRI and cognition. 
Due to the small sample size of the NC group, regression-based 
norms were acquired using a distinct set of data to control for 

demographic factors (age, sex, education, and ethnicity), and 
T-scores were calculated (13). We considered a T-score of 35 or 
less as an impairment on any of the MACFIMS elements, permit-
ting subdivision of the MS group into either cognitively impaired 
(n = 18) or cognitively preserved (n = 33), based on abnormality 
of two or more elements of the MACFIMS.

Mri acquisition
All subjects underwent MRI on the same scanner (3T Signa; 
General Electric, Milwaukee, WI, USA) using a consistent 
acquisition protocol. Brain and cervical spinal cord MRI was per-
formed with the following relevant parameters: brain: coronal 3D 
modified driven equilibrium Fourier transform (MDEFT) cover-
ing the whole head: TR = 7.9 ms, TE = 3.14 ms, flip angle = 15°, 
slice thickness = 1.6 mm, pixel size = 0.938 × 0.938 mm; axial 
T2-weighted fast fluid-attenuated inversion-recovery (FLAIR): 
TR  =  9000  ms, TE  =  151  ms, TI  =  2250  ms, slice thick-
ness = 2 mm, pixel size = 0.976 × 0.976 mm; spinal cord: axial 
T2-weighted fast spin-echo images of the entire spinal cord: 
TR = 6117 ms, TE = 110 ms, slice thickness = 3 mm (no inter-
slice gaps), pixel size = 0.937 × 0.937 mm. The FLAIR sequence 
was chosen for the depiction of CLs, based on the effectiveness 
shown in our previous study (27). We also paired the FLAIR 
with a high-resolution T1-weighted sequence per our previous 
strategy to assure accuracy of the identification of CLs and limit 
false positives (27). The MDEFT was chosen as the T1-weighted 
sequence, given its effectiveness in gray vs. white structural tissue 
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FigUre 1 | Fluid-attenuated inversion-recovery scan (left) demonstrating a hyperintense lesion (arrow) that is confirmed on the co-registered 
modified driven equilibrium Fourier transform scan (right) to show hypointensity (arrow) and involve the cerebral cortex. This is from a patient with 
relapsing-remitting MS (34-year-old woman, disease duration = 1 year, Expanded Disability Status Scale score = 1.5).
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definition (38) and its high sensitivity to MS lesions, based on our 
previous work (38).

Mri analysis
MRI Scan Processing
To facilitate the analysis of CLs using concurrent review of 
FLAIR and MDEFT scans, the two image sets were brought into 
the same anatomic plane and matched to the same voxel size by 
post-processing of the MDEFT scans to match the FLAIR scans. 
The coronal MDEFT scans were first re-sliced into the axial plane 
using Jim software (v. 7; Xinapse Systems, West Bergholt, UK, 
http://www.xinapse.com). The axial MDEFT scans were then 
co-registered to the native axial FLAIR scans using SPM software 
(v. 12; Wellcome Department of Cognitive Neurology, London, 
UK, http://www.fil.ion.ucl.ac.uk/spm/) (39). All MRI analysis 
was conducted in a blinded fashion without the knowledge of 
demographic and clinical details.

Cortical Lesion Analysis
The number of CLs was assessed in each case by concurrent 
review of the co-registered FLAIR and MDEFT sequences in the 
axial plane in Jim 7. Based on our previously described method 
(27), CLs were defined as appearing both hyperintense on FLAIR 
and hypointense on MDEFT images. The lesion was also required 
to involve at least part of the cerebral cortex on the MDEFT scan. 
Therefore, juxtacortical lesions, which were seated exclusively in 
white matter while abutting the cortex, were excluded. No attempt 
was made to classify CLs into subtypes (40), as this was felt to 
be technically challenging and beyond the scope of the study. 
Assessment was made by a reading panel of two trained observers 
(Fawad Yousuf and Gloria Kim); their findings were confirmed by 
an experienced observer (Shahamat Tauhid). Any disagreements 
were evaluated by a senior observer (Rohit Bakshi). Examples 
of MRI-defined CLs are shown in Figures 1–5. The mean (SD) 

number of CL in the MS patients was 2.75 (3.0). The specific 
numbers of CLs found in each subject were 0 lesions (n = 4); 1 
(n = 17), 2 (n = 11), 3 (n = 9), 4 (n = 2), 5 (n = 1), 6 (n = 4), 9 
(n = 1), 12 (n = 1), and 16 (n = 1).

