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ABSTRACT
Maternal environmental factors can impact on the phenotype of the offspring via the induction of
epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal
genetic variants may influence the offspring’s phenotype indirectly via epigenetic modification, despite
the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout
mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal
eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring
born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice.
Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to
steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct
genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also,
hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition,
male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as
partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission
of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This
finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the
offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic
changes can persist into adulthood.

Abbreviations: CML, carboxmethyllysin; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide syn-
thase; IUGR, intrauterine growth retardation; LC-MS-MS, liquid chromatography tandem mass spectrometry; MeDIP,
methylated DNA immunoprecipitation; miRNA, microRNA; wt, wild type.
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Introduction

The ‘fetal origin’ hypothesis proposes that adulthood cardio-
vascular and metabolic diseases originate through adaptation
of the fetus to environmental conditions in early life.1 It was
proposed that an event in a critical early period of life leads
to sustained alterations of organ structure and function in
response to environmental factors. Such events may result in
cardiovascular and metabolic diseases in later life. The classi-
cal event resulting in fetal programming is maternal undernu-
trition during pregnancy. This was first recognized in
epidemiological studies and later confirmed in animal

experiments.1-4 Meanwhile, several other mechanisms caused
by environmental conditions in early life leading to lifelong
functional and structural alterations have been described,
including glucocorticoid exposure of the fetus due to 11b-
hydroxysteroid dehydrogenase deficiency of the placenta5,6 or
a high protein diet during pregnancy.7 Another mechanism
responsible for programming events during intrauterine life
might be related to maternal genes affecting the fetal pheno-
type independently of the fetal DNA-based genome. The first
example is described for Drosophila wimp mutation, influenc-
ing the offspring’s lethal phenotype, even when the mutation
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is not inherited.8 Our group was the first to translate this to
mammals/humans by demonstrating that genetic variation of
a maternal gene most likely involved in the control of blood
supply to the uterus was associated with a substantial reduc-
tion of offspring birth weight without being actually transmit-
ted to the offspring.9,10 Other independent association studies
in humans likewise suggest that certain maternal genes may
affect the fetal phenotype even without transmission of that
particular gene to the fetus.11,12 In other words, a gene of a
human individual may influence the physiology of another
subject without being present in this particular individual.13

Plausibly, interaction of one organism with the metabolism
of another of the same species is seen in mammals mainly
during pregnancy, where the placenta serves as interface
between both individuals.13

To prove that maternal genes indeed can affect the off-
spring’s phenotype, as suggested by association studies (see
above), we bred female heterozygous endothelial nitric oxide
synthase (eNOS) knockout mice with male wild type (wt)
mice and compared their wild type offspring with offspring
from wild type mice. We have chosen eNOS knockout mice
to test this hypothesis, because eNOS—like the genetic varia-
tions analyzed in our initial association study in
humans9,10—plays a pivotal role in the control of vascular
and also placental function,14-17 and heterozygous eNOS
deficiency has been shown to create an unfavorable intra-
uterine environment influencing the vascular phenotype in
offspring, independently of its genetic transmission.18 We
reasoned that the resultant endothelial and vascular dysfunc-
tion could also impact central parameters of metabolism as
reflected by fatty liver disease. An illustration of the underly-
ing hypothesis of this study is provided in Fig. 1.

Results

Phenotype of wt mice born to heterozygous eNOS
knockout mothers and wt fathers

First, we verified that offspring born to heterozygous eNOS
knockout (eNOSC/¡) mothers and wt fathers were wild type
with respect to eNOS expression. Gene and protein expression
of eNOS and inducible nitric oxide synthase (iNOS) in liver tis-
sue were not altered in male and female wt animals born to
eNOSC/¡ mothers (Fig. 2 A, B; Supplementary Table S1).

Birth Weight, Growth, and Organ Weight
Male wt mice born to eNOSC/¡ mothers and wt fathers had a
significantly lower birth weight when compared to wt male
mice born to wt mothers and wt fathers (1.27 § 0.05 g vs.
1.47 § 0.05 g, P D 0.004), whereas birth weight of female
offspring did not differ significantly [1.26 § 0.05 g (wt father,
eNOSC/¡ mother) vs. 1.35 § 0.04 g (wt father, wt mother);
Supplementary Fig. S1].

Body weight of male offspring of wt fathers and heterozy-
gous eNOS knockout mothers remained significantly lower
during the first days of life (Supplementary Fig. S2). Thereaf-
ter, no significant differences in body weight were noticed
(Supplementary Fig. S3). At study end at week 24, male mice
born to eNOSC/¡ mothers and wt fathers had a significantly

lower body weight when compared to male offspring born to
wt mothers and fathers (Supplementary Table S2). Female
offspring born to eNOSC/¡ mothers and wt fathers showed
significantly higher body weights than controls starting on
day 12 after birth and remaining elevated throughout most
of life thereafter (Supplementary Figs. S4 and S5, Supple-
mentary Table S2). Heart weight was significantly higher in
female offspring born to eNOSC/¡ mothers and wt fathers
compared to female wt offspring born to wt mothers and
fathers (Supplementary Table S2). Relative lung and kidney
weights did not differ significantly (Supplementary
Table S2). Relative liver weight was not different in female
offspring born to eNOSC/¡ mothers and wt fathers as com-
pared to the control group (Table 1).

Blood pressure, heart rate, GFR, and fasting glucose
Blood pressure and heart rate were similar in all groups. More-
over, glomerular filtration rate (GFR) at study end did not dif-
fer significantly between groups. Fasting glucose was
numerically lower in wt mice born to heterozygous eNOS
knockout mothers. This effect was significant, however, only in
week 21 (Supplementary Table S2).

Characterization of the liver phenotype
First we assessed the liver morphology. Diameter of liver
lobules, liver glycogen concentration, and the connective tissue
content were not affected by maternal eNOS genotype (Table 1).
However, fat content and density of lipid droplets were signifi-
cantly higher in female wt mice born to eNOSC/¡ mothers and
wt fathers compared to wt mice born to wt mothers and wt
fathers (P < 0.001, see Table 1 and Fig. 3A-C). Examination of
lipid droplet size showed a significant increase of droplets in
female wt offspring of wt fathers and eNOSC/¡ mothers, but a
non-significant decrease in male animals (Fig. 3D, E). The
mean area of lipid droplets in these animals was 5.2 mm2, and
5.6% of droplets were bigger than 25 mm2. These numbers
were significantly lower in wt female offspring from wt fathers
and wt mothers, with 2.1 mm2 and 0.6%, respectively. None of
the groups showed any significant lobular inflammation or an
increase in the number of CD68-positive cells (macrophages)
(Table 1).

To extend characterization of the liver phenotype, selected
marker proteins related to oxidative stress and hyperglycemia
were analyzed by Western blot. Female but not male wt off-
spring with eNOSC/¡ mothers and wt fathers had a significantly
higher hepatic amount of carboxymethyllysine (CML) (P <

0.01, Fig. 4A). Nitrotyrosine-modified proteins were enhanced
in female offspring from eNOSC/¡ mother, but failed to attain
statistical significance (Fig. 4B).

Moreover, selected substrates of glucose metabolism were
analyzed in liver tissue by quantitative LC-MS-MS technol-
ogy. Fumarate concentration was reduced in male and female
wt offspring born to eNOSC/¡ mothers and wt fathers. Male
offspring showed significantly lower concentrations of glu-
cose 6-phosphate and fructose 6-phosphate, whereas hepatic
fructose 1,6-bisphosphate content was reduced in female
mice (Fig. 4 C-F, Supplementary Table S3). Analysis of liver
amino acid concentrations revealed that male but not female
wt offspring born to eNOSC/¡ mothers and wt fathers had
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significantly lower concentration of several, mainly essential
amino acids when compared to offspring born to wt mothers
and wt fathers (Table 2).

