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Ikaros fingers on lymphocyte differentiation

Toshimi Yoshida and Katia Georgopoulos
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 
Bldg.149-3, 13th st., Charlestown, MA 02129, USA

Abstract

The Ikaros family of DNA binding proteins are critical regulators of lymphocyte differentiation. In 

multipotent hematopoietic progenitors, Ikaros supports transcriptional priming of genes promoting 

lymphocyte differentiation. Ikaros targets the Nucleosome Remodeling Deacetylase complex 

(NuRD) to lymphoid lineage genes, thereby increasing chromatin accessibility and transcriptional 

priming. After lymphoid lineage specification, Ikaros expression is raised to levels characteristic 

of intermediate B cell and T cell precursors, which is necessary to support maturation and prevent 

leukemogenesis. Loss of Ikaros in T cell precursors allows the NuRD complex to repress 

lymphocyte genes and extends its targeting to genes that support growth and proliferation, causing 

their activation and triggering a cascade of events that leads to leukemogenesis. Loss of Ikaros in 

B cell precursors blocks differentiation and perpetuates stromal adhesion by enhancing integrin 

signaling. The combination of integrin and cytokine signaling in Ikaros-deficient pre-B cells 

promotes their survival and self-renewal. The stages of lymphocyte differentiation that are highly 

dependent on Ikaros are underscored by changes in Ikaros transcription, supported by a complex 

network of stage-specific regulatory networks that converge upon the Ikzf1 locus. It is increasingly 

apparent that understanding the regulatory networks that operate upstream and downstream of 

Ikaros is critical not only for our understanding of normal lymphopoiesis, but also in placing the 

right finger on the mechanisms that support hematopoietic malignancies in mouse and human.
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Introduction

Ikaros is an essential regulator of lymphocyte differentiation with two major contributions in 

this developmental system. The first is in early hematopoietic progenitors where it provides 

lymphoid lineage differentiation potential. The second is at the proliferative stages of T and 

B cell precursor differentiation in mediating transition to a quiescent state where 

recombination of the second antigen receptor chain and selection of the T and B cell 

repertoire takes place. A stepwise increase in Ikaros expression at key developmental stages, 

i.e. in lymphoid lineage restricted progenitors and lymphocyte precursors, is required for 
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Ikaros to perform its unique roles in the hemo-lymphoid pathways. Loss of Ikaros activity 

results in profound differentiation defects and leukemic transformation of B and T cell 

precursors. Studies of Ikaros function in mouse models and human GWAS studies are 

providing support for the involvement of Ikaros not only in normal lymphocyte 

differentiation but also in the development of high risk leukemias caused by IKZF1 

mutations. Here we will review past and recent studies that together provide new insight into 

the mechanisms by which Ikaros contributes to normal lymphocyte differentiation and its 

aberrant manifestations.

Structure-function of Ikaros and its family members

Ikaros [1,2] and its family members are Krupple-type zinc-(Zn-) finger proteins with two 

highly conserved Zn-finger domains at their N- and C-terminus (Fig. 1a). The N-terminal 

Zn-finger domain is comprised of four highly conserved Zn-fingers encoded by exons three 

though five that support sequence specific DNA-binding. The second and third Zn-fingers of 

the N-terminal domain are required to provide sequence specific binding to a core motif A/

GGGAA [3-5] and are indispensable for lymphocyte differentiation [6-8]. A recent study 

has revealed that the first and fourth Ikaros zinc fingers make distinct contributions to 

lymphoid development or leukemogenesis, suggesting that these two fingers alter the overall 

sequence specificity and gene targets [9].