Reliability Analysis
Ten randomly chosen MS subjects were reanalyzed to determine 
intra-rater and inter-rater reliability for the quantification of CLs. 
Counts of CLs showed high reliability. The mean coefficient of 
variation was 3.67% within the same rater and 6.47% between the 
two raters. Regarding intra-class correlation coefficients (ICCs), 
the intra-rater ICC was 0.98 (model: one-way), and the inter-rater 
ICC was 0.99 (model: two-way absolute agreement). All three 
counts agreed for 7 out of the 10 scans, and all scans with 0 or 1 
CLs were scored the same. Furthermore, the maximum departure 
between was 3 lesions, and this was in the subjects with a large 
number of lesions.

Other MRI Analysis
The MRI analysis methodology used to derive lesion volumes, 
whole brain and gray matter tissue fractions, and upper cervical 
spinal cord area (UCCA) has been described previously (13). 
Briefly, cerebral lesion volumes were based on expert identifica-
tion from FLAIR (T2 hyperintense lesions) and MDEFT (T1 
hypointense lesions) followed by semiautomated contouring. 
Cerebral tissue compartment fractions were derived from 
MDEFT scans using a validated statistical parametric mapping 
pipeline (41) to calculate normalized whole brain parenchymal 
fraction (BPF) and gray matter (GMF) parenchymal fractions. 
A semiautomated contouring tool (42) served as the foundation 
for the calculation of UCCA from C2–C5, normalized to cord 
length, using our highly reliable and validated pipeline on T2 
axial images (43).
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FigUre 3 | Fluid-attenuated inversion-recovery scan (left) demonstrating a hyperintense lesion (arrow) that is confirmed on the co-registered 
modified driven equilibrium Fourier transform scan (right) to show hypointensity (arrow) and involve the cerebral cortex. This is from a patient with 
relapsing-remitting MS (42-year-old woman, disease duration = 10 years, Expanded Disability Status Scale score = 0).

FigUre 2 | Fluid-attenuated inversion-recovery scan (left) demonstrating a hyperintense lesion (arrow) that is confirmed on the co-registered 
modified driven equilibrium Fourier transform scan (right) to show hypointensity (arrow) and involve the cerebral cortex. This is from a patient with 
relapsing-remitting MS (29-year-old woman, disease duration = 11 years, Expanded Disability Status Scale score = 2).
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creation of the MrDss Versions
Previous versions of MRDSS (MRDSS1  
and MRDSS2)
We have separately described the rationale for the MRDSS1 
(11, 12) and MRDSS2 (13). Because of the restricted range of the 
current MS sample, we relied on d-scores to define the MRDSS 
versions. We have separately described the method for calculat-
ing dMRDSS1 and dMRDSS2 in the present sample based on 
d-scores (13). dMRDSS1 was calculated as:

 
dMRDSS1 1 dBPF dlogT2LV dlogit T1/T2 /3 [ ]= + +− ( )×

 

We defined a d-score to be the observed value minus the mean 
of the variable in the healthy controls divided by the SD of the 
variable in the MS sample. For the T2LV and T1/T2, the mean of 
the healthy controls was calculated only in subjects with non-zero 
values for each measure. The variables comprising dMRDSS2 
differed from dMRDSS1 in two ways: (1) substitution of GMF 
for BPF and (2) the addition of spinal cord data. dMRDSS2 was 
calculated as:

 
dMRDSS2 1 dGMF dlogT2LV dlogit T1/T2

1 dUCCA /4
[
 ]
= + +− ( )
−

×
×
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FigUre 4 | Fluid-attenuated inversion-recovery scan (left) demonstrating a hyperintense lesion (arrow) that is confirmed on the co-registered 
modified driven equilibrium Fourier transform scan (right) to show hypointensity (arrow) and involve the cerebral cortex. This is from a patient with 
relapsing-remitting MS (40-year-old woman, disease duration = 4 years, Expanded Disability Status Scale score = 3.5).

