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Abstract

Cellular immunity against viral infection and tumor cells depends on antigen presentation by the 

major histocompatibility complex class 1 molecules (MHC I). Intracellular antigenic peptides are 

transported into the endoplasmic reticulum (ER) by the transporter associated with antigen 

processing (TAP) and then loaded onto the nascent MHC I, which are exported to the cell surface 

and present peptides to the immune system
1
. Cytotoxic T lymphocytes recognize non-self peptides 

and program the infected or malignant cells for apoptosis. Defects in TAP account for 

immunodeficiency and tumor development. To escape immune surveillance, some viruses have 

evolved strategies to either down-regulate TAP expression or directly inhibit TAP activity. To date 

neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the 

structural level. In this study we describe the cryo-electron microscopy (cryo-EM) structure of 

human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex 

virus I. We show that the twelve transmembrane helices and two cytosolic nucleotide-binding 

domains (NBDs) of the transporter adopt an inward-facing conformation with the two NBDs 

separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation 

pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and 

also prevents NBD closure necessary for ATP hydrolysis. This work illustrates a striking example 

of immune evasion by persistent viruses. By blocking viral antigens from entering the ER, herpes 

simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a 

lifelong infection in the host.
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Inside our body, every nucleated cell has surface “barcodes” that are surveyed by the 

immune system. These barcodes are peptides derived from intracellular proteins, presented 

on the surface by MHC I molecules to indicate whether the cell is healthy (reviewed in ref. 

1). Peptides generated from normal cellular proteins are ignored by cytotoxic T cells, 

whereas viral-derived or malignant peptides will trigger an adaptive immune response, 

resulting in elimination of the infected or tumor cells. The peptide repertoire is generated in 

the cytoplasm, mainly by the proteasome, but also in part by cytosolic peptidases (Fig 1a). 

Peptide uploading onto MHC I molecules takes place inside the ER and is orchestrated by a 

macromolecular assembly collectively called the MHC class I peptide-loading complex 

(PLC). Cytosolic peptides are delivered across the ER membrane by the ATP-binding 

cassette (ABC) transporter TAP. The chaperones calnexin and calreticulin stabilize nascent 

MHC I molecules awaiting peptides. The tapasin/ERp57 heterodimer brings MHC I 

molecules and TAP within close proximity and catalyzes peptide loading. Peptide-loaded 

MHC I molecules are then released from the ER and transported to the cell surface for 

antigen presentation.

As the MHC I antigen presentation pathway plays a crucial role in eradicating intracellular 

pathogens, it is not surprising that some viruses have evolved the ability to interfere with this 

process (reviewed in ref. 2). The peptide transporter TAP in particular is a primary target for 

viral evasion (reviewed in ref. 3). TAP is a heterodimeric ABC transporter that contains two 

subunits, TAP1 and TAP2, which share 37% sequence identity and are predicted to have 

similar structures. Each subunit contains an N-terminal transmembrane region (TMD0) that 

interacts with tapasin, followed by six transmembrane (TM) helices that form the peptide 

translocation pathway and a canonical nucleotide-binding domain (NBD) that hydrolyzes 

ATP (Fig 1b)
4
. The core TAP, devoid of the TMD0s, is necessary and sufficient for peptide 

transport
4
. So far, five viral proteins have been identified as TAP inhibitors. Four are 

encoded by members of the herpes virus family and one by cowpox virus
3
. These viral 

inhibitors are valuable tools for selective immune suppression and for understanding the 

fundamental mechanism of antigen presentation.

Here we focus our study on a TAP inhibitor encoded by herpes simplex virus (HSV). Both 

types of HSV, HSV-1 (oral herpes) and HSV-2 (genital herpes), somehow elude the human 

immune system and lead to a lifelong infection. The first clue as to how HSV bypasses the 

immune system came from observations that cells infected by HSV have reduced surface 

expression of MHC I molecules
5
 and are resistant to cytotoxic T cells

6
. Since this resistance 

develops within three hours of HSV infection, researchers narrowed their search for the 

responsible gene to those few expressed in the early stage of infection
7,8. Out of these, an 

88-residue protein, ICP47, was found to bind to TAP and prevent peptide translocation into 

the ER
7,8. Consequently, empty MHC I molecules were retained in the ER and viral peptide 

presentation was suppressed. Subsequent studies have shown that ICP47 interacts with TAP 

from the cytosolic side of the membrane and somehow prevents peptide binding
9,10

. The 

functional domain of ICP47 has been mapped to the N-terminal 35 residues
11,12

, which form 

an extended helix-loop-helix structure in lipid bilayers
13

.

