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Abstract
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace
eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These
spectral measures are isometry invariant and therefore allow for shape comparisons with minimal
shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The
discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of
female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function,
emotion processing, and learning) of normal control subjects and of subjects with schizotypal
personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions
are discussed extensively for both the Dirichlet and Neumann boundary condition showing
advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses
employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are
performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing
geometric properties and detecting shape differences by indirectly registering topological features
such as critical points, level sets and integral lines of the gradient field across subjects. The use of
these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape
analysis is novel.
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1. Introduction
Morphometric studies of brain structures have classically been based on volume measurements.
More recently, shape studies of gray matter brain structures have become popular.
Methodologies for shape comparison may be divided into global and local shape analysis
approaches. While local shape comparisons [41,24,19] yield powerful, spatially localized
results that are relatively straightforward to interpret, they usually rely on a number of
preprocessing steps. In particular, one-to-one correspondences between surfaces need to be
established, shapes need to be registered and resampled, possibly influencing shape
comparisons. While global shape comparison cannot spatially localize shape changes, global
approaches may be formulated with a significantly reduced number of assumptions and
preprocessing steps, staying as true as possible to the original data.

This paper describes a methodology for global shape comparison based on the Laplace-
Beltrami eigenvalues and for local comparison based on selected eigenfunctions (without the
need to register the shapes). The Laplace-Beltrami operator for non-rigid shape analysis of
surfaces and solids was first introduced in [36,34,37] together with a description of the
background and up to cubic finite element computations on different representations (triangle
meshes, tetrahedra, NURBS patches). In [28,29] the eigenvalues of the (mass density) Laplace
operator were used to analyze pixel images. This article focuses on statistical analyses of the
Laplace-Beltrami operator on triangulated surfaces and of the volumetric Laplace operator on
3D solids and extends earlier works [27,35] by additionally analyzing eigenfunctions and their
topological features to localize shape differences. [27] introduces the analysis of eigenvalues
of the 2D surface to medical applications. Especially [35] can be seen as a preliminary study
to this work, involving already eigenvalues and eigenfunctions for shape analysis. Related
work in anatomical shape processing that use eigenfunctions of the Laplace-Beltrami operator
computed via standard linear FEM on triangle meshes includes [30,31] who employ the
eigenfunctions as an orthogonal basis for smoothing and the nodal domains of the first
eigenfunction for partitioning of brain structures. In [38] a Reeb graph is constructed for the
first eigenfunction of a modified Laplace-Beltrami operator on 2D surface representations to
be used as a skeletal shape representation. The modified operator gives more weight to points
located on the geodesic medial axis (also called cut locus [42]) which originated in
computational geometry (see [32,25] for its computation) and has become useful in biomedical
imaging. In [1] the Laplace-Beltrami operator is employed for surface parametrization but
without computing eigenfunctions or -values.

Previous approaches for global shape analysis in medical imaging describe the use of invariant
moments [20], the shape index [18], and global shape descriptors based on spherical harmonics
[13]. The proposed methodology based on the Laplace-Beltrami spectrum differs in the
following ways from such approaches.

1. It may be used to analyze surfaces or solids independently of their isometric
embedding whereas methods based on shperical harmonics or invariant moments are
not isometry invariant (finding large shape differences in bendable near-isometric
shapes that might only be located differently but otherwise the same, e.g. a person in
different body postures). Furthermore, some spherical harmonics based methods
require spherical representations and invariant moments do not easily generalize to
arbitrary Riemannian manifolds.

2. Only minimal preprocessing of the data is required, in particular no registration is
needed. Three dimensional volume data may be represented by its 2D boundary
surface, separating the object interior from its exterior or by the 3D volume itself (a
volumetric, region-based approach). In the former case, the extraction of a surface
approximation from a binary image volume is the only preprocessing step required.
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In the volumetric case even this preprocessing step can be avoided and computations
may be performed directly on the voxels of a given binary segmentation 1. This is in
sharp contrast to other shape comparison methods, requiring additional object
registration, remeshing, etc. The presented Laplace-Beltrami eigenvalues and -
functions are invariant to rigid transformations, isometries, and to grid/mesh
discretization (as long as the discretization is sufficiently accurate) [37] and fairly
robust with respect to noise.

This article summarizes and significantly extends previous Laplace-Beltrami shape analysis
work on subcortical brain structures [27,35]. Results are presented both for the 2D surface case
(triangle mesh), as well as for 3D solids consisting of non-uniform voxel data. Neumann spectra
are used as shape descriptors in 3D, with powerful discrimination properties for coarse
geometry discretizations. In addition to the eigenvalues (allowing only global shape
comparisons), new eigenfunction analyses are introduced employing the Morse-Smale
complex and Reeb graph to shed light on the behavior of the spectra as well as on local shape
differences. This can be done by automatically defining local geometric features described by
topological features of the eigenfunctions (e.g. critical points, nodal domains, level sets and
integral curves of the gradient field). The first eigenfunctions indirectly register these features
robustly across shapes, therefore an explicit mesh registration is not necessary. In this paper
we are mainly interested in the statistical analysis of populations of shapes. We use a study of
differences in a subcortical structure (the caudate nucleus) as a real world example to
demonstrate the applicability of the presented methods. The presented topologcial study of
eigenfunctions is a novel approach for statistical shape analyses.

Section 2 describes the theoretical background of the Laplace-Beltrami operator and the
numerical computation of its eigenvalues and -functions. Normalizations of the spectra,
properties of the Neumann spectrum as well as the influence of noise and of the discretization
are investigated. Section 3 gives an overview of the used topological structures, nameley the
Morse-Smale complex and the Reeb graph while Section 4 explains the statistical methods
used for the analysis of populations of Laplace-Beltrami spectra. Results for two populations
of female caudate shapes are given in Section 5. This section is subdivided into the 2D and 3D
analyses. Within each of these subsections, we start with a global analysis on the eigenvalues
and continue with local shape measures derived from a selection of eigenfunctions. The paper
concludes with a summary and outlook in Section 6.

2. Shape-DNA: The Laplace-Beltrami Spectrum
In this section we introduce the necessary background for the computation of the Laplace-
Beltrami spectrum beginning sequence (also called “Shape-DNA”). The “Shape-DNA” is a
fingerprint or signature computed only from the intrinsic geometry of an object. It can be used
to identify and compare objects like surfaces and solids independently of their representation,
position and (if desired) independently of their size. This methodology was first introduced in
[36] though a sketchy description of basic ideas and goals of this methodology is already
contained in [43]. The Laplace-Beltrami spectrum can be regarded as the set of squared
frequencies (the so called natural or resonant frequencies) that are associated to the eigenmodes
of a generalized oscillating membrane defined on the manifold. We will review the basic theory
in the general case (for more details refer to [37] and especially [34]).