Mechanisms of phenotypic alteration in wt mice born to
eNOSC/¡ mothers

Characterization of the mouse transcriptome
Genome-wide microarray analyses were performed for pooled
liver RNA samples of randomly selected mice (n D 30). This

approach was complemented by independent RT-PCR based
investigation of mRNA transcripts and miRNAs using samples
of the total mouse cohort.

Microarray analysis revealed 11,628 and 12,047 genes dif-
ferentially expressed between male and female offspring of
eNOSC/¡ and wt mothers, respectively (Fig. 5 A, B). Six
genes showed P-values � 0.001 in our analyses. Of these, 5
genes (Amy2a5, Clps, Cpa1, Ctrbl, and 2210010C04 Riken
cDNA/trypsinogen 7) showed higher expression in female off-
spring from eNOSC/¡ mothers and wt fathers than in female

Figure 1. The advanced fetal programming hypothesis. The ‘fetal origin’ hypothesis proposes that adulthood cardiovascular, metabolic, and mental diseases originate
through adaptation of the fetus to environmental conditions in early life. We proposed that maternal genetic defects might impact on the offspring phenotype via geno-
mic-epigenomic interactions, without transmittance of the defective gene. Such interactions, here exemplified by the eNOS gene, could be mediated during 3 phases of
reproduction (A-C). (A) Maternal gene dysfunction can alter ovary function: eNOS mediates physiological ovarian functions, such as blood flow and angiogenesis and is
involved in oocyte meiotic maturation.49,50 (B) Maternal gene dysfunction can alter placental and uterine function: eNOS plays a pivotal role in the control of placental
function, and eNOS deficiency is associated with an unfavorable intrauterine environment.16,17 (C) Maternal gene dysfunction may alter weaning behavior and lactation
performance: eNOS is involved in behavioral processes and elicits regulatory functions in lactation.51,52 Alterations in maternal eNOS function thus may affect the offspring
in the early postnatal phase.51,52 (D) The impact of maternal gene dysfunction on embryonal/fetal/neonatal environmental factors listed in A-C may trigger stable, long
lasting epigenetic adaptation in the offspring.53-55 Epigenetic mechanisms encompass DNA methylation, non-coding RNAs, and chromatin modifications.56 (E) Epigenetic
modification, specifically DNA methylation and non-coding RNAs, can result in permanently altered gene expression in the offspring.34 On a global scale, both DNA hyper-
methylation and DNA hypomethylation may cause genomic instability.57,58 (F) Altered gene expression and genomic instability triggered by epigenetic maladaptation can
impact on the offspring phenotype by permanently altering organ structure and function.59,60
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offspring from wt mothers and wt fathers, with fold changes
(FC) ranging from 2.54 to 4. In addition, Csad showed lower
expression (FC D 0.4) in male offspring from eNOSC/¡

mothers and wt fathers than in male offspring from wt
mothers and wt fathers. Next, we performed gene set enrich-
ment analyses (GSEA) based on Gene Ontology (GO; gen-
eontology.org) terms. Similar to the single gene analyses,
more significantly enriched gene sets were detected for
female compared to male offspring, where terms with per-
mutation P � 0.0001 were only revealed for female mice
(Supplementary Files 1 and 2). In particular, considering the
biological process domain of GO the top enriched GO terms
(permutation P � 0.0001) comprised the term ‘metabolic
process’ and its child nodes (Supplementary File 3).

Based on these data, we performed a hypothesis driven
approach by analyzing genes potentially involved in liver metab-
olism and the pathogenesis of fatty liver disease (Supplementary
Table S1), since this was the key phenotype in female offspring
born to eNOSC/¡ mothers. Male wt offspring of eNOSC/¡ moth-
ers and wt fathers expressed significant lower levels of PPARg
and Csad when compared to offspring born to wt mothers and

wt fathers. The expression levels of Igf2 and Igf-binding protein
2 (Igf-BP2) were significantly increased. Female wt offspring
from eNOSC/¡ mothers and wt fathers expressed significantly
lower levels of Srebf1c and significantly higher levels of Fitm1
and Cdkn1a gene compared to offspring born to wt mothers
and wt fathers (Fig. 6 A, B, Supplementary Table S1).

Liver fat ratio correlated significantly with Fitm1 expression
(Fig. 6C) in female (correlation coefficient D 0.520) and male
(correlation coefficient D 0.476) mice.

Finally, we analyzed the expression levels of selected miRNA
implicated in liver metabolism and obesity. For instance, miR-
122 and miR-33 regulate hepatic lipid metabolism by influenc-
ing the expression of several genes implicated in fatty acid
synthesis or oxidation.19 Male, but not female, wt offspring
from eNOSC/¡ mothers and wt fathers expressed significantly
more miR-370 (P < 0.05, Fig. 7A,B) when compared to wt
offspring born to wt mothers and wt fathers.

However, some of the microarray data could not be con-
firmed by qRT-PCR [Supplementary Table S4; although the
same transcripts were quantified (Supplementary Table S5)] in
the total mouse cohort. These discrepancies were most likely

Figure 2. Hepatic eNOS and iNOS protein content in wt offspring. Hepatic eNOS (A) and iNOS (B) protein content analyzed by Western blot (empty bar, wt father / wt
mother; gray bar, wt father / eNOSC/¡ mother ).

Table 1. Offspring liver weight, morphology, and glycogen content.

Offspring of both sexes Male offspring Female offspring

WT (F:WT; M:WT) WT (F:WT; M:eNOS KO) WT (F:WT; M:WT) WT (F:WT; M: eNOS KO) WT (F:WT; M:WT) WT (F:WT; M: eNOS KO)

N 35-48 30-35 21-22 15-18 24-27 17-18
Absolute Liver Weight (g) 1.19 § 0.05 1.20 § 0.04 1.56§ 0.05 1.40 § 0.04 0.90 § 0.02 1.00 § 0.03$

Relative Liver Weight (% of
body weight)

4.31§ 0.06 4.41 § 0.06 4.56§ 0.07 4.59 § 0.10 4.11 § 0.08 4.23§ 0.06

Lobular Dimension (mm) 0.07 § 0.001 0.07 § 0.001 0.07 § 0.001 0.07 § 0.001 0.07 § 0.002 0.07§ 0.001
Connective Tissue Content (%

area)
0.16§ 0.02 0.12 § 0.02 0.12§ 0.03 0.12 § 0.02 0.18 § 0.03 0.12§ 0.03

Glycogen (mg/g liver) 14.09 § 1.02 16.44 § 1.54 13.31 § 1.46 17.32 § 1.83 14.93 § 1.44 15.67 § 2.54
Fat Content (% area) 2.06 § 0.26 4.33 § 0.82 1.85§ 0.36 1.23 § 0.29 2.25 § 0.37 6.92 § 1.18 C

Lipid Droplet Density
(droplets/mm2)

2701.0 § 411.2 5014.6 § 732.9 $ 2537.7 § 779.2 1699.3 § 416.8 2850.8 § 352.1 7777.3 § 864.1 C

N 13 15 7 7 6 8
Lobular Inflammation (score) 0.31 § 0.13 0.53 § 0.13 0.29§ 0.18 0.57 § 0.20 0.33 § 0.21 0.50§ 0.19
Number of CD68-Positive

Immune Cells (score)
0.85§ 0.10 0.87 § 0.09 0.86§ 0.14 0.86 § 0.14 0.83 § 0.17 0.88§ 0.13

F: Father, M: Mother, WT: wild type, eNOS KO: heterozygous eNOS knockout, $ P< 0.05 vs. WT (F:WT;M:WT), # P< 0.01 vs. WT (F:WT;M:WT), C P< 0.001 vs. WT (F:WT;M:WT)
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caused by gene expression outliers in single animals, distorting
the signals in the pooled samples used for microarrays.