In this study, we pursued structural determination of a TAP/ICP47 complex using cryo-

electron microscopy (cryo-EM). The small size of the complex (166 kDa total) and the 
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predicted pseudo two-fold symmetry between TAP1 and TAP2 make it extremely 

challenging to accurately align particles for 3D reconstruction. To maximize the difference 

between the two TAP subunits, we used a shorter allele of TAP2 that lacks the last 17 amino 

acids in NBD2 (Fig 1b)
14

. Co-expression of TAP1 and TAP2 in Pichia pastoris (Extended 

Data Fig 1) produced a heterodimer that dissociates readily in detergents. However, by 

incubating the TAP-enriched membranes with ICP47 before detergent solubilization, the 

complex consisting of TAP1, TAP2, and ICP47 becomes more stable (Fig 1c and 1d). Cryo-

EM analysis of this complex (Extended Data Fig 2 and Fig 1d) produced a density map (Fig 

2) of an overall resolution of 6.5 Å, determined by the gold-standard refinement procedure 

(Extended Data Fig 3)
15

. In this reconstruction the TM helices and the connectivity between 

the helices are clearly resolved. The density corresponding to one NBD is significantly 

smaller than that for the other, allowing us to confidently differentiate TAP1 from TAP2 (Fig 

2b). Most importantly, we observe strong density corresponding to the functional region of 

ICP47, which reveals how this viral protein inhibits peptide translocation (Fig 2b).

The core region of TAP adopts an inverted “V”-shaped structure, with the two TMDs 

making close contact on the side corresponding to the ER lumen and the NBDs separated 

from each other inside the cytosol (Fig 2c). Domain swapping of TM helices 4 and 5 across 

the TAP1/TAP2 interface is a prominent structural feature (Fig 2c). Indeed, the overall 

structure of TAP is very similar to that of other ABC exporters, including the lipid flippase 

MsbA from Gram-negative bacteria
16

, the protein transporter PCAT1 from Gram-positive 

bacteria
17

, and the multidrug transporter P-glycoprotein in eukaryotes
18,19

. Although these 

transporters recognize very different substrates, they must share a common evolutionary 

origin and a common mechanism for coupling ATP hydrolysis to substrate translocation.

No density was observed for the N-terminal TMD0 domain of both TAP1 and TAP2 

subunits (Fig 2). Studies have shown that the TMD0s are essential to the assembly of the 

large peptide-loading complex
4,20

 but dispensable in peptide translocation
4
. ICP47 inhibits 

both full-length TAP and the core construct
4
. Our results indicate that in the absence of 

tapasin the two TMD0s are flexibly tethered to the core region of TAP.

Biochemical data and homology modeling suggest that the peptide translocation pathway 

lies at the interface of the two TMDs
21,22

. Inside this pathway, we observe strong density 

consistent with the helix-loop-helix structure of ICP47 (Fig 2b and 3a). Guided by the NMR 

structure and secondary structure prediction
13

, we built residues 3-16 into the shorter helical 

density and residues 22-40 into the longer density (Fig 3). Additional density is packed 

along the cytosolic region of TAP2, into which we modeled residues 41-50. The C-terminal 

region, neither required for TAP inhibition nor conserved between HSV-1 and HSV-2 (Fig 

3c), is not resolved in the EM map, suggesting high mobility.

On the basis of this model, the N-terminal half of ICP47 forms a hairpin-like structure 

pinned against the inner surface of TAP2 TM helices 2, 3, 6 and TAP1 TM helix 4 (Fig 3b). 