1Note that of course other preprocessing steps might be necessary to initially obtain the geometric data, such as scanning, manual or
automatic segmentation of the image. For the purpose of shape analysis, the shape has to be given in a standard representation, which is
usually 3D voxel data or 2D triangular meshes.
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2.1. Definitions
Let f be a real-valued function, with f ∈ C2, defined on a Riemannian manifold M (differentiable
manifold with Riemannian metric). The Laplace-Beltrami Operator Δ is:

(1)

with grad f the gradient of f and div the divergence on the manifold (Chavel [7]). The Laplace-
Beltrami operator is a linear differential operator. It can be calculated in local coordinates.
Given a local parametrization

(2)

of a submanifold M of ℝn+k with

(3)

(where i, j = 1, …, n and det denotes the determinant) the Laplace-Beltrami operator becomes:

(4)

If M is a domain in the Euclidean plane M ⊂ ℝ2, the Laplace-Beltrami operator reduces to the
well known Laplacian:

(5)

The wave equation

(6)

may be decomposed into its time-dependent and its spatially dependent parts

(7)

Separating variables in the wave equation yields [8]

2In fact, Riemannian volume and volume of the boundary are spectrally determined (see also [37] where these values were numerically
extracted from the beginning sequence of the spectrum in several 2D and 3D cases).
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Thus, the vibrational modes may be obtained through the Helmholtz equation (also known as
the Laplacian eigenvalue problem) on manifold M with or without boundary

(8)

The solutions of this equation represent the spatial part of the solutions of the wave equation
(with an infinite number of eigenvalue λi and eigenfunction fi pairs). In the case of M being a
planar region, f(u, v) in equation (8) can be understood as the natural vibration form (also
eigenfunction) of a homogeneous membrane with the eigenvalue λ. The square roots of the
eigenvalues are the resonant or natural frequencies ( ). If a periodic external driving
force is applied at one of these frequencies, an unbounded response will be generated in the
medium (important e.g. for the construction of bridges). In this work the material properties
are assumed to be uniform. The standard boundary condition of a fixed membrane is the
Dirichlet boundary condition where f ≡ 0 on the boundary of the domain (see Figure 1 for two
eigenfunctions of the disk). In some cases we also apply the Neumann boundary condition
where the derivative in the normal direction of the boundary  is zero along the boundary.
Here the normal direction n of the boundary should not be confused with a normal of the
embedded Riemannian manifold (e.g., surface normal). n is normal to the boundary and
tangential to the manifold. We will speak of the Dirichlet or Neumann spectrum depending on
the boundary condition used.

The spectrum is defined to be the family of eigenvalues of the Helmholtz equation (eq. 8),
consisting of a diverging sequence 0 ≤ λ1 ≤ λ2 ≤ ··· ↑ +∞, with each eigenvalue repeated
according to its multiplicity and with each associated finite dimensional eigenspace
(represented by the corresponding base of eigenfunctions). In the case of the Neumann
boundary condition and for closed surfaces without boundary the first eigenvalue λ1 is always
equal to zero, because in this case the constant functions are solutions of the Helmholtz
equation. We then omit the first eigenvalue so that λ1 will be the first non-zero eigenvalue.

Because of the rather simple Euclidean nature of the voxel representations used later, the more
general (Riemannian) definitions given above are not necessarily needed to understand the
computation in the 3D voxel case. Nevertheless, the metric terms are helpful when dealing
with cuboid voxels (as we do) and of course for analyzing the 2D boundary surfaces of the
shapes. Furthermore, this approach clarifies that the eigenvalues are indeed isometry invariants
with respect to the Riemannian manifold. Note that two solid bodies embedded in ℝ3 are
isometric if and only if they are congruent (translated, rotated and mirrored). In the surface
case this is not true, since non-congruent but isometric surfaces exist.

2.2. Properties
The following paragraphs describe well known results on the Laplace-Beltrami operator and
its spectrum.

3We used the spherical harmonics surfaces as generated by the UNC shape analysis package [41].
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i. The spectrum is isometry invariant as it only depends on the gradient and divergence
which in turn are defined to be dependent only on the Riemannian structure of the
manifold (eq. 4), i.e., the intrinsic geometry.

ii. Furthermore, scaling an n-dimensional manifold by the factor a results in eigenvalues
scaled by the factor . Therefore, by normalizing the eigenvalues, shape can be
compared regardless of the object’s scale (and position as mentioned earlier).

iii. Changes of the membrane’s shape result in continuous changes of its spectrum [8].

iv. The spectrum does not characterize the shape completely, since some non-isometric
manifolds with the same spectrum exist (for example see [15]). Nevertheless these
artificially constructed cases appear to be very rare cf. [37] (e.g., in the plane they
have to be concave with corners and until now only isospectral pairs could be found).

v. A substantial amount of geometrical and topological information is known to be
contained in the spectrum [21] (Dirichlet as well as Neumann). Even though we cannot
crop a spectrum without loosing information, we showed in [34] that it is possible to
extract important information just from the first few Dirichlet eigenvalues (approx.
500).

vi. The nodal lines (or nodal surfaces in 3D) are the zero level sets of the eigenfunctions.
When the eigenfunctions are ordered by the size of their eigenvalues, then the nodes
of the n-th eigenfunction divide the domain into maximal n sub-domains, called the
nodal domains [8]. Usually the number of nodal domains stays far below n.

vii. The spectra have more discrimination power than simple measures like surface area,
volume or the shape index (the normalized ratio between surface area and volume,
SI = A3/(36πV2)−1) [18]. See Figure 2 for simple shapes with identical shape index,
that can be distinguished by their Laplace-Beltrami spectrum 2. Furthermore, as
opposed to the spectrum, a moment based method did not detect significant shape
differences in the medical application presented in Section 5. The discrimination
power of the spectra can be increased when employing both the spectra of the 2D
boundary surface and the 3D solid body (cf. isospectral GWW prisms in [37]).

For more properties see [37,34].

2.3. Variational Formulation
For the numerical computation, the first step is to translate the Helmholtz equation into a
variational formulation. This is accomplished using Green’s formula

(9)

(Blaschke [4] p.227) with the Nabla operator defined as

(10)

with the vector Df = (∂1f; ∂2f, …). Employing the Dirichlet (f, ϕ ≡ 0) or the Neumann
( ) boundary condition Eq. (9) simplifies to
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(11)

The Helmholtz equation (8) is multiplied with test functions ϕ ∈ C2, complying with the
boundary condition. By integrating over the area and using (11) one obtains:

(12)

(with dσ = W du dv being the surface element in the 2D case or the volume element dσ = W du
dv dw in the 3D case). Every function f ∈ C2 on the open domain and continuous on the
boundary solving the variational equation for all test functions ϕ is a solution to the Laplace
eigenvalue problem (Braess [6], p.35). This variational formulation is used to obtain a system
of equations constructing an approximation of the solution.

2.4. Implementation
To solve the Helmholtz equation on any Riemannian manifold the Finite Element Method
(FEM) [45] can be employed. We choose a tessellation of the manifold into so called elements
(e.g., triangles or cuboid voxel). Then linearly independent test functions with up to cubic
degree (the so called form functions Fi) can be defined on the triangles or cuboid voxel elements
(explained in the next section). The high degree functions lead to a better approximation and
consequently to better results, but because of their higher degree of freedom more node points
have to be inserted into the elements. See [34] or [37] for a detailed description of the
discretization used in FEM that finally leads to the following general eigenvalue problem

(13)

with the matrices

(14)

Where Fl is a piecewise polynomial form function with value one at node l and zero at all other
nodes. Here U is the vector (U1, …, Un) containing the unknown values of the solution at each
node and A, B are sparse positive (semi-) definite symmetric matrices. The solution vectors
U (eigenvectors) with corresponding eigenvalues λ can then be calculated. The eigenfunctions
are approximated by ΣUiFi. In case of the Dirichlet boundary condition, the boundary nodes
do not get a number assigned to them and do not show up in this system. In case of a Neumann
boundary condition, every node is treated exactly the same, no matter if it is a boundary node
or an inner node. Since only a small number of eigenvalues is needed, a Lanczos algorithm
[16] can be employed to solve this large symmetric eigenvalue problem much faster than with
a direct method. In this work we use the ARPACK package [2] together with SuperLU [9] and
a shift-invert method, to compute the eigenfunctions and -values starting from the smallest
eigenvalue in increasing eigenvalue order. The sparse solver implemented in Matlab uses a
very similar indirect method.
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It should be noted that the integrals mentioned above are independent of the mesh (as long as
the mesh fulfills some refinement and condition standards). Since the solution of the sparse
generalized eigenvalue problem can be done efficiently with external libraries, we will now
focus on the construction of the matrices A and B.