Chromatin enrichment studies on the Ikaros proteins in lymphocytes provided strong 

selection for the core motif AGGAA that was previously predicted as an Ikaros binding site 

both by modeling the amino acid composition of Kruppel type Zn-fingers 2 and 3 and by in 

vitro DNA binding site selection studies with Ikaros proteins [3,5,10,11]. Interestingly, the 

Ikaros DNA binding specificity on chromatin is similar to that described for a variety of Ets 

factors on lymphoid specific regulatory elements [12]. Ikaros chromatin enrichment sites 

and motifs are found in both enhancers and promoters with relative distributions dependent 

on cell type. At T cell specific enhancers, the most frequent partners of Ikaros are the E-box 

E2A proteins and Runx1, supporting a functional interaction between these factors during T 

cell differentiation [10] (Fig. 1b).

The Ikaros C-terminal domain contains two Zn-fingers encoded by exon eight and is 

required for oligomerization with self and other family members (Aiolos, Helios and Eos) 

[13-16]. Oligomerization increases Ikaros DNA binding activity in vitro and is critical for 

Ikaros function in vivo [13,17].

A number of Ikaros isoforms can be generated by differential splicing of exons three to eight 

[3,4,13]. This is in part due to non-canonical splice acceptor sites at exons four, six and 

seven. The major Ikaros isoforms encountered from the early to the late stages of hemo-

lymphopoiesis are the DNA binding isoforms Ik-1 and Ik-2 (Fig. 1a), whereas splicing 

variants lacking the N-terminal Zn-fingers and unable to bind DNA are normally produced 

at very low frequency[4,14,15]. However, genomic alterations and deletions of the Zn-finger 

encoding exons cause an increase in the frequency of isoforms that lack DNA binding 

activity (e.g. Ik-6) (reviewed by ref. [18]). These interfere with the activity of DNA-binding 

Ikaros isoforms and family members by competing for incorporation into the Nucleosome 
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Remodeling Histone Deacetylase (NuRD) chromatin remodeling complex [19-24] and are 

frequently referred to as Ikaros dominant negative (dn) (Fig. 1a, c) [6,13].

Ikaros is an integral component of the NuRD complex in lymphocytes

Biochemical purification of Ikaros proteins has identified a stable association with the 

2MDa NuRD complex in the nucleus of both lymphocytes and erythroleukemia cells 

[23-25] (Fig. 1c). The major components of the NuRD complex are HDAC1, HDAC2, 

MTA1, MTA2, MBD3, Rbp46/48, and Mi-2β. Mi-2β is a 220kDa ATP-dependent 

chromatin remodeler that modulates the topology of the chromatin by sliding nucleosomes 

relative to DNA [26,27] (Fig. 1c). Unlike Ikaros whose expression is largely limited to the 

hematopoietic system, components of the NuRD complex are ubiquitously expressed.

Mouse genetic studies investigating the transcriptional properties of Ikaros and Mi-2β, a 

unique component of the NuRD complex, have provided dual functions for the Ikaros-

NuRD complex as a repressor as well as an activator of gene expression through its histone 

deactylase and nucleosome remodeling activities [10,25,28-31]. Although Ikaros and Mi-2β 

are in the same complex, antagonistic interactions have been observed such as in the 

regulation of Cd4 expression as well as in the cell fate decisions of the HSC [30,31]. Down-

regulation of the stem cell self-renewing genes (e.g. Mpl, Tek, Ndn, Mdmdc2, Tgm2, Ebi3) 

and the early myeloid promoting genes (e.g. Csf1r, Egr1, Il6ra, Il6st) in Mi-2β deficient 

HSC correlates with the loss of self-renewal leading to transient expansion and exhaustion 

of the HSC as well as impaired differentiation into the myeloid lineage[31]. Given that 

Ikaros down-regulates the stem cell program in the lymphoid-primed multi-potent 

progenitor (LMPP, see the following section) and up-regulates lymphoid programs in the 

HSC and LMPP, Ikaros and Mi-2β may have opposing roles on the regulation of stem cell 

self-renewal as well as in cell fate decisions towards the lymphoid versus myeloid pathways 

in the earliest lympho-myeloid progenitors.