The two helices of ICP47 run anti-parallel to each other, connected by a sharp turn at the top 

of the TM cavity. The extensive packing between TAP and ICP47 is consistent with the 

nanomolar affinity of ICP47, orders of magnitude higher than those of the substrate 

peptides
9,12

.
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The potency of ICP47 appears to come from its helical hairpin structure, which provides a 

greater interface with TAP than a typical substrate. To test whether the flexibility of the 

connecting loop is important, we constructed a “turn-to-helix” mutant by replacing residues 

16-22 with alanine, which has the highest propensity to form an α-helix and thus would 

oppose (but not preclude) the formation of a turn. ICP47 activity was measured in human 

epithelial cells, in which cytosolic expression of ICP47 inhibits endogenous TAP and 

reduces the amount of MHC I molecules expressed on the cell surface. A GFP tag was fused 

to the C-terminus of ICP47 as a marker to select for cells expressing similar amounts of 

ICP47. Consistent with the EM structure and previous mutagenesis data
11

, the “turn-to-

helix” mutant is much less potent than the wt construct. Specifically, mutant ICP47 reduced 

surface MHC I expression by only 5-fold as opposed to a 20-fold reduction by wt ICP47 

(Fig 3d).

Although ICP47 competes for the same binding site, we do not believe it mimics the 

substrate binding process. Unlike substrates, ICP47 inhibits rather than stimulates ATP 

hydrolysis
23

. Furthermore, in contrast to ICP47, which separates the two NBDs, substrate 

binding induces partial closure of the NBDs
24

. More recently, electron paramagnetic 

resonance (EPR) studies showed that TAP binds its substrates in their extended 

conformation, comparable to how MHC I molecules present peptides
25

.

Comparison of our structure with the NMR structure
13

 suggests that ICP47 undergoes major 

conformational changes upon association with TAP (Fig 4). In isolation, the N-terminal two 

helices of ICP47 are flexibly linked and bind to the surface of the membrane at a slight tilt
13

. 

In the complex with TAP, ICP47 forms a straight hairpin and inserts perpendicularly into the 

membrane. Although exact determinations of the amino acid register cannot be made at the 

current resolution, the overall structure readily explains how ICP47 inhibits peptide transport 

into the ER. By plugging a long helical hairpin into the translocation pathway, ICP47 

directly blocks substrates from binding. Furthermore, because ICP47 is too large to be 

transported by TAP, its high-affinity binding traps TAP in an inactive conformation. Like 

other ABC transporters, TAP functions by alternating between two major conformations, 

each exposing the translocation pathway to one side of the membrane (Fig 4). Binding of 

ICP47 stabilizes the inward-facing conformation, and thus prevents TAP from transitioning 

to an outward-facing state in which the NBDs form a closed dimer and the translocation 

pathway orientates towards the ER lumen (Fig 4).

In addition to viral inhibition discussed in this study, the structural basis of two cellular 

regulatory mechanisms has been elucidated
26-28

; both are relevant to nutrient uptake in 

bacteria. As a classic example of carbon catabolite repression, when a preferred carbon 

source is available, bacteria suppress the uptake of maltose through direct binding of a 

regulatory protein to the maltose transporter
26

. Methionine and molybdate transporters offer 

another example
27,28

. In both cases, at high intracellular concentration, the substrate binds 

and inhibits the corresponding transporter, a feedback mechanism that limits the amount of 

import into the cell
27,28

. Unlike viral inhibition, both cellular inhibitions are allosteric and 

reversible, regulated by the metabolic state of the cells. One common theme among all these 

inhibition mechanisms is that the inhibitor binds and stabilizes the transporter in the inward-

facing state, a conformation unable to hydrolyze ATP. We speculate that this strategy may be 
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advantageous in preserving cellular energy sources. It is also possible that for most ABC 

transporters, the inward-facing state is most common and thus naturally targeted by 

regulators.

Methods

Expression and purification of ICP47

The gene encoding human herpes simplex virus 1 (HSV-1) ICP47 was synthesized 

(BioBasic) and subcloned into the ligation-independent cloning vector pMCSG20 (AmpR), 

which contains an N-terminal glutathione S-transferase (GST) affinity tag preceding a 

tobacco etch virus (TEV) protease cleavage site. BL21(DE3)RIL E. coli cells containing the 

pMCSG20-ICP47 vector were grown to mid-exponential phase at 37°C in LB medium and 

expression was induced with 200 μM isopropyl β-D-thiogalactoside (IPTG) at 20°C for 24 h. 