2.5. Form Functions
In order to compute the entries of the two matrices A and B (equation 14) we need the form
functions Fi and their partial derivatives (∂kFi) in addition to the metric values from equation
(3). The form functions are a basis of functions representing the solution space.

Any piecewise polynomial function F of degree d can easily be linearly combined by a base
of global form functions Fi (of same degree d) having the value one at a specific node i and
zero at the others. For linear functions it is sufficient to use only the vertices of the triangle
mesh as nodes. In case of a voxel the values at the 8 vertices are sufficient to define a tri-linear
function in the inside c1 + c2u + c3v + c4w + c5uv + c6uw + c7vw + c8uvw. For higher degree
approximations further nodes have to be inserted. When applying a Dirichlet boundary
condition with zero values at the boundary, we only need a form function for each node in the
interior of the domain. If we look at a 2D example (a single triangle of a triangulation), a linear
function above the triangle can be linearly combined by the three form functions at the corners.
These local functions can be defined on the unit triangle (leg length one) and mapped to an
arbitrary triangle. Figure 3 shows examples of a linear and a quadratic local form function for
triangles. It can be seen that the form function has the value 1 at exactly one node and 0 at all
the others. Note that in the case of the quadratic form function new nodes were introduced at
the midpoint of each edge, because quadratic functions in two variables have six degrees of
freedom. On each element containing n nodes exactly n local form functions will be constructed
this way. The form functions and their derivatives can be defined explicitly on the unit triangle
or unit cube. Since high order approximations lead to much better results, we mainly use cubic
form functions of the serendipity family for the computation of the spectra in this paper. To
set up these functions over a cuboid domain new nodes have to be inserted (two nodes along
each edge makes 32 nodes together with the vertices, see Figure 3). A cubic function of the
serendipity family with three variables has 32 degrees of freedom, that can be fixed by giving
the function values at these 32 locations. A full tri-cubic approach of the Lagrange family needs
64 nodes (32 along the edges, 24 inside the faces, and 8 inside the cuboid) and increases the
total degree of freedom tremendously without adding much accuracy to the solution. More
details on the construction of these local functions can be found in most FEM books (e.g.
Zienkiewicz [45]). For each element the results of the integrals (14) are calculated for every
combination m, l of nodes in the element and added to the corresponding entry in the matrix
A or B. Since this entry differs only from 0 when the associated global form functions Fi overlap
(i.e. the associated nodes share the same element) the matrices A and B will be sparse.

2.6. Cuboid Voxel Elements
For piecewise at objects the computation described above can be simplified, thus speeding up
the construction of the two matrices A and B significantly. If the local geometry is at we do not
need to integrate numerically on the manifold since the metric G (see equation 3) is constant
throughout each element. The integrals can be computed once for the unit element explicitly
and then mapped linearly to the corresponding element. This makes the time consuming
numerical integration process needed for curved surfaces or solids completely unnecessary.

As opposed to the case of a surface triangulation with a piecewise at triangle mesh (with
possibly different types of triangles), the uniform decomposition of a 3D solid into cuboid
voxels leads to even simpler finite elements. A parametrization over the unit cube of a cuboid
with side length s1, s2, s3 (and volume V) yields a diagonal first fundamental matrix G:
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(15)

(16)

(17)

These values are not only constant for an entire voxel, they are identical for each voxel (since
the voxels are identical). Therefore we can pre-compute the contribution of every voxel to the
matrices A and B once for the whole problem after setting up the form functions Fl as described
above:

(18)

The local indices i, j label the (e.g. 32) nodes of the cuboid voxel element and thus the
corresponding local form functions and their partial derivatives. These integrals can be pre-
computed for every combination i, j. In order to add (+ =) these local results into the large
matrices A and B only a lookup of the global vertex indices l(i), m(j) for each voxel is necessary.
Therefore the construction of the matrices A and B can be accomplished in O(n) time for n
elements.

2.7. Normalizing the Spectrum
As mentioned above, the Laplace-Beltrami spectrum is a diverging sequence. Analytic
solutions for the spectrum and the eigenfunctions are only known for a limited number of
shapes (e.g., the sphere, the cuboid, the cylinder, the solid ball). The eigenvalues for the unit
2-sphere for example are λi = i(i + 1), i ∈ ℕ0 with multiplicity 2i + 1. In general the eigenvalues
asymptotically tend to a line with a slope dependent on the surface area of the 2D manifold M

(19)

Therefore a difference in surface area manifests itself in different slopes of the eigenvalue
asymptotes. Figure 4 shows the behavior of the spectra of a population of spheres and a
population of ellipsoids respectively. The sphere population is based on a unit sphere where
Gaussian noise is added in the direction normal to the surface of the noise-free sphere. Gaussian
noise is added in the same way to the ellipsoid population. Since the two basic shapes (sphere
and ellipsoid) differ in surface area, their unnormalized spectra diverge (Figure 4a), so larger
eigenvalues lead to a better discrimination of groups. Surface area normalization greatly
improves the spectral alignment (Figure 4b). Figures 4c and d show zoom-ins of the spectra
for small eigenvalues. Even for the surface area normalized case, the spectra of the two
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populations clearly differ. Therefore the spectra can be used to pick up the difference in shape
in addition to the size differences.

A similar analysis can be done for 3D solids. The eigenvalues for the cuboid (3D solid) with
side length s1, s2 and s3 for example are

with M, N, O ∈ ℕ+ for the Dirichlet case and M, N, O ∈ ℕ for the Neumann case. In general
the Dirichlet and Neumann eigenvalues of a 3D solid asymptotically tend to a curve dependent
on the volume of the 3D manifold M:

(20)

Figure 5 shows the discrete Dirichlet spectra of a unit cube (V = 1), a cuboid with side length
1, 1.5, 2 (V = 3) and a unit ball ( ). It can be seen how the difference in volume manifests
itself in different scalings of the eigenvalue asymptotes.

A statistical method able to distinguish shapes needs to account for this diverging behavior so
not to limit the analysis to an analysis of surface area or volume. Therefore the Laplace-
Beltrami spectra should be normalized. Figure 6 shows the spectra of the volume normalized
solids. The zoom-in shows that shape differences are preserved in the spectra after volume
normalization.

2.8. Exactness of the Spectrum
When using a FEM with p-order form functions, the order of convergence is known. For
decreasing mesh size h it is p+1 for eigenfunctions and 2p for eigenvalues [40]. This is the
reason, why it makes sense to use higher order elements (we use up to cubic) instead of a global
mesh refinement.

To verify the accuracy of the numerically computed spectra, we compare the eigenvalues of a
cuboid with side length (1, 1.5, 2) and of a ball with radius one to the known exact values. In
the case of the cuboid we computed the first 200 eigenvalues. The maximum absolute
difference occurring in the Dirichlet spectra is less than 0.044 (which is less than 0.015 %
relative error). This is due to the fact that the voxels represent the cuboid exactly without any
approximation error at the boundary. The Neumann spectra have only a maximum absolute
difference of less than 0.01 (which is less than 0.005% relative error), due to the higher
resolution at the boundary.