Characterization of epigenetic factors
To investigate if epigenetic mechanisms contributed to phe-
notypic differences, global DNA methylation levels were
determined in liver tissue by LC-MS-MS analysis. Signifi-
cantly higher content of 5-methylcytosine was found in
female and male wt offspring born to eNOSC/¡ mothers
and wt fathers (Fig. 8A). Correlation of liver fat content
with DNA methylation in female and male (Fig. 8B) wt off-
spring revealed a significant correlation in female mice (cor-
relation coefficient D 0.533), whereas in male mice there
was no correlation (correlation coefficient D ¡0.158). The
expression of the Fitm1 gene correlated significantly with
total liver DNA methylation in female (correlation coeffi-
cient D 0.369) but not in male offspring (correlation coeffi-
cient D ¡0.047) (Fig. 8C). Next, we performed specific
DNA methylation of the candidate gene Fitm1 by MeDIP
analysis. DNA methylation revealed significant lower meth-
ylation of Fitm1 gene exon 1 in female wt offspring of
eNOSC/¡ mother and wt father (P < 0.05, Fig. 9) compared
to wt offspring born to wt mothers. Moreover, DNA meth-
ylation of a CpG island of another candidate gene (Cdkn1a)

was significantly increased in female wt offspring from
eNOSC/¡ mothers (P < 0.01, Fig. 10).

Discussion

This study was designed to test the advanced fetal programming
hypothesis (Fig. 1) stating that maternal genes may affect the
fetal phenotype independently of transmission of the gene to
the fetus.9-12 To test this hypothesis, we bred female heterozy-
gous eNOS knockout mice with male wild type mice and com-
pared the phenotype of their wild type offspring to the
phenotype of offspring with wild type parents. We have chosen
eNOS knockout mice to test this hypothesis because eNOS plays
a pivotal role in placental function.14-17 The unfavorable intra-
uterine environment due to reduced maternal eNOS expression
has been shown to induce endothelial dysfunction in the off-
spring, independently of genetic transmission.18 Therefore, we
performed an initial screening to identify organs that are
affected by the advanced fetal programming process. This analy-
sis revealed that the liver is, in particular, affected by maternal
heterozygous eNOS deficiency in female wild type offspring,
whereas other organs, such as kidney and heart, seem to be less
affected. In the next step, we performed a detailed analysis using
morphological and biochemical techniques as well as liver

Figure 3. Lipid deposition in wt offspring liver tissue. (A) Liver sections of wt male and female offspring from wt father and wt mother (wt/wt) and wt father and hetero-
zygous eNOS knockout mother (wt/eNOSC/¡), determination of lipid content (B) and lipid droplet density (C) in liver tissue and size distributions of lipid droplets for
female (D) and male (E) wt offspring (empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother; C P < 0.001 vs. wt father / wt mother).
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metabolomics to get a thorough understanding of the resulting
liver phenotype and underlying molecular mechanisms.

Our study revealed that female offspring born to eNOSC/¡

deficient female mice developed an increased absolute liver
weight, liver fat accumulation, and reduced liver concentrations
of fructose 1,6-bisphosphate and fumarate (Figs. 3 and 4). Male
offspring born to eNOSC/¡ female mice had a reduced birth
weight (Table 1). Liver concentrations of glucose 6-phosphate,
fructose 6-phosphate, and fumarate were reduced (Fig. 4). The
concentration of various amino acids (for example, tryptophan,
valine, leucine, isoleucine, threonine, phenylalanine) was like-
wise reduced in the liver of male mice born to female eNOSC/¡

mice (Table 2). In contrast to female offspring, liver fat accu-
mulation was not affected in male offspring (Fig. 3).

The amount of methylated cytosine as percentage of total
cytosine was significantly increased in wild type offspring born
to female heterozygous eNOS knockout mice (Fig. 8A). Total
liver DNA methylation was significantly related to liver fat
accumulation in female offspring—the main phenotypic find-
ing in our study (Fig. 8B).

Nitric oxide (NO) is involved in the local regulation of vas-
cular resistance, promotes angiogenesis, and is a potential regu-
lator of placental steroid biosynthesis and glucose uptake.14

Therefore, deficiency of eNOS is related to the development of
intrauterine growth retardation (IUGR).20 It may promote the
development of hypoxia due to reduced uterine blood flow and
placental oxygenation in pregnant mice, thereby restricting
nutrient transport capacity and fetal growth.15-17 This

Figure 4. Effects of maternal eNOS deficiency on hepatic protein content and metabolomics in wt offspring. Hepatic content of (A) carboxymethyllysine (CML) and
(B) nitrotyrosine (NT) modified proteins (relative expression) as well as (C) fumarate, (D) glucose 6-phosphate, (E) fructose 6-phosphate, and (F) fructose 1,6-
bisphosphate concentration (nmol/mg protein) (empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother; # P < 0.01 vs. wt father / wt mother; C
P < 0.001 vs. wt father / wt mother).
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Table 2. Amino acid concentration in offspring liver tissue.

Offspring of both sexes Male offspring Female offspring

WT (F:WT; M:WT) WT (F:WT; M:eNOS KO) WT (F:WT; M:WT) WT (F:WT; M:eNOS KO) WT (F:WT; M:WT) WT (F:WT; M:eNOS KO)

N 48-50 30-36 21-22 15-18 27-28 15-18
Alanine 38.26 § 1.42 37.37 § 1.70 35.89 § 1.63 34.57 § 2.72 40.12 § 2.14 40.18 § 1.88
Glycine 19.97 § 0.45 18.73 § 0.63 21.02 § 0.64 19.25 § 0.81 19.15 § 0.59 18.12 § 0.96
Urea 18.77 § 0.64 18.23 § 0.69 19.28 § 1.05 18.93 § 0.81 18.37 § 0.79 17.53 § 1.13
Valine 3.50 § 0.11 3.07§ 0.12 C 3.62 § 0.13 2.84 § 0.15 C 3.41 § 0.17 3.31§ 0.18
Leucine 4.24 § 0.14 3.65§ 0.19 C 4.57 § 0.20 3.26 § 0.20 C 3.97 § 0.17 4.03§ 0.29
Isoleucine 1.90 § 0.07 1.59§ 0.07 C 2.02 § 0.08 1.44 § 0.08 C 1.80 § 0.10 1.74§ 0.10
Proline 2.92 § 0.16 2.70§ 0.16 2.72 § 0.15 2.54 § 0.24 3.07 § 0.27 2.86§ 0.22
Methionine 1.31 § 0.04 1.14§ 0.06 # 1.36 § 0.07 0.99 § 0.06 C 1.28 § 0.05 1.29§ 0.09
Serine 4.89 § 0.19 4.42§ 0.20 $ 5.00 § 0.26 4.14 § 0.25 $ 4.81 § 0.27 4.72§ 0.30
Threonine 3.11 § 0.08 2.69§ 0.13 C 3.31 § 0.13 2.40 § 0.14 C 2.96 § 0.09 2.98§ 0.19
Phenylalanine 1.70 § 0.05 1.45§ 0.08 C 1.82 § 0.09 1.26 § 0.08 C 1.61 § 0.06 1.64§ 0.13
Aspartic acid 3.16 § 0.19 2.92§ 0.11 2.97 § 0.11 2.82 § 0.16 3.30 § 0.33 3.04§ 0.14
Cysteine 0.26 § 0.01 0.25§ 0.03 # 0.26 § 0.01 0.20 § 0.01 C 0.25 § 0.01 0.30§ 0.07
Glutamic acid 8.63 § 0.47 8.59§ 0.51 8.13 § 0.38 8.06 § 0.72 9.02 § 0.78 9.12§ 0.71
Lysine 7.16 § 0.35 6.38§ 0.38 6.96 § 0.50 5.56 § 0.47 7.32 § 0.49 7.19§ 0.53
Glutamine 23.46 § 1.16 20.16 § 1.00 25.65 § 1.40 21.68 § 1.34 21.74 § 1.72 19.55 § 1.48
Arginine 1.22 § 0.06 1.25§ 0.11 1.07 § 0.06 1.01 § 0.09 1.35 § 0.10 1.48§ 0.19
Histidine 4.50 § 0.13 3.78§ 0.14 C 4.84 § 0.17 3.71 § 0.23 C 4.23 § 0.18 3.84§ 0.17
Tyrosine 1.82 § 0.05 1.60§ 0.07 # 1.92 § 0.08 1.40 § 0.08 C 1.75 § 0.06 1.80§ 0.10
Tryptophan 0.50 § 0.01 0.41§ 0.02 C 0.49 § 0.01 0.35 § 0.02 C 0.51 § 0.02 0.47§ 0.02