The cells were harvested via centrifugation (4,000 xg for 12 min at 4°C) and broken by two 

passes through a high-pressure homogenizer (EmulsiFlex-C3; Avestin). Cell lysate 

supernatants were loaded onto glutathione sepharose 4B resin (GE Healthcare) equilibrated 

with PBS buffer, pH 7.4, containing 5 mM D,L-dithiothreitol (DTT). To remove the GST tag 

from ICP47, the column was equilibrated into a TEV protease cleavage buffer containing 50 

mM Tris-HCl, pH 8.0, 200 mM NaCl, 0.5 mM EDTA, and 5 mM DTT and incubated with 

TEV protease overnight. Untagged ICP47 was eluted and further purified by Superdex 75 

gel-filtration chromatography (GE Healthcare) in TEV-cleavage buffer. Fractions containing 

the protein were pooled, concentrated to 3 mg/ml, and flash-frozen in liquid nitrogen.

Co-expression of TAP1/TAP2

Synthetic human TAP1 and TAP2 genes were codon-optimized for expression in Pichia 
pastoris (BioBasic) and subcloned into pPICZ-C-XE-Protein A (ZeoR) and pPICZ-C-XE 

vectors (ZeoR), respectively. In order to ensure co-expression at a 1:1 molar ratio, we took 

advantage of the compatible cohesive ends of BamHI and Bgl II restriction sites to generate 

an expression cassette as outlined in Extended Data Figure 1. The resultant vector was 

linearized by PmeI digestion and transformed into a HIS+ strain of SMD1163 by 

electroporation (BioRad Gene Pulser II). Transformants were selected on yeast extract 

peptone dextrose sorbitol (YPDS) agar containing 800 μg/ml zeocin. Colonies were grown 

in yeast extract peptone dextrose (YPD) cultures at 28°C until they reached an OD 600 of 4 

to seed flasks containing minimal glycerol medium (MGY), 13.4% yeast nitrogen base and 

1% glycerol at a starting OD 600 of 0.5. The MGY cultures were grown at 28°C for 24 h 

until they reached an OD 600 of 20, at which point they were harvested by centrifugation 

(1,500 xg for 15 min at 4°C) and used to seed flasks containing minimal methanol medium 

(MMY), 13.4% yeast nitrogen base and 0.5% methanol at a starting OD 600 of 10. These 

MMY cultures were grown at 28°C for 24 h before harvesting (1,500 xg for 15 min at 4°C). 

Cell pellets were fractionated and flash-frozen in liquid nitrogen.

Purification of the TAP/ICP47 complex

Cells expressing TAP1-Protein A/TAP2 were lysed using a mixer mill (Retsch Mixer Mill 

400) and incubated with purified ICP47 in a buffer containing 50 mM Tris-HCl, pH 8, 500 

mM NaCl, 15% glycerol, DNase I, protease inhibitors, and 2 mM TCEP for 30 min. Cells 
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were then solubilized with 1.5% n-dodecyl-β-D-maltoside (DDM; Anatrace) for 2 h. The 

solubilized fraction was isolated by centrifugation (70,000 xg for 40 min at 4°C). The TAP1-

Protein A/TAP2/ICP47 complex was isolated using the Protein A affinity tag on TAP1 by 

lgG Sepharose 6 Fast Flow (GE Healthcare). After extensive washing, PreScission protease 

(GE Healthcare) was added to the column and incubated overnight to remove the Protein A 

tag. The complex was eluted with additional buffer and further purified using a Superose 6 

column (GE Healthcare) equilibrated with 20 mM Hepes, pH 7.4, 150 mM NaCl, 2 mM 

TCEP, 1 mM DDM, and 1 mM octaethylene glycol monododecyl ether (C12E8; Anatrace). 

The peak fraction was used to prepare cryo-EM grids.

Initial cryo-electron microscopy imaging and generation of an initial model

Vitrified specimens of TAP/ICP47 complex were prepared on glow-discharged Quantifoil 

holey carbon grids by plunge-freezing into liquid ethane using a Vitrobot (FEI). Cryo-EM 

data were collected at liquid-nitrogen temperature using a K2 Summit direct electron 

detector camera (Gatan Inc.) on a Tecnai F20 electron microscope (FEI) operating at 200 

keV. Dose-fractionated image stacks were recorded with UCSF Image 4
29

 in super-

resolution counting mode at a calibrated magnification of 40410x (nominal magnification of 