FigUre 5 | Fluid-attenuated inversion-recovery scan (left) demonstrating a hyperintense lesion (arrow) that is confirmed on the co-registered 
modified driven equilibrium Fourier transform scan (right) to show hypointensity (arrow) and involve the cerebral cortex. This is from a patient with 
relapsing-remitting MS (44-year-old woman, disease duration = 12 years, Expanded Disability Status Scale score = 3).
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MRDSS3
The variables comprising dMRDSS3 differed from dMRDSS2 only 
by the addition of counts of CLs. dMRDSS3 was calculated as:

 

dMRDSS3 1 dGMF dlogT2LV dlogit T1/T2
1 dUCCA+dCL /5

[
]

= + +− ( )
−

×
×  

The following formula was used to calculate the d-score for CLs:

 dCL CL number 0 /SDMS CL number= ( ) ( )−  

statistics
Demographic data between groups were compared by using a two 
sample t-test for continuous outcomes and Fisher’s exact test for 
dichotomous outcomes. Correlations between MRI and neuro-
logic disability in the MS group were assessed using Spearman’s 
rank correlation coefficients. MRI metrics in the cognition 
groups were compared by two sample t-tests; linear regression 
was used to adjust for depression (CES-D scores) in these MRI-
cognitive comparisons. Correlations among the MRI measures 
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TaBle 4 | Mri and neurologic disability correlations in patients with 
relapsing-remitting or secondary progressive multiple sclerosis (n = 47).

expanded Disability status scale

Mri variable spearman’s rho p-value

BPF −0.352 0.02*
GMF −0.254 0.09
T2LV 0.057 0.70
T1/T2 0.129 0.39
UCCA −0.231 0.12
CLs −0.053 0.72
dMRDSS1 (T2LV, T1/T2, BPF) 0.275 0.06
dMRDSS2 (T2LV, T1/T2, GMF, UCCA) 0.350 0.02*
dMRDSS3 (T2LV, T1/T2, GMF, CL, UCCA) 0.321 0.03*

BPF, global brain parenchymal fraction; GMF, global cerebral gray matter fraction; 
T2LV, global cerebral hyperintense lesion volume; T1/T2, intra-subject ratio of total 
cerebral T1 hypointense to T2 hyperintense lesion volume; UCCA, upper cervical spinal 
cord area; CLs, number of cerebral gray matter cortical lesions; MRDSS, Magnetic 
Resonance Disease Severity Scale; MRDSS1, version 1 of the MRDSS; MRDSS2, 
version 2 of the MRDSS; MRDSS3, (new) version 3 of the MRDSS3. Only MRDSS3 
includes CLs.
*p < 0.05.

TaBle 3 | Mri findings vs. cognitive status in the entire multiple sclerosis group (n = 51).

Mri variable(s) cognitively impaireda  
(n = 18)

cognitively preserveda  
(n = 33)

p-value Depression-adjusted 
p-value

dBPF −0.986 ± 1.161 −0.244 ± 0.804 0.02* 0.02*
dGMF −0.748 ± 1.193 −0.039 ± 0.790 0.03* 0.03*
dT2LV 4.204 ± 1.068 3.665 ± 0.922 0.08 0.08
dT1/T2 0.604 ± 1.114 −0.087 ± 0.854 0.03* 0.03*
dUCCA 0.02 ± 0.976 −0.111 ± 1.025 0.65 0.63
dCL 0.824 ± 0.557 0.981 ± 1.178 0.52 0.52
dMRDSS1 (T2LV, T1/T2, BPF) 1.931 ± 0.868 1.274 ± 0.565 0.008* 0.004*
dMRDSS2 (T2LV, T1/T2, GMF, UCCA) 1.384 ± 0.648 0.932 ± 0.411 0.01* 0.008*
dMRDSS3 (T2LV, T1/T2, GMF, UCCA, CL) 1.272 ± 0.551 0.942 ± 0.482 0.04* 0.06