Concentration of aminoacids expressed as nmol/mg protein. F: Father, M: Mother, WT: Wild type, eNOS KO: heterozygous eNOS knockout, $ P< 0.05 vs. WT (F:WT;M:WT), #

P < 0.01 vs. WT (F:WT;M:WT), C P < 0.001 vs. WT (F:WT;M:WT)

Figure 5. Gene expression in wt offspring. Manhattan plots displaying P-values from differential expression analyses between offspring from wt mothers and wt fathers
vs. offspring of eNOSC/¡ mothers and wt fathers. Analyses were conducted separately in (A) male and (B) female offspring. Genes with P < 0.001 are labeled.
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hypothesis is supported by earlier studies showing that the
unfavorable intrauterine environment due to diminished
maternal eNOS expression can promote endothelial

dysfunction in the offspring, independently of genetic trans-
mission.18 Embryonic development is very sensitive to even
moderate hypoxia. Hence, maternal heterozygous eNOS

Figure 6. Gene expression in wt offspring. Gene expression (fold expression compared to reference group) was analyzed by real time PCR of (A) male and (B) female wt
offspring. (C) Correlation of hepatic Fitm1 gene expression and liver fat content (empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother; $ P < 0.05 vs.
wt father / wt mother; # P < 0.01 vs. wt father / wt mother; C P < 0.001 vs. wt father / wt mother).

Figure 7. micoRNA expression in wt offspring. MicroRNA (miRNA) expression of selected miRNAs in (A) male and (B) female wt offspring.
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deficiency may be causal, because of the crucial role of eNOS in
placental function,14-17 which may contribute to fetal tissue
hypoxia similar to offspring of mice with complete lack of
eNOS (eNOS-/- mice),21 which develop hypertension, and renal
and cardiac dysfunction in adult life.

In view of the support with relatively hypoxygenated blood
via the portal vein, the liver is particularly vulnerable during
hypoxia, and fatty liver is a common complication, for instance,
in obstructive sleep apnea.22 Decreased oxygen availability trig-
gers the switch from mitochondrial oxidative phosphorylation
to anaerobic glycolysis and affects lipid metabolism and accu-
mulation, generally reducing oxygen consumption while main-
taining ATP production.23 Continuous (even mild) placental
hypoxia in heterozygous eNOS knockout mothers together
with the alterations of placental hormone synthesis due to also
mild NO deficiency may lead to epigenetic alterations in

growing offspring and increases the sensibility of offspring to
metabolic dysfunction in later life, such as the development of
a phenotype similar to non-alcoholic fatty liver disease.24 These
alterations of placental microcirculation together with the alter-
ation of placental hormone synthesis might cause alterations in
the activity of key enzymes involved in the regulation of DNA
methylation. DNA methylation together with other epigenetic
mechanisms is a key factor of organ development and differen-
tiation in early life. Thus, any NO-related alterations of this
tightly regulated differentiation process during early life might
affect organ function in later life. However, it is unclear so far
why the offspring liver seems to be particularly vulnerable to
these NO effects in the placenta. Moreover, early postnatal
mechanisms might play a role as well, since the offspring was
not adopted by foster mothers; it is also possible that the
observed effects could be due to the postnatal environment

Figure 8. Global DNA methylation in wt offspring. Liver DNA methylation (in % of methylated to total cytosine residues) in (A) male and female wt offspring as well as
correlation of liver DNA methylation with (B) liver fat content (in % of red oil positive area in liver tissue) and (C) hepatic Fitm1 gene expression in female and male wt off-
spring (empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother; $ P < 0.05 vs. wt father / wt mother; #: P < 0.01 vs. wt father / wt mother).
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(amount or quality of the milk in the heterozygous eNOS
knockout mice or way of nursing of heterozygous eNOS knock-
out mice). Moreover, maternal heterozygous eNOS deficiency
might also affect the maturation of the genetically normal
oocytes in the maternal ovary (Fig. 1).

We demonstrated differences in total and gene specific DNA
methylation, hepatic fat accumulation and expression of dis-
tinct candidate genes of wild type offspring born to heterozy-
gous eNOS knockout mothers and wild type fathers and a clear
correlation of DNA methylation and hepatic fat accumulation
in female offspring (Fig. 8B). Genes involved in hepatic lipid
metabolism or mitochondrial activity do not contribute to the

observed lipid accumulation in female offspring (Fig. 6B, Sup-
plementary Table S1). Changes of lipid content may also be
related to alteration in hepatic lipid accumulation, influx or
export.25 Fat storage inducing transmembrane protein (FITM)
1 belongs to a recently identified family of proteins of the endo-
plasmic reticulum that induce lipid droplet accumulation, while
it is not involved in triglyceride biosynthesis. FITM proteins are
regulated by PPAR a and g and their upregulation leads to
accumulation of lipid droplets.26 Fitm1 gene showed altered
DNA methylation in the intragenic region of exon 1 in female
wild type offspring from eNOSC/¡ mother, which is in line with
the higher level of Fitm1 gene expression in these animals

Figure 9. MeDIP DNA methylation analysis of Fitm1 gene. (A) Genomic organiza-
tion of Fitm1 exon 1, putative transcription start site (TSS), and position of identi-
fied CpG island. Amplified sequence is shown in detail (primer binding sites in
bold letters and analyzed CpG dinucleotides bold / underlined, TSS indicated with
C1), (B) degree of DNA methylation of Fitm1 exon 1 in liver tissue of wt offspring
(empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother; $ P <

0.05 vs. wt father / wt mother).

Figure 10. MeDIP DNA methylation analysis of Cdkn1a gene. (A) Genomic organi-
zation of the Cdkn1a gene showing first exons, transcription start site (TSS), and
the position of identified CpG islands; amplified sequence of CpG island 4 is shown
in detail (primer binding sites in bold letters and analyzed CpG dinucleotides bold
/ underlined). (B) Degree of DNA methylation of CpG island 4 in liver tissue of wt
offspring (empty bar, wt father / wt mother; gray bar, wt father / eNOSC/¡ mother;
# P < 0.01 vs. wt father / wt mother).
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(Figs. 6B and 9). Brenet et al.27 showed that not only promoter
methylation status, but also DNA methylation of intragenic
regions, especially of the first exon, influences gene expression.
Otherwise, there is no direct evidence that methylation of this
genomic region influences Fitm1 gene expression. The positive
correlation between Fitm1 gene expression and DNA methyla-
tion in female offspring suggests further effects of DNA methyl-
ation, with a possible indirect effect on repressor regions of the
Fitm1 gene (Fig. 8B).

Liver Cdkn1a expression was also increased in the wild type
offspring from female heterozygous eNOS knockout mice
(Fig. 6B), a factor previously described to be upregulated in
fatty liver.28,29 Bioinformatic analysis predicted Cdkn1a to be a
future epigenetic biomarker for obesity, susceptible for early
life changes in promoter methylation, through its implication
in cell cycle progression and adipogenesis and the high abun-
dance of CpG islands.30 We found differences in Cdkn1a DNA
methylation, but further studies are need to elucidate how CpG
island methylation influences Cdkn1a gene expression.