Recent studies on genome-wide chromatin mapping and gene expression profiling have 

provided new mechanistic insights into the function of Ikaros in the NuRD complex [10]. In 

wild-type DP thymocytes, Mi-2β binding sites are largely limited to where Ikaros binds to 

the genome. In these cells, the Ikaros-NuRD complex binds to active genes that are 

members of pathways that support lymphocyte differentiation. Reduction in Ikaros proteins 

increases chromatin access to the NuRD complex resulting in increased nucleosome 

remodeling and histone deacetylation with subsequent loss in lymphoid gene expression. In 

addition, the NuRD complex is re-distributed to transcriptionally poised genes located in 

permissive chromatin, causing activation of these genes, frequently by interfering with local 

activity of the Polycomb repressive complex. Many of these poised genes are associated 

with cell growth, proliferation, migration and metabolism such as those of the Notch 

signaling pathway [10,32](Fig. 1d). This is likely the underlying cause of the developmental 

block and malignant transformation of Ikaros mutant DP thymocytes and provides the 

mechanism by which Ikaros serves as a tumor suppressor by antagonizing NuRD complex 

chromatin remodeling activities both directly at lymphoid-specific genes and indirectly at 

growth and proliferation promoting genes.
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Priming lymphoid potential in multi-potent progenitors; the first task

The first restriction that a multi-potent HSC undergoes towards becoming a lymphocyte 

produces an LMPP in the bone marrow (Fig. 2a). We and others have independently 

identified the LMPP using either the cell surface receptor Flt3 or an Ikaros-based reporter 

that is strongly up-regulated from the HSC to the LMPP [33-35]. The LMPP has robust 

lymphoid and myeloid differentiation potential and minimal potential for erythroid and 

megakaryocyte differentiation. Further restrictions along the lymphoid pathways give rise to 

the early lymphoid precursor (ELP) [36] [37], the common lymphoid progenitor (CLP) [38] 

and the early thymic precursor (ETP) [39]. These further differentiate into pro-B and double 

negative 2 (DN2) pro-T cell precursors, respectively (Fig. 2a).

The human counterpart of the LMPP was also identified in CD34+ cord blood cells and as a 

source of CD34+ acute myeloid leukemia (AML), providing support for a key role in human 

hemo-lymphopoiesis and in leukemogenesis [40-42]. This revised road map of early 

hematopoiesis first described in the mouse is highly conserved in the human indicating the 

importance of mouse genetic models for the study of normal hematopoiesis and lymphoid 

disorders in the human.

Studies on mouse genetic models have revealed that while Ikaros is not required for 

development of the LMPP, it is critical for its ability to differentiate into lymphoid restricted 

progenitors such as the CLP and the ETP [34,39], the generation of which usually identifies 

with lymphoid lineage specification. Notably, the E2A transcription factor is also involved 

in lymphoid priming and shares many down-stream targets [10,43,44]. However, E2A may 

also acts upstream of Ikaros as it is required for the development of the LMPP from the 

multi-potent HSC [43]. These genetic studies are in line with biochemical studies that have 

identified E2A DNA binding motifs in the context of Ikaros chromatin enrichment sites in 

lymphoid specific enhancers[10].

While pro-B and NK are completely absent in Ikaros null mice, the ETP (DN1) in the 

thymus is still detected albeit at a highly reduced level [39]. Contribution of other Ikaros 

family members, such as Helios expressed in the HSC and through early stages of T cell but 

not B cell differentiation may provide some rescue in T cell differentiation. Ikaros dn mice 

show more profound defects with no T cell progenitors detected indicating interference with 

Helios function [6].

Priming of lymphoid specific gene expression in multi-potent progenitors

The establishment of lineage restriction can be observed at the molecular level by the 

induction and propagation of lineage-affiliated transcriptional programs that support lineage-

specific differentiation. Comparative analyses of genome-wide transcriptional profiles of the 

HSC, LMPP, GMP and megakaryocyte-erythrocyte progenitor (MEP) [45] established nine 

lineage-affiliated signatures that fit into two transcriptional cascades that originate in the 

HSC [44]. One is propagated in the erythroid pathway, while the other, in the lympho-

myeloid pathways (Fig. 2b, c). The front-runner in the lympho-myeloid cascade is a “stem-

myeloid-lymphoid” (s-myly) signature, that is composed of genes primed in the HSC and 

further up-regulated in the LMPP. The second runner is a “restricted-myeloid-lymphoid” (r-
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myly) signature that comprises of genes primed in the LMPP and further induced in the 

downstream myeloid and lymphoid progenitors [44] (Fig. 2b, c).