29,000x) with a dose rate of 8 electrons/pixel/s (5.2 electrons/Å2/s). Frames were read out 

every 200 ms and 30 frames were collected, resulting in an exposure time of 6 s and a total 

dose of 31.2 electrons/Å2. Dose-fractionated image stacks were 2x binned and motion-

corrected, as described
29

. The defocus was determined with CTER
30

. BOXER was used to 

interactively pick 28,813 particles from ~750 images
31

. The particle images were subjected 

to the iterative stable alignment and clustering (ISAC) procedure
32

 implemented in 

SPARX
33

. Four ISAC generations specifying 100 particles-per-group and a pixel error 

threshold of 0.7 yielded 324 averages. Of these, 270 averages were used to calculate an 

initial 3D density map with the validation of individual parameter reproducibility (VIPER) 

procedure in SPARX.

Electron microscopy sample preparation and imaging for the final 3D reconstruction

Cryo-EM grids were prepared by pipetting 3 μl freshly purified TAP/ICP47 (2 mg/ml) onto 

glow-discharged C-flat holey carbon CF-1.2/1.3-4C grids (Protochips) and letting the 

sample adsorb for 20 s. The grids were blotted for 4 s at 90% humidity using a Vitrobot 

Mark IV (FEI) and immediately plunge-frozen in liquid nitrogen-cooled liquid ethane. The 

grids were imaged using a FEI Titan Krios electron microscope operating at an acceleration 

voltage of 300 keV. Images were recorded using a K2 Summit direct electron detector 

(Gatan Inc.) set to super-resolution counting mode with a super-resolution pixel size of 

0.675 Å using the program SerialEM
34

. In addition, a Gatan Imaging filter with a slit width 

of 20 eV was used to remove inelastically scattered electrons. Movie frames were recorded 

with an exposure time of 200 ms using a dose rate of 10 electrons/pixel/s or 5.5 

electrons/Å2/s (1.35 Å at the image plane). Three datasets were recorded using different total 

doses and defocus ranges (Extended Data Table 1 and Extended Data Figure 2).

Image processing

Movie frames were corrected for gain reference and binned by a factor of 2, giving a pixel 

size of 1.35 Å. Drift correction was performed using the program Unblur
35,36

. Next, the 
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drift-corrected frames were summed into single micrographs, which were used to estimate 

the Contrast Transfer Function (CTF) using CTFFIND4
37

. The program Summovie was 

used to recalculate the summed images, first with a low-pass filter for autopicking and then 

with the noise power restored after filtering for particle extraction
38

. Autopicking, particle 

extraction, 2D classification, 3D classification, and initial 3D refining were all performed in 

Relion
39

. In order to achieve a more robust classification of the extracted particles, 2D 

classification was performed with a particle mask diameter of 145 Å while ignoring the 

effects of the CTF until the first zero transition. 3D classification was performed on particles 

from selected 2D classes using the initial model calculated in SPARX as a reference map. 

Particles from selected 3D classes from both datasets were combined for 3D refinement. 

Using the orientation parameters determined by Relion, 3D refinement in FREALIGN was 

also performed
40

. The final map, reconstructed from 139,293 particles, had a resolution of 

6.5 Å as determined by Fourier shell correlation (FSC) of independently refined half-

datasets using the 0.143 cut-off criterion (Extended Data Figure 3).

Model building

We used a model of the TAP1 nucleotide-binding domain (NBD) from a previously reported 

structure of the isolated domain (PDBcode 1JJ7)
41

 to generate a homology model for the 

TAP2 NBD using the program Modeller
42

. We also generated a homology model of the 

TAP1 and TAP2 transmembrane domains (TMDs) using the half-transporter subunit of 

human ABCB10 (PDBcode 4AYT) as the source structure 
43

. We manually docked these 

poly-alanine models into our final cryo-EM map and rebuilt each model in Coot
44

.

Flow Cytometry analysis of MHC class I surface expression

MHC I surface expression was analyzed using the phycoerythrin-coupled antibody W6/32 

(Abcam), which recognizes a monomorphic epitope shared among MHC class I molecules. 