The observed decrease in Srebf1c expression could be due to
compensatory regulation to avoid further hepatic fat accumula-
tion. Similarly, Anavi et al.31 found that hepatic Srebf1c expres-
sion in rats is reduced after infusion of a lipid emulsion.

The observed differences in gene expression do not account
for all phenotypic alterations conditioned by maternal eNOSC/¡

deficiency. Microarray analysis of gene expression failed to
identify further promising candidates since subsequent RT-
PCR analyses revealed that most of these genes were not
equally altered in all animals (Supplementary Table S4). In line
with this, other studies of the transcriptome in animal models
of fetal programming showed that the most differently regu-
lated genes seem not to be related to the observed pheno-
type,32,33 indicating that our current understanding of the
cascade of biochemical alterations induced by early life stimuli,
such as maternal mild NO deficiency during pregnancy, is far
from being complete. In particular, we do not understand why
the resulting phenotype is different in male and female off-
spring, although the stimulus—mild NO deficiency—is the
same for female and male offspring. Sex differences in fetal pro-
gramming to the same stimuli, however, are broadly described.5

A general answer to this question might be the observation that
the timing of DNA methylation is different in males and
females during early life development and, moreover, male and
female sex steroid hormone synthesized by the fetus and the
placenta might also modulate the effects of mild NO deficiency
during pregnancy on epigenetic and phenotypic alterations in
the offspring in a gender-dependent manner.

In male wt offspring born to eNOSC/¡ mothers and wt
fathers, the liver tissue concentration of most amino acids
was slightly reduced, by about 30%. Exceptions were those
amino acids that are either directly involved in ammonia
metabolism (glutamic acid, glutamine, aspartic acid, argi-
nine) or gluconeogenesis (alanine, glycine, serine). The
reduction of the amino acid concentration closely parallels
the percent increase in liver glycogen content of these ani-
mals, indicating that the observed decrease might be due to
the way of calculating this parameter, since the liver amino
acid concentration was given as amount of amino acids per
gram wet weight.

We also analyzed the expression of miRNA related to lipid
homeostasis, but the observed differences did not explain the
hepatic phenotype in the offspring. In addition, other epige-
netic mechanisms such as histone modification or further alter-
ations in miRNA expression could be involved.34 Thus,
epigenetic modifications of yet unknown genes might have
caused the observed differences in gene expression.

Fetal programming is a multifactorial process, and minor
differences in promoter methylation and expression of a large
number of genes may significantly contribute to the observed
outcome. This complex scenario and the limitations of current
biomedical technologies explain—together with the above-
described reasons—why it has been impossible to describe all
epigenetic alterations induced by parental genetic or early life
parental nutritional stimuli in detail.

Our observations support the advanced fetal programming
hypothesis10,35 and propose a non-environmental mechanism
of fetal programming driven by altered parental gene function.
Maternal, and possibly also paternal, genes may influence the
epigenome of maturing sperm, oocyte, and later embryo/fetus
and alter the phenotype of the fetus in later life, independently
of the fetal genome.35 This hypothesis has major implications:
i) It breaks with the classical laws of inheritance. According to
classical genetics the phenotype of wild type offspring born to
wild type mothers or heterozygous eNOS knockout mice should
be identical, but this was not the case. By contrast, our study
showed that a parental gene affects the phenotype in the off-
spring without genetic transmission. ii) It suggests reassessing
one of the most important tools currently used to understand
gene function: murine transgenic or knockout animal models.
Results of this study indicate that genetically manipulated ani-
mal models may not only reflect causality between a certain
genetic alteration and a resulting phenotype. Altered gene func-
tion may additionally induce permanent epigenetic changes,
thus impacting the offspring phenotype even without transmit-
tance of the modified maternal or paternal gene.

Material and methods

Breeding protocol

The entire study protocol was approved by the animal welfare
comity of the state of Berlin, Germany. We used the eNOS knock-
out mice36 of the C57BL/6J strain and their wild type (wt) litter-
mate. The breeding procedure is described in Supplementary
Fig. S6. Female wt mice were crossbred with homozygous male
eNOS knockout mice. The resulting female heterozygous eNOS
knockout (eNOSC/¡) mice were then again crossed with wt male
mice. Only wt offspring of this breeding procedure (F2 generation,
see Supplementary Fig. S6) entered the study. These mice were
compared to wt mice resulting from crossing wt male and wt
female mice. Study design and experimental protocols were con-
ducted according to the local institutional guidelines for the care
and use of laboratory animals.

Study protocol

Male and female offspring were kept for 24 weeks and analyzed
separately. Body weight, length, and abdominal diameter of the
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F2 generation were measured daily until day 13; thereafter,
body weight was measured daily until day 40 and weekly there-
after until week 20 of the experiment. Blood pressure was mea-
sured using the tail cuff method at week 24, as previously
described.37 GFR was calculated from urine and plasma creati-
nine at week 23. Fasting glucose level was determined at study
week 13 and 21.

Histology

Liver tissue was stained with hematoxylin eosin to determine lobu-
lar dimensions and the extent of lobular inflammation as described
in supplementary methods. Red oil staining was done as described
elsewhere.38 For further details see Supplementarymethods.

Immunohistochemical staining

Liver sections were immunostained for CD68 protein as
described in Supplementary material. The number of CD68-
positive macrophages in the liver was quantified as described
previously.39

Liver glycogen content

Hepatic glycogen content was determined using the amyloglu-
cosidase method, as described previously.40 See Supplementary
material for further details.

Western blotting

Immunoblotting of liver proteins was examined as previously
described.37,41 For further details see Supplementary methods.

Determination of central carbon metabolites in liver tissue

Metabolite concentrations in liver tissue homogenate were
determined by gas chromatography-mass spectrometry (GC-
MS) analysis and liquid chromatography-tandem mass spec-
trometry (LC-MS-MS) as described previously42,43 with minor
modifications. Detailed method was described in Supplemen-
tary material.

Quantitative real time PCR

Determination of gene expression level with quantitative real
time PCR was performed as previously described.44 See Supple-
mentary methods for further details.

MeDIP assay

Immunoprecipitation of methylated genomic DNA (MeDIP
assay) was performed as described by Weber et al.45 with minor
modifications. Briefly, liver DNA was sonicated and precipi-
tated with antibody against 5-methylcytosine. The amount of
methylated DNA was quantified with quantitative real time
PCR, comparing the appearance of specific DNA sequence in
the precipitated and input DNA. See Supplementary methods
for further details.

Microarray gene expression analysis and GSEA

High quality RNA samples from the liver of 9 male and female
offspring of wt fathers and wt mothers, as well as 6 male and
female wt offspring from wt fathers and eNOSC/¡ knockout
mothers were selected for gene expression profiling. Pooled
samples consisting of 3 samples each were analyzed using Affy-
metrix GeneChip Mouse Gene ST 1.0 arrays (Affymetrix, Santa
Clara, CA). Microarray data was pre-processed using the RMA
(Robust Multichip average)46 algorithm in Expression Console
1.1 software (Affymetrix). Only genes with signal intensities >
27 D 128 on minimum 2 out of the 5 arrays with male/female
mouse pools were further investigated. Differences in gene
expression levels between male and female mice with wt or
eNOSC/¡ mother were analyzed by package limma-3.8.247 of
statistical software R-2.13.0 (www.r-project.org). A P-value <

0.05 was considered to indicate a significant difference. Man-
hattan plots were used to display P-values from limma analyses.