In case of the ball an exact voxel representation is not possible, therefore the numerical results
differ more strongly from the analytical ones especially for high eigenvalues (up to 6% relative
error for the first 100 Dirichlet eigenvalues). Since the exact values of the object represented
by the voxelization are unknown, a fair analysis of the accuracy of the computation is difficult.
Nevertheless, it is interesting to see that the numerical values closely approximate the exact
ones of the ball the more voxels are used (see Figure 7, the value r describes the number of
voxels used in the direction of the radius).
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2.9. Neumann Spectrum
To demonstrate that Neumann spectra can be used to pick up significant geometric features
much faster than Dirichlet spectra the eigenvalues of the cube with a tail (see Figure 8, left)
were computed for the Neumann and the Dirichlet boundary condition and compared to the
values of the cube. Figure 8 (right) shows the differences of the first 150 eigenvalues for the
two different boundary conditions. Since the cube with tail has a larger volume, its eigenvalues
are expected to be smaller than the values of the cube (see Section 2.2 2.). This fact is reflected
in the graph (Figure 8 right) where the differences are always positive. It can be clearly seen
that the Neumann spectrum picks up the differences much earlier than the Dirichlet spectrum.
This is due to the fact that the Neumann boundary condition allows the solutions to oscillate
at the boundary whereas the Dirichlet condition forces them to be zero on the boundary,
strongly reducing their freedom especially in the region of the tail.

A 2D example of a square with a tail (ST) illustrates the different behaviors of Neumann and
Dirichlet boundary conditions. Figures 9 and 10 depict a comparison of a few eigenfunctions
of the square with tail (ST) and of the unit square (S1) for both the Dirichlet and the Neumann
case. For the Dirichlet case (Figure 9), the lower eigenfunctions do not detect the attached tail
(9 a,e and b,f). For higher frequencies the nodal domains shrink (9 c,g) until they are finally
able to slip into the smaller features. Because of the restrictive Dirichlet boundary condition,
this only occurs around the 18th eigenfunction. From a signal processing point of view it is
sensible that functions with higher frequencies can be used to analyze smaller features.

The Neumann spectrum behaves differently (Figure 10). Because of the higher degree of
freedom (with respect to the free vibration of the eigenfunctions at the boundary), small features
like the tail influence the eigenfunctions already very early. It is unnecessary to compare the
smallest eigenvalue which is always zero with constant eigenfunctions. But already the first
non-constant eigenfunction (10 d) is very different from the first non-constant eigenfunctions
of the square (10 a) since the extremum is shifted into the tail. This is reflected in a change of
more than 50% of the corresponding eigenvalue. The next eigenfunction (10 e) of ST on the
other hand is zero in the tail region and therefore almost identical with (10 a). The corresponding
eigenvalues are almost the same. Also the next few eigenfunctions (10 b ↔ f and c ↔ g)
correspond with each other on the square region.

2.10. Influence of Noise
As demonstrated in Section 2.7, volume normalizations can lead to good spectral alignments.
Nevertheless, having identical noise levels for the shape populations under investigation is
essential, since different noise levels will affect surface areas differently (high noise levels
yield highly irregular bounding surfaces especially if the voxel resolution is low). Because
surface area is contained in the spectrum this has an influence on the eigenvalues. Violating
the assumption of similar noise levels therefore leads to the detection of noise level differences
as opposed to shape differences, as demonstrated in Figure 11 for noisy spheres (surfaces) and
Figure 12 where the spectra of the ball (solid) are depicted with different levels of added noise.
A fixed probability for adding a voxel to or removing a voxel from the object boundary was
chosen for each experiment. Only voxels maintaining 6-connectivity were added or removed,
guaranteeing a single 6-connected solid component. Increasing the noise level moves the
corresponding spectra further apart. It can be seen in Figure 12 that the ball cannot be accurately
represented with only a low voxel resolution, especially with high noise levels, the spectra
move far apart. Such a noisy ball could also be seen as a noisy cube. For the analysis of
identically acquired and processed shapes – e.g., obtained through manual segmentations of
MRI (magnetic resonance image) data – a similar noise level is a reasonable assumption; we
also assume the accuracy of the spectra calculations to stay the same for the whole population.
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2.11. Influence of the Discretization
Domain discretizations can significantly affect computational results. Figure 13 shows a two-
dimensional example for a domain consisting of a small and a large square connected by a thin
rectangle. Insufficient degrees of freedom, due to a coarse discretization, can lead to
insufficiently resolved vibrational modes. In particular, thin structures may simply be
overlooked if not enough nodes are contained in them. The Neumann spectra are not influenced
as strongly by the discretization, as they allow free nodes on the boundary.

3. Topological Analysis of Eigenfunctions
Eigenfunctions are real valued functions defined on the whole manifold. They are more difficult
to deal with than eigenvalues but can be studied with topological methods, for example
analyzing level sets and critical points. For the topological analysis of eigenfunctions we will
construct the Morse-Smale (MS) complex on 2D surface representations and the Reeb graph
inside the 3D voxel volume.

The MS complex [39,22] splits the domain of a function h into regions of uniform gradient
flow. Its edges are specific integral lines (maximal paths on the surface and whose tangent
vectors agree with the gradient of h) that run from the saddles to the extrema. For the
construction of the MS complex for piecewise linear functions on triangulated surfaces see
[11], where the concept of persistence is also described. It can be used, for example, to remove
topological noise from the complex by pairing and canceling saddle/extrema combinations.

The MS complex is closely related to the Reeb graph [33], that captures the evolution of the
level set components of the function and is often used in shape analysis applications. A level
set is the pre-image h−1(x) for a specific level x ∈ ℝ. The Reeb graph of a function h is obtained
by contracting the connected components of the level sets to points. Thus the branching points
and leaves (end points) in a Reeb graph correspond to level set components that contain a
critical point of h. The leaves are the extrema while the branching points are saddles, where
one edge is split into two (or more) or where edges are merged. The other points can be
considered to lie on the edges between leaves and branching points. Note that the Reeb graph
is a one-dimensional topological structure (a graph) with no preferred way of drawing it in the
plane or space or attaching it to M (as opposed to the MS complex). Its edges are often manually
attached to the shape by selecting the center of the represented level set.

Both the MS complex and the Reeb graph have been extensively used for shape processing
and topological simplification. E.g. the MS complex has been constructed for a user selected
eigenfunction of the mesh Laplacian for the purpose of meshing in [10].

So why is it of interest to study the eigenfunctions at all? In fact in addition to their relation to
the corresponding eigenvalue (as demonstrated in the examples) they have some interesting
properties. They are also isometry invariant and change continuously when the shape is
deformed (although when ordered according to the magnitude of their eigenvalues, the ordering
might switch). The functions with the smallest eigenvalues are more robust against shape
change or noise, as they present the lower frequency modes. Another feature is their optimal
embedding property used in manifold learning (see [3]). For example the first non-constant
eigenfunction gives the smoothest embedding of the shape to the real line (of course complying
with the boundary condition).