aValues are presented as mean ± SD; d-scores were calculated by comparing patients with normal controls (see Materials and Methods); BPF, brain parenchymal fraction; GMF, 
global cerebral gray matter fraction; T2LV, global cerebral T2 hyperintense lesion volume; T1/T2, the ratio of the global cerebral T1 hypointense lesion volume to T2LV in each 
subject; UCCA, upper cervical spinal cord area; CL, number of cerebral cortical gray matter lesions; dMRDSS1, first version of the Magnetic Resonance Disease Severity Scale; 
dMRDSS2, second version of MRDSS; dMRDSS3, third (new) version of MRDSS.
*p < 0.05.

TaBle 2 | Mri and neurologic disability correlations in the entire multiple 
sclerosis group (n = 51).

expanded Disability status scale

Mri variable spearman’s rho p-value

BPF −0.306 0.03*
GMF −0.203 0.15
T2LV 0.001 1.00
T1/T2 0.189 0.18
UCCA −0.283 0.04*
CLs −0.058 0.68
dMRDSS1(T2LV, T1/T2, BPF) 0.257 0.07
dMRDSS2 (T2LV, T1/T2, GMF, UCCA) 0.339 0.01*
dMRDSS3 (T2LV, T1/T2, GMF, CL, UCCA) 0.304 0.03*

BPF, global brain parenchymal fraction; GMF, global cerebral gray matter fraction; 
T2LV, global cerebral hyperintense lesion volume; T1/T2, intra-subject ratio of total 
cerebral T1 hypointense to T2 hyperintense lesion volume; UCCA, upper cervical spinal 
cord area; CLs, number of cerebral gray matter cortical lesions; MRDSS, Magnetic 
Resonance Disease Severity Scale; MRDSS1, version 1 of the MRDSS; MRDSS2, 
version 2 of the MRDSS; MRDSS3, (new) version 3 of the MRDSS3. Only MRDSS3 
includes CLs.
*p < 0.05.
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were assessed using Spearman’s rank  correlation coefficients. 
A p-value less than 0.05 was considered significant.

resUlTs

correlation between Mri  
and Disability in the Ms group
We tested the relationship between physical disability (EDSS 
score) and the three versions of MRDSS along with all the available 
component MRI measures of brain and spinal cord involvement, 
as shown in Tables  2 and 4. EDSS showed significant weak- 
to-moderate correlations, to a similar degree, with BPF, UCCA, 
dMRDSS2, and dMRDSS3 (all p < 0.05).

Mri Findings vs. cognitive  
status in the Ms group
The individual MRI measures as well as the three versions of the 
MRDSS were compared between the cognitively impaired and 

the cognitively preserved MS subjects as shown in Tables 3 and 
5. BPF, GMF, T1/T2, dMRDSS1, and dMRDSS2 showed higher 
severity in the cognitively impaired group than the cognitively 
preserved group both before and after adjusting for depressive 
symptoms (all p < 0.05). dMRDSS3 also showed more severity 
in the cognitively impaired group as compared to the cognitively 
preserved before adjusting for depression (p = 0.04); however, the 
significance was lost after adjustment for depression.

Ms subgroup analysis
Given the heterogeneous composition of the MS group with 
regard to clinical course/disease subtype, we also assessed 
whether the main findings would change with elimination of 
the four patients with either clinically isolated demyelinating 
syndromes or primary progressive MS. In the remaining 47 
patients (who had either relapsing-remitting or secondary 
progressive MS), the above results remained similar to the full 
cohort (Tables 4 and 5).
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TaBle 5 | Mri findings vs. cognitive status in patients with relapsing-remitting or secondary progressive multiple sclerosis (n = 47).