Based on the fold changes from limma analyses mentioned
above GSEA of GO terms was performed by Bioconductor
package clusterProfiler_2.4.248 (www.bioconductor.org) for
female as well for male offspring. To be more precise, GSEA
was conducted separately for each of the 3 GO domains (bio-
logical process, cellular component, and molecular function)
using a minimal gene set size of 30 and 9999 permutations. To
assign probe set IDs of the Affymetrix array to GO terms for
GSEA, packages clusterProfiler and mogene10sttranscriptclus-
ter.db _8.4.0 were first applied to assign probe set IDs to Entrez
IDs (www.ncbi.nlm.nih.gov/gene) and, thereby, to GO terms. If
several probe set IDs were present for one Entrez ID, the result
(fold change) of the probe set showing the smallest P-value in
limma analysis was used as input for GSEA.

Quantification of total DNA methylation

Five-methyl-2’-deoxycytidine content was determined by LC-
MS-MS analysis (details see Supplementary Material). Briefly,
genomic DNA samples were hydrolyzed by treatment with
nuclease P1 and alkaline phosphatase. After hydrolysis, 2’-
deoxycytidine and 5-methyl-2’-deoxycytidine were measured
by LC-MS-MS analysis using the respective stable isotope-
labeled analogs [15N3]deoxycytidine and 5-[2H3]methyl-deoxy-
cytidine as internal standards. DNA methylation status is given
as percentage of 5-methyl-2’-deoxycytidine content relative to
total cytosine residues.

Statistics

Statistical analysis was performed using IBM SPSS statistics,
version 19. All values are presented as mean § SEM unless
noticed differently. For all data Mann-Whitney-U test was per-
formed and a P-value < 0.05 was considered to indicate a sig-
nificant difference.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

550 B. HOCHER ET AL.

http://www.r-project.org
http://www.bioconductor.org
http://www.ncbi.nlm.nih.gov/gene


Acknowledgements

We gratefully acknowledge Monika Elbl, Andrea Jarmuth and Monika
Seiler for excellent technical assistance.

Funding

This study was supported by the Deutsche Forschungsgemeinschaft to BH,
the chinese National Natural Science Foundation of China (no. 81300557)
to JL, and a grant of the Robert Bosch Foundation to MS, SW, UH and ES.

References

1. Barker DJP. The developmental origins of adult disease. J Am Coll
Nutr 2004; 23:588S-95S; PMID:15640511; http://dx.doi.org/10.1080/
07315724.2004.10719428

2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in
utero and early-life conditions on adult health and disease. N Engl J
Med 2008; 359:61-73; PMID:18596274; http://dx.doi.org/10.1056/
NEJMra0708473

3. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ,
Hales CN, Bleker OP. Glucose tolerance in adults after prenatal expo-
sure to famine. Lancet 1998; 351:173-7; PMID:9449872; http://dx.doi.
org/10.1016/S0140-6736(97)07244-9

4. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult
hypertension in the rat. Kidney Int 2001; 59:238-45; PMID:11135076;
http://dx.doi.org/10.1046/j.1523-1755.2001.00484.x

5. Seckl JR, CleasbyM,NyirendaMJ. Glucocorticoids, 11beta-hydroxysteroid
dehydrogenase, and fetal programming. Kidney Int 2000; 57:1412-7;
PMID:10760076; http://dx.doi.org/10.1046/j.1523-1755.2000.00984.x

6. Aufdenblatten M, Baumann M, Raio L, Dick B, Frey BM, Schneider H,
Surbek D, Hocher B, Mohaupt MG. Prematurity is related to high pla-
cental cortisol in preeclampsia. Pediatr Res 2009; 65:198-202;
PMID:19047954; http://dx.doi.org/10.1203/PDR.0b013e31818d6c24

7. Thone-Reineke C, Kalk P, Dorn M, Klaus S, Simon K, Pfab T, Godes
M, Persson P, Unger T, Hocher B. High-protein nutrition during
pregnancy and lactation programs blood pressure, food efficiency,
and body weight of the offspring in a sex-dependent manner. Am J
Physiol Regul Integr Comp Physiol 2006; 291:R1025-30;
PMID:16675628; http://dx.doi.org/10.1152/ajpregu.00898.2005

8. Parkhurst SM, Ish-Horowicz D. wimp, a dominant maternal-effect
mutation, reduces transcription of a specific subset of segmentation
genes in Drosophila. Genes Dev 1991; 5:341-57; PMID:2001838;
http://dx.doi.org/10.1101/gad.5.3.341

9. Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H.
Association of maternal G protein beta3 subunit 825T allele with low
birthweight. Lancet 2000; 355:1241-2; PMID:10770310; http://dx.doi.
org/10.1016/S0140-6736(00)02094-8

10. Hocher B, Slowinski T, Bauer C, Halle H. The advanced fetal pro-
gramming hypothesis. Nephrol Dial Transplant 2001; 16:1298-9;
PMID:11390742; http://dx.doi.org/10.1093/ndt/16.6.1298

11. Masuda K, Osada H, Iitsuka Y, Seki K, Sekiya S. Positive association of
maternal G protein beta3 subunit 825T allele with reduced head cir-
cumference at birth. Pediatr Res 2002; 52:687-91; PMID:12409514

12. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, Niu T,
Wise PH, Bauchner H, Xu X. Maternal cigarette smoking, metabolic gene
polymorphism, and infant birth weight. JAMA 2002; 287:195-202;
PMID:11779261; http://dx.doi.org/10.1001/jama.287.2.195

13. Petry CJ, Ong KK, Dunger DB. Does the fetal genotype affect maternal
physiology during pregnancy? Trends Mol Med 2007; 13:414-21;
PMID:17900986; http://dx.doi.org/10.1016/j.molmed.2007.07.007

14. Vatish M, Randeva HS, Grammatopoulos DK. Hormonal regulation
of placental nitric oxide and pathogenesis of pre-eclampsia. Trends
Mol Med 2006; 12:223-33; PMID:16616640; http://dx.doi.org/
10.1016/j.molmed.2006.03.003

15. Skarzinski G, Khamaisi M, Bursztyn M, Mekler J, Lan D, Evdokimov
P, Ariel I. Intrauterine growth restriction and shallower implantation
site in rats with maternal hyperinsulinemia are associated with altered

NOS expression. Placenta 2009; 30:898-906; PMID:19709742; http://
dx.doi.org/10.1016/j.placenta.2009.07.014

16. Kusinski LC, Stanley JL, Dilworth MR, Hirt CJ, Andersson IJ, Renshall
LJ, Baker BC, Baker PN, Sibley CP, Wareing M, et al. eNOS knockout
mouse as a model of fetal growth restriction with an impaired uterine
artery function and placental transport phenotype. Am J Physiol
Regul Integr Comp Physiol 2012; 303:R86-93; PMID:22552791;
http://dx.doi.org/10.1152/ajpregu.00600.2011

17. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson
SL. Endothelial nitric oxide synthase deficiency reduces uterine blood
flow, spiral artery elongation, and placental oxygenation in pregnant
mice. Hypertension 2012; 60:231-8; PMID:22615111; http://dx.doi.
org/10.1161/HYPERTENSIONAHA.111.187559

18. Costantine MM, Ghulmiyyah LM, Tamayo E, Hankins GDV, Saade GR,
Longo M. Transgenerational effect of fetal programming on vascular phe-
notype and reactivity in endothelial nitric oxide synthase knockout mouse
model. Am J Obstet Gynecol 2008; 199:250.e1-7; PMID:18771972; http://
dx.doi.org/10.1016/j.ajog.2008.07.002

19. Moore KJ, Rayner KJ, Su�arez Y, Fern�andez-Hernando C. The role of
microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu
Rev Nutr 2011; 31:49-63; PMID:21548778; http://dx.doi.org/10.1146/
annurev-nutr-081810-160756

20. Schiessl B, Mylonas I, Hantschmann P, Kuhn C, Schulze S, Kunze S, Friese
K, Jeschke U. Expression of endothelial NO synthase, inducible NO syn-
thase, and estrogen receptors alpha and beta in placental tissue of normal,
preeclamptic, and intrauterine growth-restricted pregnancies. J Histochem
Cytochem 2005; 53:1441-9; PMID:15983116; http://dx.doi.org/10.1369/
jhc.4A6480.2005