Genes encoding HSV-1 wild-type ICP47 and the “turn-to-helix” (TtH) mutant were cloned 

into a modified version of the pCDNA 3.1 vector (Life Technologies) that adds a C-terminal 

EGFP tag. HeLa cells (ATCC® CCL-2™) were seeded in 6-well plates at a density of 5 × 

105 cells/well and transfected with wt ICP47, the TtH mutant, or the empty vector. Cells 

were detached from the plate using trypsin-EDTA (0.05%) at 72 h post-transfection and 

washed in ice-cold FACS buffer (Ca++/Mg++ free phosphate buffer, 10% FCS, 1% sodium 

azide) and centrifuged at 400 ×g for 5 min at 4°C. Nonspecific binding was blocked by 

incubating the cells with phosphate buffer containing 5% (w/v) bovine serum albumin 

(BSA) for 15 min on ice. Antibody was added at 5 μg/ml and incubated for 30 min at 4°C in 

the dark. Subsequently, the cells were washed 3 times in FACS buffer, resuspended at a 

density of 3 × 106 cells/ml, and counted using a BD LSR II Flow Cytometer (BD 

Biosciences). The cells were analyzed at wavelengths 405 nm for DAPI nuclear stain, 488 

nm for GFP fluorescence, and 561 nm for phycoerythrin fluorescence. Only live, single cells 

with the same levels of GFP fluorescence were used in phycoerythrin gating to compare 

MHC class I expression. The flow cytometry data were analyzed using FlowJo 10.1 single 

cell analysis software (Tree Star). All experiments were repeated three times. The cell line 

was tested for mycoplasma contamination by PCR using the Universal Mycoplasma 

Detection Kit (ATCC® 30-1012K™)
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Figure preparation

Figures were prepared using the programs PyMOL 
45

, Chimera 
46

, and FlowJo 10.1.

Extended Data

Extended Data Figure 1. 
Cloning strategy for TAP1-Protein A/TAP2 co-expression
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Extended Data Figure 2. 
Cryo-EM data processing flowchart

Extended Data Figure 3. Fourier shell correlation (FSC) indicating the resolution of the density 
map
FSC plots were generated between reconstructions from random halves of the data. The 

frequency at which the dashed line pass through FSC=0.143 indicate the reported resolution. 

Corresponding values are given in Extended Data Table 1.
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Figure 1. Purification and cryo-EM characterization of TAP
a, The MHC class I antigen presentation pathway. PLC: peptide-loading complex. b, 

Topology diagram of TAP1 (blue) and TAP2 (gold). The residue numbers of the C termini 

are indicated. c, Gel-filtration profile of the TAP/ICP47 complex. Inset: SDS-PAGE gel of 

the peak fraction stained with Coomassie blue. d, A typical micrograph of the TAP/ICP47 

complex after drift correction. Also shown are representative 2D class averages of the 

particles.
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Figure 2. Three-dimensional reconstruction
a, Stereo view of the overall density map, filtered to 6.5 Å. The α-carbon traces of the TAP 

core and the N-terminal 50 residues of ICP47 are also shown. b, Two views of the overall 

density map, colored by protein subunit. c, Ribbon diagram of the poly-alanine model 

presented in two orthogonal views. The TM helices in the core of the transporter are labeled 

according to Fig 1b. Color code: TAP1, blue; TAP2, gold; and ICP47, magenta.
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Figure 3. The viral inhibitor ICP47 plugs into the transmembrane pathway
a, EM density corresponding to ICP47 (black mesh), viewed from the plane of the 

membrane. Terminal residues in the ICP47 model are indicated. b, Binding of ICP47 to TAP, 

viewed along the membrane normal from the cytoplasm. c, The helix-loop-helix structure of 

ICP47 is conserved between HSV-1 and HSV-2. Conserved residues are highlighted are in 

yellow. A red box highlights residues replaced by alanine in the “turn-to-helix” (TtH) 

mutant. d, Fluorescence-Activated Cell Sorting (FACS) analysis (three repeats) of MHC I 

surface expression in cells expressing wt and mutant ICP47.
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Figure 4. ICP47 precludes peptide binding and traps TAP in an inward-facing conformation
TAP functions via alternating access, cycling between two major conformations. In the 

absence of substrates, the transporter rests in an inward-facing state in which the two NBDs 

are separated and the translocation pathway is exposed to the cytosol. Upon association of 

substrates and ATP, the transporter undergoes a conformational change that reorients the 

TMDs and positions ATP at a closed NBD dimer interface for hydrolysis. ATP hydrolysis 

releases the substrate and resets the transporter to the resting state. ICP47 binds TAP 

stabilizes the inward-facing conformation.
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