We will employ the eigenfunctions to give an indirect registration of similar shapes. As the
(lower) eigenfunctions are stable across the shapes, they have similar values in similar location.
Thus, we can measure local shape differences by analyzing landmarks such as lengths of level
sets or integral lines, or areas of level surfaces in 3D. A simple example is given Figure 14
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where two planar domains are shown together with their first eigenfunctions (color shaded)
and level sets. The two domains where modeled with the medial modeler by adjusting the
medial axis and the thickness function and then processed (meshed, FEM computation …) as
described in [44]. It can be seen how the extrema and level sets are at similar locations for both
shapes, even though bending and thickness changes are involved. The length of the level sets
can be used to do a thickness comparison. We will demonstrate similar comparisons later for
3D solids. The Reeb graph is a line from the minimum to the maximum running through the
midpoints of each level set and can be used to measure length. For the simple example in Figure
14 the MS complex cannot be constructed as no saddles are involved. However, the MS
complex will be helpful for studying higher eigenfunctions on surfaces, where additional
interesting features such as saddles and multiple extrema exist.

4. Statistical Analysis of Groups of LB Spectra
The (possibly normalized) beginning sequence of the Laplace-Beltrami spectrum (called
ShapeDNA) can be interpreted as a point  in the n-dimensional positive Euclidean
space. Given the ShapeDNA vi of many individual objects divided into two populations A and
B we use permutation tests to compare group features to each other (200,000 permutations
were used for all tests). We call a set of objects the object population. Permutation testing is a
nonparametric, computationally simple way of establishing group differences by randomly
permuting group labels. Let SA = {vi} and SB = {vj} denote two sets of ShapeDNA associated
to individuals for group A and for group B respectively. Assume for example that we want to
investigate if elements in SA have on average a larger Euclidean norm than the elements in
SB (due to some external influences). A possible test statistic stat would be the sum of the
lengths of the elements in SA (stat:= Σvi∈SA||vi||). For the permutation test we then randomly
distribute the subjects into groups A and B, keeping the number of elements per group fixed.
We define the p-value to be the fraction of these permutations having a greater or equal sum
stat than the original set SA (in other words the relative frequency of occasions where the
random label outperforms the original labeling). The values of SA will be considered
significantly larger than the ones of SB at a prespecified significance level α if p ≤ α (taken as
α = 5% here). Note, that rejecting the null hypothesis of two populations being equal given a
significance level α only implies that the probability of making a type I error (i.e., the
probability of detecting false positives; “detecting a difference when there is none in reality”)
is α, but does not exclude the possibility of making such an error.

Confidence intervals for the estimated p-values p̂ may be computed following Nettleton et al.
[26] for 100(1 − γ)% confidence as

where

is the inverse of the cumulative distribution function of the standard normal distribution,
erf−1(·) is the inverse error function, N denotes the number of samples (200,000 in our case).
The approximation is based on the binomial distribution and holds for Np ≥ 5. Figure 15 shows
the confidence intervals for a confidence range of [90%, 99%] for p-values p ∈ {0.0001, 0.05}.
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Note, that the plots are the same, except for scaling, which depends only on the different p-
values. While these are just probabilistic characterizations of the confidence in the estimated
p-value they demonstrate that using 200, 000 permutations will give good estimations up to
the first or even the second non-zero decimal place.

We use three different kinds of statistical analyses (all shapes are initially corrected for brain
volume differences, also see [14] for details on permutation testing):

1. A nonparametric, permutation test to analyze the scalar quantities: volume and surface
area.

2. A nonparametric, multivariate permutation test based on the maximum t-statistic to
analyze the high-dimensional spectral feature vectors (Shape-DNA in 2D and 3D
cases).

3. Independent permutation tests of the spectral feature vector components across groups
(as in (2)), followed by a false discovery rate (FDR) approach to correct for multiple
comparisons, to analyze the significance of individual vector components.

To test scalar values the absolute mean difference is used as the test statistic s = |μa−μb|, where
the μi indicates the group means. The maximum t-statistic is chosen due to the usually small
number of available samples in medical image analysis, compared to the dimensionality of the
ShapeDNA feature vectors (preventing the use of the Hotelling T2 statistic [17]). It is defined
as

(21)

Here, N is the vector dimension, v¯A,j indicates the mean of the j-th vector component of group
A, and SEj is the pooled standard error estimate of the j-th vector component, defined as

(22)

where ni is the number of subjects in group i (with i ∈ A,B) and σi,j is the standard deviation
of vector component j of group i. The maximum t-statistic is particularly sensitive to differences
in at least one of the components of the feature vector [5]. It is a summary statistic, which
allows for the detection of differences between feature vectors across populations. However,
it does not determine which components show statistically significant differences.

Nevertheless, testing the individual statistical significance of vector components is possible.
Such testing needs to be performed over a whole set of components, since it is usually not
known beforehand which component of a ShapeDNA vector will be a good candidate for
statistical testing. (I.e., we can in general not simply pick one individual vector component
(eigenvalue) for statistical testing.) To account for multiple comparisons when testing over a
whole set of vector components, the significance level needs to be adjusted (since “the chance
of finding differences that are purely random in nature increases with the number of tests
performed”). See [12,14] for background on schemes for multiple comparison corrections.
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5. Results
Volume measurements are the simplest means of morphometric analysis. While volume
analysis results are easy to interpret, they only characterize one morphometric aspect of a
structure. The following Sections describe the Laplace-Beltrami and the volumetric Laplace
spectrum as a method for a more complete global structural description using the analysis of
a caudate as an exemplary brain structure. Note, that it makes sense to look at the 2D surface
and at the 3D solid as the spectra of the surfaces contain other information than the solid spectra.
In [37] examples of iso-spectral 3D solids (orthogonal “GWW” prism) were presented, where
the spectral analysis of their 2D boundary shells was capable of distinguishing the shapes.

For brevity all results are presented for the right caudate only.

5.1. Populations and Preprocessing
Magnetic Resonance Images (MRI) of the brains of thirty-two neuroleptic-naïve female
subjects diagnosed with Schizotypal Personality Disorder (SPD) and of 29 female normal
control subjects were acquired on a 1.5-T General Electric MR scanner. Spoiled-gradient
recalled acquisition (SPGR) images (voxel dimensions 0.9375 × 0.9375 × 1.5 mm) were
obtained coronally. The images were used to delineate the caudate nucleus (see Figure 16) and
to estimate the intracranial content (ICC) used for volume normalization to adjust for different
head sizes. For details see [23].

The caudate nucleus was delineated manually by an expert [23]. For the 2D surface analysis
the isosurfaces separating the binary labelmaps of the caudate shapes from the background
were extracted using marching cubes (while assuring spherical topology). Analysis was then
performed on the resulting triangulated surface directly (referred to as unsmoothed surfaces in
what follows) as well as on the same set of surfaces smoothed and resampled using spherical
harmonics3 (referred to as smoothed surfaces in what follows). The unsmoothed surfaces are
used as a benchmark dataset subject to only minimal preprocessing, whereas the smoothed
surfaces are used to demonstrate the influence of additional preprocessing. See Figure 16(right)
for an example of a smoothed and an unsmoothed caudate.

5.2. Volume and Area Analysis
For comparison, results for a volume and a surface area analysis are shown in Figure 17. As
has been previously reported for this dataset [23], subjects with schizotypal personality disorder
exhibit a statistically significant volume reduction compared to the normal control subjects.
While smoothing plays a negligible role for the volume results (smoothed: p = 0.008, volume
loss 7.0%, i.e., there is a chance of p = 0.008 that the volume loss is a random effect;
unsmoothed: p = 0.013, volume loss 6.7%), the absolute values of the surface area are affected
more, since smoothing impacts surface area more than volume. The results for the female
caudates show the same trend for the surface areas in the smoothed and the unsmoothed cases.