21. Kulandavelu S,Whiteley KJ, Bainbridge SA, QuD, Adamson SL. Endothe-
lial NO synthase augments fetoplacental blood flow, placental vasculariza-
tion, and fetal growth in mice. Hypertension 2013; 61:259-66;
PMID:23150513; http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.
201996

22. Musso G, Cassader M, Olivetti C, Rosina F, Carbone G, Gambino R.
Association of obstructive sleep apnoea with the presence and severity
of non-alcoholic fatty liver disease. A systematic review and meta-
analysis. Obes Rev 2013; 14:417-31; PMID:23387384; http://dx.doi.
org/10.1111/obr.12020

23. Goda N, Kanai M. Hypoxia-inducible factors and their roles in energy
metabolism. Int J Hematol 2012; 95:457-63; PMID:22535382; http://
dx.doi.org/10.1007/s12185-012-1069-y

24. Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal pro-
gramming. J Pregnancy 2012; 2012:582748; PMID:22848830; http://
dx.doi.org/10.1155/2012/582748

25. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty
liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver
Physiol 2006; 290:G852-8; PMID:16603729; http://dx.doi.org/10.1152/
ajpgi.00521.2005

26. Kadereit B, Kumar P, Wang W-J, Miranda D, Snapp EL, Severina N,
Torregroza I, Evans T, Silver DL. Evolutionarily conserved gene family
important for fat storage. Proc Natl Acad Sci USA 2008; 105:94-9;
PMID:18160536; http://dx.doi.org/10.1073/pnas.0708579105

27. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura
JM. DNA methylation of the first exon is tightly linked to transcrip-
tional silencing. PLoS One 2011; 6:e14524; PMID:21267076; http://dx.
doi.org/10.1371/journal.pone.0014524

28. Takasaki M, Honma T, Yanaka M, Sato K, Shinohara N, Ito J, Tanaka
Y, Tsuduki T, Ikeda I. Continuous intake of a high-fat diet beyond
one generation promotes lipid accumulation in liver and white adi-
pose tissue of female mice. J Nutr Biochem 2012; 23:640-5;
PMID:21775120; http://dx.doi.org/10.1016/j.jnutbio.2011.03.008

29. Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH. Off-
spring of mothers fed a high fat diet display hepatic cell cycle inhibi-
tion and associated changes in gene expression and DNA
methylation. PLoS ONE 2011; 6:e21662; PMID:21779332; http://dx.
doi.org/10.1371/journal.pone.0021662

30. Campi�on J, Milagro FI, Mart�ınez JA. Individuality and epigenetics in
obesity. Obes Rev 2009; 10:383-92; PMID:Can’t; http://dx.doi.org/
10.1111/j.1467-789X.2009.00595.x

EPIGENETICS 551

http://dx.doi.org/10.1080/07315724.2004.10719428
http://dx.doi.org/10.1080/07315724.2004.10719428
http://dx.doi.org/10.1056/NEJMra0708473
http://dx.doi.org/10.1056/NEJMra0708473
http://dx.doi.org/9449872
http://dx.doi.org/10.1016/S0140-6736(97)07244-9
http://dx.doi.org/11135076
http://dx.doi.org/10.1046/j.1523-1755.2001.00484.x
http://dx.doi.org/10.1046/j.1523-1755.2000.00984.x
http://dx.doi.org/10.1203/PDR.0b013e31818d6c24
http://dx.doi.org/10.1152/ajpregu.00898.2005
http://dx.doi.org/2001838
http://dx.doi.org/10.1101/gad.5.3.341
http://dx.doi.org/10770310
http://dx.doi.org/10.1016/S0140-6736(00)02094-8
http://dx.doi.org/10.1093/ndt/16.6.1298
http://dx.doi.org/12409514
http://dx.doi.org/10.1001/jama.287.2.195
http://dx.doi.org/10.1016/j.molmed.2007.07.007
http://dx.doi.org/16616640
http://dx.doi.org/10.1016/j.molmed.2006.03.003
http://dx.doi.org/19709742
http://dx.doi.org/10.1016/j.placenta.2009.07.014
http://dx.doi.org/22552791
http://dx.doi.org/10.1152/ajpregu.00600.2011
http://dx.doi.org/22615111
http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.187559
http://dx.doi.org/18771972
http://dx.doi.org/18771972
http://dx.doi.org/10.1146/annurev-nutr-081810-160756
http://dx.doi.org/10.1146/annurev-nutr-081810-160756
http://dx.doi.org/10.1369/jhc.4A6480.2005
http://dx.doi.org/10.1369/jhc.4A6480.2005
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.201996
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.201996
http://dx.doi.org/23387384
http://dx.doi.org/10.1111/obr.12020
http://dx.doi.org/22535382
http://dx.doi.org/10.1007/s12185-012-1069-y
http://dx.doi.org/22848830
http://dx.doi.org/10.1155/2012/582748
http://dx.doi.org/10.1152/ajpgi.00521.2005
http://dx.doi.org/10.1152/ajpgi.00521.2005
http://dx.doi.org/10.1073/pnas.0708579105
http://dx.doi.org/21267076
http://dx.doi.org/10.1371/journal.pone.0014524
http://dx.doi.org/10.1016/j.jnutbio.2011.03.008
http://dx.doi.org/21779332
http://dx.doi.org/10.1371/journal.pone.0021662
http://dx.doi.org/Can&apos;t
http://dx.doi.org/10.1111/j.1467-789X.2009.00595.x


31. Anavi S, Ilan E, Tirosh O,Madar Z. Infusion of a lipid emulsionmodulates
AMPK and related proteins in rat liver, muscle, and adipose tissues. Obe-
sity (Silver Spring) 2010; 18:1108-15; PMID:20057367; http://dx.doi.org/
10.1038/oby.2009.489

32. Mischke M, Pruis MGM, Boekschoten MV, Groen AK, Fitri AR, van de
Heijning BJM, Verkade HJ, M€uller M, Pl€osch T, Steegenga WT. Maternal
Western-style high fat diet induces sex-specific physiological and molecu-
lar changes in two-week-old mouse offspring. PLoS One 2013; 8:e78623;
PMID:24223833; http://dx.doi.org/10.1371/journal.pone.0078623

33. Lillycrop KA, Rodford J, Garratt ES, Slater-Jefferies JL, Godfrey KM,
Gluckman PD, HansonMA, Burdge GC.Maternal protein restriction with
or without folic acid supplementation during pregnancy alters the hepatic
transcriptome in adult male rats. Br J Nutr 2010; 103:1711-9;
PMID:20211039; http://dx.doi.org/10.1017/S0007114509993795

34. Laker RC, Wlodek ME, Connelly JJ, Yan Z. Epigenetic origins of meta-
bolic disease: The impact of the maternal condition to the offspring
epigenome and later health consequences. Food Science and Human
Wellness 2013; 2:1-11; PMID:NOT_FOUND; http://dx.doi.org/
10.1016/j.fshw.2013.03.002

35. Hocher B. More than genes: the advanced fetal programming hypoth-
esis. J Reprod Immunol 2014; 104-105:8-11; PMID:24721253; http://
dx.doi.org/10.1016/j.jri.2014.03.001

36. G€odecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, G€odecke
S, Schrader J. Coronary hemodynamics in endothelial NO synthase
knockout mice. Circ Res 1998; 82:186-94; PMID:9468189; http://dx.
doi.org/10.1161/01.RES.82.2.186

37. Quaschning T, Voss F, Relle K, Kalk P, Vignon-Zellweger N, Pfab T,
Bauer C, Theilig F, Bachmann S, Kraemer-Guth A, et al. Lack of endo-
thelial nitric oxide synthase promotes endothelin-induced hyperten-
sion: lessons from endothelin-1 transgenic/endothelial nitric oxide
synthase knockout mice. J Am Soc Nephrol 2007; 18:730-40;
PMID:17287431; http://dx.doi.org/10.1681/ASN.2006050541

38. Lillie R, Ashburn L. Supersaturated solutions of fat stains in dilute iso-
propanol for demonstration of acute fatty degeneration not shown by
Herxheimers’s technique. Archs Path 1943; :432(36).