Progenitor comparative transcriptional analysis has revealed that progenitor commitment 

into the lymphoid or myeloid lineages is gradual, whereas commitment into the erythroid 

lineage is rapid. Notably, the lymphoid and myeloid potential and their supporting gene 

expression programs are both maintained in the nominal myeloid progenitor (GMP) and B 

cell progenitor (CLP, pro-B) populations [44,46,47] The latent T cell activity of the GMP 

observed in vitro in mice and human [40,44] is consistent with the remaining expression of 

lymphoid genes in these cells (Fig. 2a, b). Although these progenitors may not support 

lymphoid differentiation in vivo, this study supports the idea of progressive lineage 

restriction along the lymphoid or myeloid pathways where either B cell or T cell potential is 

lost first followed by myeloid potential [48-50]. A similar approach to transcriptional 

profiling and computational analyses on human HSC and progenitors have likewise revealed 

transcriptional ‘landscapes’ that cross the lineage and population boundaries [42].

The multi-lineage (erythroid, myeloid and lymphoid) priming in the HSC observed by 

clustering of lineage specific gene expression profiles has been further confirmed at the 

single cell level. Erythroid and myeloid gene expression programs are primed together with 

lymphoid gene expression at a similar frequency, suggesting there is equal opportunity for 

all three fates that is further modulated by environmental inputs [44]. Lineage specific 

priming occurs in cells with an active stem cell gene expression program that is rapidly 

extinguished upon lineage restriction (Fig. 2b).

Transcriptional analyses of Ikaros null HSC and progenitors have revealed that up-

regulation of the lymphoid genetic program and down-regulation of stem cell and myeloid 

programs controlled by Ikaros underlie this critical stage of lymphoid lineage specification 

at the LMPP stage [44] (Fig. 2c). A failure of such events results in a block of differentiation 

towards CLP and ETP and augmentation of the myeloid differentiation from the LMPP 

[34,44]. Examples of Ikaros target genes during this process are summarized in Fig. 2c. It 

will be important to determine whether maintenance of stem cell gene expression in mutant 

myeloid progenitors can contribute to aberrant expansion and whether this is linked to 

myeloid proliferative disorders in human. Thus the first major role of Ikaros in early multi-

potent progenitors is to awaken their lymphoid potential by increasing local chromatin 

accessibility through the NuRD complex while suppressing alternate fates of myeloid 

differentiation and self-renewal.

Proliferative expansion of lymphocyte precursors is harnessed by Ikaros

After lymphoid lineage specification, Ikaros expression is again increased at the small pre-B 

cell stage in the bone marrow and in double positive (DP) T cell precursors in the thymus. 

These are equivalent stages of B and T cell differentiation where precursor cells come out of 

cycle to undergo the second antigen receptor rearrangement and selection (Fig. 2a). Notably, 

when Ikaros activity is reduced in human and mice, B and T cell leukemias arise from the 

preceding proliferative stages (Fig. 3a). Thus Ikaros plays an important role as a tumor 
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suppressor at the lymphoid precursor stages where proliferation and Rag expression provide 

a high risk for leukemic transformation.