Mri variable(s) cognitively impaireda  
(n = 17)

cognitively preserveda  
(n = 30)

p-value Depression-adjusted 
p-value

dBPF −1.012 ± 1.191 −0.224 ± 0.831 0.02* 0.02*
dGMF −0.771 ± 1.225 −0.037 ± 0.815 0.04* 0.04*
dT2LV 4.231 ± 1.095 3.636 ± 0.932 0.04 0.06
dT1/T2 0.577 ± 1.142 −0.095 ± 0.882 0.04* 0.05
dUCCA 0.111 ± 0.924 −0.115 ± 1.070 0.45 0.45
dCL 0.793 ± 0.558 1.023 ± 1.222 0.38 0.40
dMRDSS1 (T2LV, T1/T2, BPF) 1.940 ± 0.894 1.255 ± 0.586 0.009* 0.006*
dMRDSS2 (T2LV, T1/T2, GMF, UCCA) 1.367 ± 0.663 0.923 ± 0.429 0.02* 0.02*
dMRDSS3 (T2LV, T1/T2, GMF, UCCA, CL) 1.252 ± 0.561 0.943 ± 0.504 0.07 0.11

aValues are presented as mean ± SD; d-scores were calculated by comparing patients with normal controls (see Materials and Methods); BPF, brain parenchymal fraction; GMF, 
global cerebral gray matter fraction; T2LV, global cerebral T2 hyperintense lesion volume; T1/T2, the ratio of the global cerebral T1 hypointense lesion volume to T2LV in each 
subject; UCCA, upper cervical spinal cord area; CL, number of cerebral cortical gray matter lesions; dMRDSS1, first version of the Magnetic Resonance Disease Severity Scale; 
dMRDSS2, second version of MRDSS; dMRDSS3, third (new) version of MRDSS.
*p < 0.05.

TaBle 6 | Mri to Mri correlations in the entire multiple sclerosis group (n = 51).

BPF gMF T2lV T1/T2 Ucca

GMF 0.795 (< 0.001)*
T2 −0.236 (0.095) −0.149 (0.30)
T1/T2 −0.236 (0.096) −0.088 (0.23) 0.299 (0.033)*
UCCA 0.046 (0.75) −0.171 (0.23) 0.259 (0.066) 0.075 (0.60)
CL −0.096 (0.50) −0.086 (0.55) 0.136 (0.34) 0.076 (0.60) −0.022 (0.88)

Estimated Spearman correlation coefficients (p-values) comparing each of the component MRI measures in the MS group; BPF, brain parenchymal fraction; GMF, global cerebral 
gray matter fraction; T2LV, global cerebral T2 hyperintense lesion volume; T1/T2, the ratio of the global cerebral T1 hypointense lesion volume to T2LV in each subject; CL, number 
of cerebral cortical gray matter lesions.
*p < 0.05.
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Mri to Mri correlations
Individual MRI measures were compared with each other for cor-
relations (Table 6). Significant relationships were shown between 
GMF and BPF (r =  0.795, p <  0.001) and between T1/T2 and 
T2LV (r = 0.299, p = 0.033). CL count was not correlated with 
any of the other MRI measures (all p > 0.05).

DiscUssiOn

The purpose of our study was to test the role of CLs in adding 
validity to the MRDSS in defining a relationship between MRI 
and clinical status in patients with MS. As measures of validity, we 
assessed physical disability and cognitive impairment. The main 
findings were that the new version of MRDSS with the addition 
of CLs (MRDSS3) did not increase the strength of relationships 
between MRI and clinical status vs. previous versions of MRDSS, 
in this cross-sectional study.

Our findings were most likely driven by the fact that CLs on 
their own were not related to EDSS score or cognitive status. 
There are two previous studies that failed to show a relationship 
between CL count and EDSS score (44, 45). Whereas, studies 
that have assessed CL volume have shown closer relationships 
to EDSS score (22–25, 27). Similarly, previous studies have 
shown an inconsistent relationship between CL count and 
cognitive dysfunction, with some studies showing a relationship 
(14, 25–31, 45), while another study failed to do so (46).