39. van den Broek MAJ, Shiri-Sverdlov R, Schreurs JJW, Bloemen JG,
Bieghs V, Rensen SS, Dejong CHC, Olde Damink SWM. Liver manip-
ulation during liver surgery in humans is associated with hepatocellu-
lar damage and hepatic inflammation. Liver Int 2013; 33:633-41;
PMID:23356550; http://dx.doi.org/10.1111/liv.12051

40. Bergmeyer (Hrsg). Methoden der enzymatischen Analyse. Weinheim/
Bergstr.: Verlag Chemie; 1962.

41. Vignon-Zellweger N, Rahnenf€uhrer J, Theuring F, Hocher B. Analysis
of cardiac and renal endothelin receptors by in situ hybridization in
mice. Clin Lab 2012; 58:939-49; PMID:23163110

42. Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K. Identifica-
tion of metabolic fluxes in hepatic cells from transient 13C-labeling experi-
ments: Part I. Experimental observations. Biotechnol Bioeng 2008;
100:344-54; PMID:18095337; http://dx.doi.org/10.1002/bit.21747

43. Maier K, Hofmann U, Reuss M, Mauch K. Dynamics and control of the
central carbon metabolism in hepatoma cells. BMC Syst Biol 2010; 4:54;
PMID:20426867; http://dx.doi.org/10.1186/1752-0509-4-54

44. Chaykovska L, von Websky K, Rahnenf€uhrer J, Alter M, Heiden S, Fuchs
H, Runge F, Klein T, Hocher B. Effects of DPP-4 inhibitors on the heart in
a rat model of uremic cardiomyopathy. PLoS One 2011; 6:e27861;
PMID:22125632; http://dx.doi.org/10.1371/journal.pone.0027861

45. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL,
Sch€ubeler D. Chromosome-wide and promoter-specific analyses iden-
tify sites of differential DNA methylation in normal and transformed
human cells. Nat Genet 2005; 37:853-62; PMID:16007088; http://dx.
doi.org/10.1038/ng1598

46. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Sum-
maries of Affymetrix GeneChip probe level data. Nucleic Acids Res
2003; 31:e15; PMID:12582260; http://dx.doi.org/10.1093/nar/gng015

47. Smyth G. Limma: linear models for microarray data. In: Bioinformat-
ics and Computational Biology Solutions using R and Bioconductor.
New York: Springer; 2005.

48. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 2012;
16:284-7; PMID:22455463; http://dx.doi.org/10.1089/omi.2011.0118

49. Chmel�ıkov�a E, Jeseta M, Sedm�ıkov�a M, Petr J, Tu�mov�a L, Kott T, Lip-
ovov�a P, J�ılek F. Nitric oxide synthase isoforms and the effect of their inhi-
bition on meiotic maturation of porcine oocytes. Zygote 2010; 18:235-44;
PMID:Can’t; http://dx.doi.org/10.1017/S0967199409990268

50. Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology,
physiology and pathophysiology of reproduction. Hum Reprod Update
1998; 4:3-24; PMID:9622410; http://dx.doi.org/10.1093/humupd/4.1.3

51. Gammie SC, Huang PL, Nelson RJ. Maternal aggression in endothelial
nitric oxide synthase-deficient mice. Horm Behav 2000; 38:13-20;
PMID:10924282; http://dx.doi.org/10.1006/hbeh.2000.1595

52. Cieslar SRL, Madsen TG, Purdie NG, Trout DR, Osborne VR, Cant JP.
Mammary blood flow and metabolic activity are linked by a feedback
mechanism involving nitric oxide synthesis. J Dairy Sci 2014; 97:2090-
100; PMID:24508428; http://dx.doi.org/10.3168/jds.2013-6961

53. Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of
oocyte development: linking maternal nutrition and reproductive out-
comes. Cell Mol Life Sci 2015; 72:251-71; PMID:25280482; http://dx.
doi.org/10.1007/s00018-014-1739-4

54. Szyf M. The early life environment and the epigenome. Biochim Bio-
phys Acta 2009; 1790:878-85; PMID:19364482; http://dx.doi.org/
10.1016/j.bbagen.2009.01.009

55. Kuzawa CW, Thayer ZM. Timescales of human adaptation: the role of epi-
genetic processes. Epigenomics 2011; 3:221-34; PMID:22122283; http://dx.
doi.org/10.2217/epi.11.11

56. Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation
of human placental function and pregnancy outcome: considerations for
causal inference. Am J Obstet Gynecol 2015; 213:S182-96;
PMID:26428498; http://dx.doi.org/10.1016/j.ajog.2015.07.011

57. Toyota M, Suzuki H. Epigenetic drivers of genetic alterations. Adv
Genet 2010; 70:309-23; PMID:20920753; http://dx.doi.org/10.1016/
B978-0-12-380866-0.60011-3

58. Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in
DNA. Nature 1980; 287:560-1; PMID:6999365; http://dx.doi.org/
10.1038/287560a0

59. Yu H-L, Dong S, Gao L-F, Li L, Xi Y-D, Ma W-W, Yuan L-H, Xiao R.
Global DNA methylation was changed by a maternal high-lipid, high-
energy diet during gestation and lactation in male adult mice liver. Br
J Nutr 2015; 113:1032-9; PMID:25778733; http://dx.doi.org/10.1017/
S0007114515000252

60. Gabory A, Attig L, Junien C. Developmental programming and epige-
netics. Am J Clin Nutr 2011; 94:1943S-1952S; PMID:2204916; http://
dx.doi.org/10.3945/ajcn.110.000927

552 B. HOCHER ET AL.

http://dx.doi.org/20057367
http://dx.doi.org/10.1038/oby.2009.489
http://dx.doi.org/10.1371/journal.pone.0078623
http://dx.doi.org/10.1017/S0007114509993795
http://dx.doi.org/NOT_FOUND
http://dx.doi.org/10.1016/j.fshw.2013.03.002
http://dx.doi.org/24721253
http://dx.doi.org/10.1016/j.jri.2014.03.001
http://dx.doi.org/9468189
http://dx.doi.org/10.1161/01.RES.82.2.186
http://dx.doi.org/10.1681/ASN.2006050541
http://dx.doi.org/10.1111/liv.12051
http://dx.doi.org/23163110
http://dx.doi.org/10.1002/bit.21747
http://dx.doi.org/10.1186/1752-0509-4-54
http://dx.doi.org/10.1371/journal.pone.0027861
http://dx.doi.org/16007088
http://dx.doi.org/10.1038/ng1598
http://dx.doi.org/10.1093/nar/gng015
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.1017/S0967199409990268
http://dx.doi.org/10.1093/humupd/4.1.3
http://dx.doi.org/10.1006/hbeh.2000.1595
http://dx.doi.org/10.3168/jds.2013-6961
http://dx.doi.org/25280482
http://dx.doi.org/10.1007/s00018-014-1739-4
http://dx.doi.org/19364482
http://dx.doi.org/10.1016/j.bbagen.2009.01.009
http://dx.doi.org/22122283
http://dx.doi.org/10.2217/epi.11.11
http://dx.doi.org/10.1016/j.ajog.2015.07.011
http://dx.doi.org/10.1016/B978-0-12-380866-0.60011-3
http://dx.doi.org/10.1016/B978-0-12-380866-0.60011-3
http://dx.doi.org/6999365
http://dx.doi.org/10.1038/287560a0
http://dx.doi.org/10.101