Studies using germline knock-out mouse models have shown that homozygocity for Ikaros 

null and heterozygocity for Ikaros dn mutations result in a rapid development of T-ALL 

with a thymic origin. Leukemogenesis kinetics are faster in cells with the Ikaros dn isoforms 

due to interference with other Ikaros family members such as Helios and Aiolos that are also 

expressed in these cells [6,17]. One of the mechanisms of leukemic transformation in the 

thymus may relate to altered TCR signaling [51,52]. Recent studies have revealed that 

Ikaros suppresses Notch-dependent leukemia development by directly repressing 

transcription of Notch1 through upstream regulatory elements and promoters that include a 

cryptic intragenic promoter in DP thymocytes that supports expression of a ligand-

independent Notch signaling [32,53,54]. Deletion of Ikaros in DP thymocytes unleashes de-

regulated Notch signaling in these cells.

A new high-risk model of B-ALL supported by Ikaros mutations

Acute lymhoblastic leukemias (ALLs) are neoplasms of lymphoid precursors and are 

common among childhood malignancies [55]. With the advent of high-resolution genome-

wide profiling approaches, a variety of genetic alterations, deletions and mutations have 

been newly identified on the ALL genomes that cooperate with previously characterized 

chromosomal alterations [56-58]. Notably, deletions and mutations in the genes encoding 

key transcription factors for early lymphoid development (e.g. PAX5, IKZF1, IKZF3, EBF, 

TCF3 and LEF) were identified in 40% of B-ALL cases [56]. Among these factors, deletion 

and mutation in the IKZF1 locus that encodes IKAROS is highly associated with BCR-

ABL1-positive B-ALL that display poor prognosis [57]. These genetic alterations either give 

rise to functionally dominant negative IKAROS isoforms or result in haploinsufficiency. 

Both of these types of mutations can contribute to leukemia development.

Conditional inactivation of the Ikzf1 exon 5 (IkE5Δ/Δ), encoding N-terminal zinc fingers two 

and three, from the CLP or pro-B stages in mice resulted in production of dn isoforms and 

an arrest of B cell differentiation at the proliferative large pre-B stage [8] (Fig. 3a). Unlike 

WT counterparts, IkE5Δ/Δ large pre-B cells require BM stromal co-culture for survival and 

growth. Transcriptional profiling and functional analyses of IkE5Δ/Δ large pre-B cells 

revealed augmented integrin-mediated signaling that supports stable association with bone 

marrow stroma, survival and self-renewal [8] (Fig. 3b).

Inhibition of integrin-signaling by focal adhesion kinase (FAK) inhibitors induces the 

detachment of IkE5Δ/Δ large pre-B cells from BM stroma and apoptosis of mutant cells both 

in vitro and in vivo [8]. Immunodeficient mice transplanted with the IkE5Δ/Δ large pre-B 

cells develop oligoclonal pre-B-ALLs indicating selection of additional changes for 

malignant transformation [8]. These studies reveal a novel mechanism by which IKZF1 

mutations contribute to poor prognosis pre-B-ALL that extends beyond the developmental 

block also generated by mutations in other lineage specific transcriptional regulators. Pre-B 

cell interactions with bone marrow niches are tightly controlled by Ikaros and provide a new 
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target for therapeutic intervention in poor prognosis B-ALL associated with IKZF1 

mutations.

A conditional Ikzf1 null mouse model that deletes exon eight gave a similar block in pre-B 

cell differentiation with accumulation of “aberrant pro-B” cells that are phenotypically 

similar to large pre-B cells [59]. Also in this mouse model, pre-BCR signaling is defective 

and cell adhesion programs of mutant pro-B cells are augmented. However, these mutant 

cells show a proliferation defect [59]. The differences between these two studies may be 

attributed to differences in the loss of Ikaros DNA binding activities; up-regulated Aiolos in 

the conditional Ikaros null mutant cells may compensate for the loss of Ikaros and prevent 

aberrant proliferative expansion that results upon loss of both Ikaros and Aiolos activities 

caused by the Ikaros dn isoforms generated by the IkE5Δ/Δ allele.