In agreement with our previous study (13), our results 
emphasized the association between brain/spinal cord atrophy 
and physical disability and the link between brain atrophy or 
the destructive potential of brain lesions (T1/T2) and cognitive 
status. Brain atrophy has long been known to link well to both 
cognitive impairment and physical disability in MS (47–56). 
Similarly, spinal cord atrophy has been closely linked to physical 
disability in patients with MS (13, 42, 57–61).

Furthermore, the cerebral ratio of T1 hypointense to T2 hyper-
intense lesion load (T1/T2) showed a link to cognitive status in 
the present study. The persistence of T1 hypointense lesions in 
patients with MS has long been known to indicate severe destruc-
tive pathology corresponding to irreversible demyelination and 
axonal loss (62, 63). Also, the extent of chronic T1 hypointense 
lesions in the brain is well correlated with MS related disability 
(64), whereas an analogous marker of severe CLs is not readily 
available. However, this is not to diminish the contribution of 
gray matter involvement to cognition. It is important to note that 
gray matter atrophy (as assessed by GMF) also linked to cognitive 
status to a similar extent vs. T1/T2. These results point to the 
components of both white matter and gray matter pathology in 
regard to cognitive dysfunction in patients with MS, in keeping 
with previous observations (65, 66).

We noted some interesting results in the assessment of cor-
relation of the MRI metrics to each other in the MS group. The 
two cerebral atrophy measures (BPF, GMF) correlated with 
each other as did the two cerebral lesion measures (T2LV vs. 
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T1/T2). However, spinal cord volume, as estimated by UCCA, 
did not correlate with any measures of brain involvement. This 
observation adds to a growing body of evidence suggesting the 
topographic independence of these two sites of disease activity 
(59) and the resulting complementary information obtained by 
considering both brain and spinal cord MRI metrics (13, 67). 
This divergence is also consistent with previous work showing 
genetic susceptibility, or immune signatures may confer a specific 
risk for spinal cord lesions (68, 69). Another interesting finding 
was the lack of correlation between cerebral lesions and cerebral 
measures of atrophy. This is a well-known phenomenon when 
analyzing MS disease course, which may relate to a divergence 
between inflammatory and neurodegenerative features of the 
disease in a subset of patients (70). Finally, we also noted a lack of 
correlation between CLs and measures of cerebral white matter 
lesions (T2LV or T1/T2). Our findings are in agreement with a 
previous study (23). When found to be significant in other previ-
ous studies, such correlations have remained weak to moderate 
(21, 22, 24, 25, 27, 28, 30, 44).

However, our study is not without limitations, and the findings 
should be considered preliminary. First, we would highlight the 
fact that the average CL count was low in our study as compared to 
previous studies (21–28, 30, 44, 46, 71). This may relate to several 
factors inherent in the characteristics of the cohort or technical 
issues. For example, our patients were mildly disabled, on aver-
age, and largely receiving disease-modifying therapy. Our sample 
was dominated by relapsing-remitting, rather than progressive, 
forms of the disease. Thus, the degree of cortical involvement 
may have been limited. The MRI acquisition relied on two types 
of routine pulse sequences at 3T, without advanced techniques, 
such as double inversion-recovery (45, 72) and phase-sensitive 

inversion-recovery (73–75). However, our techniques fell within 
a clinically feasible high-resolution routine, which should have 
some value for assessing CLs. We also did not perform 7T field 
strength MRI to boost the sensitivity in the detection of CLs (25, 
76–79). Other strategies, such as increasing the sample size, add-
ing CL volume assessments (22–25, 27, 30), and evaluating CL 
subtypes (31), may show more utility for improving the validity of 
the measurement of CLs. It is important to therefore conclude that 
future studies are necessary to confirm and extend our results.
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