5.3. Laplace-Beltrami Spectrum Results (2D Surface)
The LB spectrum was computed for the female caudate population (on the surfaces) using the
two different normalizations:

i. The shapes were volume normalized to unit intracranial content (UIC) (using the ICC
measurements) to account for different head sizes.

ii. The shapes were normalized to unit caudate surface area (UCA) to analyze shape
differences independently of size.
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A maximum t-statistic permutation test on a 100-dimensional spectral shape descriptor shows
significant shape differences (see Table 1) for caudate surface area normalization for the
unsmoothed surfaces, but not for the smoothed ones. Surface area normalization is the strictest
normalization in terms of spectral alignment. Testing for surface area independently yields
statistically significant results, listed in Table 1.

Figure 18 indicates that using too many eigenvalues has a slightly detrimental effect on the
observed statistical significance. This is sensible, since higher order modes correspond to
higher frequencies and are thus more likely noise, which can overwhelm the statistical testing.
It is thus sensible to restrict oneself only to a subset of the spectrum (e.g., the first twenty).
However, this subset needs to be agreed upon before the testing and cannot be selected after
the fact. Note, that the Laplace-Beltrami-Spectrum results of Table 1 show statistically
significant shape differences even when the strong influence of surface area is removed, which
suggests that the Laplace-Beltrami-Spectrum indeed picks up shape differences that
complement area and volume findings. The Laplace-Beltrami-Spectrum can detect surface area
differences (since the surface areas may be extracted from the spectrum) and can distinguish
objects with identical surface area or volume based on their shape.

It should be noted that tests with the twelve invariant moments (invariant with respect to
similarity group actions) as proposed in [20] did not yield statistically significant shape
differences for the caudate shape population, showing that the spectrum has more
discrimination power here (as the first few eigenvalues are sufficient to detect differences
between the groups).

5.4. Laplace-Beltrami Eigenfunctions (2D Surface)
To explore why some of the eigenvalues are statistically significant, we investigate their
associated eigenfunctions. This will also guide our search for new shape descriptors based on
the eigenfunctions of the Laplace Betrami operator. In Fig. 18 (bottom) the eigenvalue λ2 has
a low p-value of 0.0003. Since the caudate shapes are rather long and thin, not only the gradients
of the first non-zero eigenfunction, but also of the second are aligned with the general direction
of the caudate shape.

It can be seen in Figure 19 that the first non-constant eigenfunction (right) has extrema at the
two ends of the shape. Due to its simplicity it is not very descriptive, but maps the shapes nicely
to the real line along its main direction, thus giving an implicit registration along their main
trend. The second eigenfunction (left and middle) has two maxima at the tips of the shape, one
minimum at the outer rim and a saddle in the middle of the inner rim. The green curves denote
the nodal lines (zero level sets) and the blue and red curve are constructed by following the
gradient from the saddle up to the maxima (red) and down to the minimum (blue), thus
constructing the Morse-Smale complex (see Section 3).

The second eigenfunction captures the main direction of the shape, which can be seen nicely
at the green nodal lines and the blue curve being orthogonal to the main direction and spread
well apart. Additionally, the second eigenfunction captures the thickness as the minimum and
the maxima are located at opposing rims of the shape. As all the caudates in this population
are of similar shapes, this behavior is true for all of them. In some cases we have an additional
saddle-minimum pair at the outer rim that can be identified as topological noise induced by
the mesh (see Fig. 20). Such noisy pairs can be detected and canceled using the concept of
persistence [11] pairing related extrema/saddle combinations according to their significance.

To analyze the shapes we performed the statistical test on the following descriptors:

(hc) the head circumference (long green curve)
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(wc) the waist circumference (blue curve)

(tc) the tail circumference (short green curve)

(l) the length (red curve).

We obtained the following p-values for the unit intracranial content (UIC) and the unit caudate
surface area (UCA) normalized cases:

UIC UCA

hc p = 0.0015 p = 0.45

wc p = 0.0016 p = 0.053

tc p = 0.007 p = 0.039

1 p = 0.21 p = 0.0003

The statistically significant cases are printed in bold. For the intracranial content normalized
case significant differences are detected in all the three circumferences, but not in the lengths
of the shape. The caudate surface area normalization principally reverses the results. This could
be expected as the main surface area lies in the shell of these cylindrical shapes and not at the
cylinder caps. Therefore a surface area normalization seems to adjust the circumferences and
changes the lengths instead. Nevertheless, we still pick up statistically significant differences
in the tail region of the shapes (which can also be expected as the head has more surface area
than the tail).

The intracranial content normalized results suggest that shape differences are mainly in shape
thickness as opposed to shape length. Figure 21 shows a group comparison of the waist
circumferences (top) of the ICC normalized shapes, as well as the differences in length after
caudate area normalization (bottom). Note also that in the unit caudate area case, the length
indicates an increase in mean distance between the nodal lines. This explains why the
corresponding eigenvalue is also significantly smaller for the SPD population (as it is related
to the frequency of the oscillation, which is related to the size of the oscillating domains).

Similar to Figure 14 it is possible to wrap more level sets around the caudate shapes (see Fig.
22), with the difference that now we get closed curves. Again the level sets yield an indirect
registration of the shapes and present a method to detect local circumference differences. Note
that we could actually construct a common parametrization (e.g. on the sphere) by taking the
level and the position on the closed level set as the two parameters, but this explicit
parametrization is not needed. Figure 23 shows a plot of the level set lengths of a few caudate
shapes. The p-value for the whole population can be found in Figure 24 and indicate that not
only the thinner regions in the tail (level 0.2) are significantly different, but also the region at
the beginning of the head (level 0.7) show highly significant differences.

5.5. Laplace Spectrum Results (3D Solid)
As we deal with 3D solid objects it makes sense to also look at the solid instead of analyzing
the surface only. The Laplace spectrum of the 3D voxel data was computed for two different
normalizations:

i. The shapes were volume normalized to unit intracranial content (using the ICC
measurements) to account for different head sizes.

ii. The shapes were normalized to unit caudate volume to analyze shape differences
independently.
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In order to get more inner nodes especially into the very thin tail region of the caudate shapes
we additionally employed the dual of the voxel graph. The dual voxel graph is the voxel image
where each voxel of the original image (regular voxel image) is considered to be a vertex of
the dual graph. Voxels inside the domain become inner vertices while voxel just outside of the
domain’s boundary now become boundary vertices. Figure 25 depicts a 2D case (using pixels)
with the original regular domain on the left and the dual on the right. The dual graph enlarges
the domain by half a layer thus creating new inner nodes needed especially inside the thinner
features (tail). The use of the dual graph is helpful since a global refinement of the voxels leads
to large FEM models that may cause memory problems on some standard PC’s. Note that in
3D the number of voxels increases by the factor 8 for each refinement step, this will quickly
get large, especially if a higher order FEM is used, needing many nodes per voxel. The main
difficulty lies in solving the large eigenvalue problem as the LU decomposition (SuperLU
libary) might require a lot of additional memory if a large amount of fill-ins is generated4.

Since the two populations show significant differences in volume, surface area, local shape
thickness and in their 2D surface spectra (see above), we expect to find significant differences
also in their 3D volume spectra. The following paragraphs present first the Dirichlet, then at
the Neumann spectrum results for both the regular and dual voxel graph.

5.5.1. Dirichlet Spectra—Figure 26 shows the statistical results for the regular voxel graph
and its dual for the caudate populations. The graph shows the corresponding p value (see
Section 4) when using the first N eigenvalues of the spectra for the statistical analysis (unit
intracranial content). Recall that not just a single eigenvalue is used but the whole beginning
sequence of the first N values (therefore we call these plots accumulated statistic plots). A p
value below the 5% horizontal line is considered to be statistically significant. In such a case
the beginning sequence of the spectrum is considered to be able to distinguish between the two
caudate populations (NC and SPD). Figure 26 shows that the beginning sequence of the
Dirichlet spectrum does not yield any statistically significant results. Employing the dual graph
yields lower p-values when higher eigenvalues get involved. This observation is sensible,
considering the fact that especially in the thin tail part of the caudates only very few inner nodes
exist (see Section 2.11 for the effects of low resolution). The dual graph has more degrees of
freedom, introducing inner nodes in the thin tail area, and therefore improves the result. In unit
caudate volume case we did not find any significant differences either. For a detailed analysis
employing the Dirichlet spectrum higher voxel resolutions would be necessary. Due to the low
voxel resolution the computed eigenfunctions do not seem to accurately represent the real
eigenfunctions of the caudate shapes.

5.5.2. Neumann Spectra—As demonstrated in section 2.9, the Neumann spectrum can help
to identify shape differences much earlier than the Dirichlet spectrum. Figure 27 shows the
accumulated statistics plots for different normalizations of the Neumann spectra for the regular
and the dual case. In both cases (regular and dual) the intracranial content normalized spectra
show very similar behavior (27 a,b): already very early, significant differences are detected.
Because these differences might simply reflect the different caudate volumes (known to be
significant) a normalization to unit caudate volume (27 c,d) is applied to reveal volume-
independent shape differences. The eigenvalues in the regular case (27 c) do not show
statistically significant shape differences until about 150 eigenvalues are involved, however,
the dual case (27 d) shows a significant p value already for 50 or more eigenvalues used. The
reason seems to be that the higher frequency eigenfunctions have smaller nodal domains and
can thus better detect the smaller features, presumably in the tail region. This assumption aligns

4The examples in this paper were run on computers with up to 3GB memory without any problems.
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with the Dirichlet case (Figure 26 dual) where better p-values are obtained when employing
higher frequencies.

The accumulated results in Fig. 27 can be partially explained by analyzing the p-values of the
individual eigenvalues (see Fig. 28). It can be seen that the p-value of the eigenvalue λ5 is very
low in both the regular and the dual voxel graphs (marked in red). This leads to significant
results very early in the accumulated plots. Furthermore, the low p-values around the 50th
eigenvalue (the 52nd in particular, also marked in red) in the dual case seem to produce the
significant results in the accumulated plots above.

5.6. Laplace Eigenfunctions (3D Solid)
Similar to the analysis of interesting eigenfunctions in the 2D surface case it makes sense to
analyze the eigenfunctions in 3D. By looking at the nodal surfaces (zero level sets) of the
eigenfunctions λ5 and λ52 (Fig. 29) it can be noticed that these eigenfunctions, whose gradient
field is always orthogonal to the nodal surfaces, again follow the main trend of the shape (for
the 52nd function only in the tail region). We focus on the 5th eigenfunction (due to its
simplicity) and analyze its nodal surfaces with respect to two hypotheses. As can be seen in
the example in Figure 29, the nodal surfaces of the 5th eigenfunction are usually 4 separated
components (true in all except for 3 cases). First we want to relate the eigenfunction to the
significant eigenvalue. As the eigenvalues are the square roots of the frequencies of the
oscillation, the size of the nodal domains and therefore the distances of the nodal surfaces
(green lines in Figure 29 bottom) should yield significant results after the caudate volume
normalization. Furthermore, we know from the 2D analysis that significant changes in
thickness (before caudate area normalization) are present mainly in the tail region of the shapes.
Therefore, we will test the hypotheses that

i. the mean distance of the nodal surfaces (l1) on the unit volume caudates are larger
for the SPD population (leading to a smaller eigenvalue EV5).

ii. the mean boundary length (l2) and the mean surface area (l3) of the small nodal surface
components in the tail region (removing the large component in the head) are smaller
for the SPD population.

For the first experiment, we compute the barycenter of the vertices of each nodal surface
component and use it as a representation of that component. We then connect neighboring
components with each other (green line in Fig. 29 bottom) and compute the mean distance
between neighboring components. Note that the green line is a skeletal representation of the
shape. In fact, it is the Reeb graph [33], as each level set component is represented by a node
(red dot) which is connected to its neighbors by the green edges. Thus, this skeletal model
represents the topological structure of the analyzed eigenfunction EV5 which yields an
interesting shape descriptor, that could be used for other application, such as non-rigid
registration. For both experiments we obtained the following p-values for the unit intracranial
content (UIC) and unit caudate volume (UCV) cases:

UIC UCV

l1 p = 0.21 p = 0.0099

l2 p = 0.0001 p = 0.0003

l3 p = 0.0019 p = 0.015

For the first experiment we have significant values for the mean distances of the nodal surfaces
after caudate volume normalization. We detect an increase in length for the SPD population,
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which goes in line with the significant decrease of the 5th eigenvalue, related to the size of the
nodal domains (see Figure 30). All the values for l2 and l3 are statistically significant, where
especially the mean boundary lengths (similar to the waist and tail circumferences in 2D) are
highly significant (see also Figure 31 for the direct comparison of the boundary lengths in the
UIC case).

6. Conclusion
This paper describes methods for global and local shape analysis using the Laplace-Beltrami
eigenvalues and eigenfunctions with Dirichlet and Neumann boundary conditions for 2D
surfaces (triangle meshes) and 3D volumetric solids (voxel data). The eigenvalues and -
functions including their geometric and topological features are defined invariantly wrt. mesh,
location, parametrization and depend on the isometry type only. Our experiments corroborate
their robustness wrt. noise. We demonstrated their discrimination power successfully at a real
application in medical imaging to distinguish populations of similar shapes.

The Laplace-Beltrami eigenvalues are well suited as a global shape descriptor, without the
need to register the shapes. They could successfully be employed to detect true shape
differences of the two populations (using the maximum t-statistic) even after normalization
hinting at caudate shape differences in Schizotypal Personality Disorder. It could be
demonstrated that the volumetric Neumann spectra can detect statistically significant shape
differences when applied directly to the voxel data. These computations are feasible on a
standard desktop computer. The Neumann spectra are of interest, since they recognize shape
differences much earlier than the Dirichlet spectra and also work much better if the voxel
resolution is very low. Especially the higher eigenvalues yield statistically significant results,
indicating true shape differences mainly in areas with smaller features.

Additionally, we proposed a novel method to employ the eigenfunctions on surfaces for the
detection and registration of features across shapes. We introduced a topological analysis
(Morse-Smale complex and nodal curves) of selected eigenfunctions to define geometric
features and to localize shape differences (here the local thickness of the caudate shapes). Also
the topological analysis of eigenfunctions in 3D data is new and yields interesting geometric
entities (distance, boundary length and surface areas of nodal surfaces) which underline the
shape differences in the presented application (thickness differences and length differences for
the unit volume caudates). These geometric properties also contribute towards an interpretation
of the corresponding eigenvalues.

The presented results are promising and show that the spectra (eigenfunctions and eigenvalues)
of the Laplace-Beltrami operator are capable shape descriptors, especially when combined with
a topological analysis, such as locations of extrema, behavior of the level sets and the
construction of the Morse-Smale complex (or Reeb graph). The presented methods are
expected to be applicable in other settings. Future work will focus on the possibility to compare
shape based on a specific size of the features of interest (multiresolution shape matching),
founded on the frequency analysis delivered by the Laplace spectra. Another direction of
research will be the non-rigid registration of shapes employing eigenfunctions and their
topological features. Furthermore, it is of interest to construct generalized feature vectors
consiting of 2D and 3D (geometric and topological, global and local) features for the fast
comparison of shapes or the retrieval of objects from large shape databases.
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Fig. 1.
Eigenfunction 30 and 50 of the disk.
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Fig. 2.
Objects with same shape index but different spectra
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Fig. 3.
A linear and a quadratic form function and location of 32 nodes for cubic serendipity FEM
voxel.
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Fig. 4.
Spectral behavior from top to bottom: (a) unnormalized, (b) Area normalized, (c) unnormalized
(zoom), (d) Area normalized (zoom).
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Fig. 5.
Unnormalized exact spectra of cube, cuboid, ball.
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Fig. 6.
Volume normalized spectra and zoom-in.
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Fig. 7.
Approximation of the Ball.
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Fig. 8.
The first 150 eigenvalues of the cube with tail subtracted from the eigenvalues of the cube for
the Dirichlet and Neumann case.

Reuter et al. Page 30

Comput Aided Des. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Eigenfunctions for Dirichlet boundary conditions for a square (top) and a square with tail
(bottom). Low frequency (low eigenvalue) eigenfunctions do not probe the tail region due to
the restrictive Dirichlet boundary conditions. Differences are picked up for high frequencies
only where the higher spatial frequencies of the eigenfunctions allow for a probing of the tail
region.

Reuter et al. Page 31

Comput Aided Des. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Eigenfunctions for Neumann boundary conditions for a square (top) and a square with a tail
(bottom). Differences between the shapes are picked up already for small eigenvalues, since
the Neumann boundary conditions allow the tail to swing freely for low frequencies.
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Fig. 11.
Spectra of a sphere with different noise levels. The noise-free case on the left demonstrates the
accuracy of the numerical eigenvalue computations. Spectra were normalized to unit surface
area. Black horizontal lines: analytic spectrum of the noise-free sphere. Increasing levels of
noise from left to right.
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Fig. 12.
Influence of noise on the ball spectrum (Dirichlet). Noise-levels influence the spectral signature
of a shape.
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Fig. 13.
Eigenmode 19 for Dirichlet boundary conditions for different mesh refinements. Eigenmode
contributions may be overlooked for coarse discretizations (left) in comparison to a fine
discretization (right). In particular, thin structures may not get sufficiently probed for coarse
discretizations.
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Fig. 14.
First non-constant eigenmode for two similar shapes. Red and blue dots at the tips denote the
extrema, the green curves are some level sets. The Reeb graph (gray curve) approximates the
medial axis.
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Fig. 15.
Confidence intervals for p ∈ {0.0001, 0.05} with N = 200, 000 permutations
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Fig. 16.
Example of a caudate shape consisting of cuboid voxels (left). Exemplary caudate surface
shape unsmoothed and with spherical harmonics smoothing (right).
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Fig. 17.
Group comparisons for volume differences (top) and surface area differences (bottom).
Smoothed results prefix ‘s’, unsmoothed results prefix ‘us’. Volume and surface area
reductions are observed for the SPD population in comparison to the normal control population.
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Fig. 18.
Maximum t-statistic results of area normalized case (top) for the first n eigenvalues, i.e. shape-
DNA’s of different length, (solid line: unsmoothed, dashed line: smoothed) and (bottom) for
individual eigenvalues (unsmoothed case) with FDR multiple comparison correction. The
black horizontal lines correspond to the 5% significance level and the 5% FDR corrected
significance level respectively. Since the statistically most significant eigenvalue cannot be
selected after the statistical analysis, a shape-DNA-based analysis with prespecified length is
useful.
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Fig. 19.
Left and middle: Eigenfunction (EF) 2 with maxima at tips (red), minimum at outer rim (blue,
middle) and saddle at inner rim (green, left), the integral lines (red and blue curve) run from
the saddle to the extrema. Right: EF 1 with extrema at the tips and no saddle. The closed green
curves denote the zero level sets (two for EF 2 and only one for EF 1).
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Fig. 20.
Noisy Morse-Smale complex of the second non constant eigenfunction on the outer rim (left)
and close-up (middle). After canceling the saddle with the closest minimum, only one minimum
remains and the red integral lines from the saddle to the two maxima at the head and tail
disappear.
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Fig. 21.
Group comparisons for waist circumferences differences (left) and length differences (right)
after caudate area normalization. A waist length reduction can be observed for the SPD
population in comparison to the normal controls (unit ICC). After caudate area normalization,
an increase in length can be seen.
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Fig. 22.
100 level sets wrapped around two exemplary caudate shapes using the first eigenfunction.
The absence of any saddles guarantees that each level set has only one component.
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Fig. 23.
Lengths of level sets (mapped onto the unit interval) of 8 exemplary shapes (sampling at 200
levels). Red curves: SPD subjects, green curves: normal controls.
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Fig. 24.
p-value for the whole population on each level set (sampling at 200 levels). The red line marks
the significance level corrected for multiple comparisons (FDR).
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Fig. 25.
Regular pixel domain (left) and its dual (right).
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Fig. 26.
Accumulative maximum t-statistic results (unit intracranial content, Dirichlet) for the regular
(left) and the dual (right) voxel graphs. Employing the dual graph yields lower p-values. This
may be attributed to the better suitability of the dual graph for probing the thin tail regions of
the caudate shapes. However, there is no statistical difference at a significance level of α = 5%.
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Fig. 27.
Accumulated statistic, Neumann boundary conditions. Statistically significant shape
differences are detected as expected for the unit intracranial content cases (a and b) (due to the
caudate volume differences between the SPD and the NC populations). After caudate volume
normalization (c and d), differences are first detected for the dual graph analysis (d),
presumably because the additional degrees of freedom enable a proper probing of the caudate
tail regions.
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Fig. 28.
p-values for the individual eigenvalues with Neumann boundary condition for the regular (top)
and dual (bottom) voxel graph.
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Fig. 29.
Nodal surfaces of eigenfunction 52 (top) and 5 (bottom), where the centroids are connected.
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Fig. 30.
Group comparison for the eigenvalue 5 (left) and mean distance of the nodal surfaces (right)
for the unit intracranial content. A reduction of the eigenvalue and a corresponding increase
of the distances can be observed for the SPD population in comparison to the normal controls.
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Fig. 31.
Group comparison for the boundary length of the small nodal surfaces for the unit intracranial
content. A reduction can be observed for the SPD population in comparison to the normal
controls.
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Table 1

Shape comparison results for the maximum t-statistic permutation test for the unsmoothed (US) and smoothed
(S) dataset. Volume and area results for comparison. The used normalizations are: unit intracranial content (UIC),
unit caudate surface area (UCA) and unit caudate volume (UCV).

norm p-value (US) p-value (S)

LBS (N=20) UIC 0.0026 0.0013

UCA 0.005 0.63

LBS (N=100) UIC 0.0003 0.0009

UCA 0.026 0.84

Volume UIC 0.013 0.0078

UCA 0.0011 0.011

Area UIC 0.0001 0.0002

UCV 0.001 0.011
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