Transcriptional regulation of the Ikaros gene

The Ikzf1 (IKZF1) locus spans over 120kb on chromosome 11 in mice (Fig. 4a) and 7p in 

human in a highly conserved genomic locus. Deletions or loss of function mutations in the 

IKZF1 locus has been detected at a high frequency in a precursor B-ALL (20-30%), 

especially in over 80% of BCR-ABL+ B-ALL and nearly 70% of blast crisis of chronic 

myelogenous leukemia (CML) [56,57]. Large or smaller deletions at the 7p arm resulting in 

the loss of the entire IKZF1 allele, other null alleles or producing dn isoforms (IK-6), have 

been reported in B-ALL [18,60]. Mutations within the N-terminal Zn-finger domain that 

generate functional dn forms have been detected in human T-ALL and early T-cell precursor 

(ETP)-ALL [58,61] These studies show a strong correlation between Ikaros 

haploinsufficiency as well as expression of dn isoforms and ALL development that is 

strongly supported by past and recent mouse models.

Thus, an understanding of the mechanisms that support Ikaros expression at stages of 

lymphocyte development that are dependent on Ikaros activity is critical. Our biochemical 

and genetic studies on Ikzf1 regulation have established the activities of hemo-lymphoid 

stage-specific promoters and enhancers at the Ikzf1 locus. Of the two promoters identified, 

one is the major promoter in lymphoid-myeloid cells (Fig. 4a, b). Of the six enhancers active 

in lymphoid and myeloid cells, only two enhancers are active in T cells and only one is 

responsible for up-regulation of Ikaros expression during the transition from the HSC to the 

LMPP [34,62,63](Fig. 4a, b). Several known transcription factors (TFs) important in the 

lymphoid system, such as E-box proteins, TCF-1, Runx1 and Ikaros itself, have been shown 

to bind these Ikaros locus regulatory regions in vivo [63]. Thus Ikzf1 expression is likely 

regulated by a complex regulatory network of cis-regulatory elements targeted by key 

lymphoid lineage promoting transcription factors. Further investigation on the functional 

contribution of these regulatory elements and TFs and the signaling events supporting their 

activation may provide a handle to understand and manipulate Ikaros expression during 

development and in hematopoietic malignancies such as multiple myeloma [64,65].

Recent studies revealed an unexpected role of IKAROS and AIOLOS in multiple myeloma 

(MM). Ikaros proteins in MM cells are targets of lenalidomide, a salidomide-like drug [66] 

that binds ubiquitin E3 ligase and alters its specificity, thereby promoting Ikaros protein 
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degradation [64,65]. This suggests that in MM cells unlike B-ALL, the presence rather than 

the absence of Ikaros proteins promotes proliferation. Other mechanisms are also possible. 

Aiolos proteins are required for the generation of high affinity long-lived plasma cells, 

resident in the bone marrow and responsible for long-term humoral immunity. However, 

loss of Aiolos does not interfere with generation and affinity maturation of short-lived 

plasma cells suggesting an effect on the self-renewing potential of this long-lived effector 

cell population [67]. Importantly, these long-lived high affinity plasma cells are the normal 

counterparts from which MM is derived [68] [69].

Conclusions and future directions

The balanced production of lymphocytes is important for organismal health. Disruption of 

the mechanisms that support this process can cause disorders ranging from immune cell 

deficiencies to cancers of hematopoietic but also non-hematopoietic cell origin. Ikaros 

activity in the HSC–MPP identifies with lymphoid lineage potential, while Ikaros activity at 

later stages of lymphocyte differentiation regulates normal proliferative expansion and 

differentiation to a non-proliferative stage. Deletions and mutations in the IKZF1 locus in 

both coding and non-coding regions (i.e. highly conserved regulatory regions) may interfere 

with IKAROS activity and provide several independent ways to support leukemia 

development.

Past studies on Ikaros in lymphocyte differentiation are paving the road to new studies that 

seek to delineate Ikaros-based regulatory and signaling networks in both normal 

development and immune cell based disease. As such these studies bear important 

therapeutic implications for human health.

Acknowledgments

We thank to Drs. Taku Naito (Toho University Faculty of Medicine), John R. Seavitt (Baylor College of Medicine) 
and Bruce A. Morgan (Massachusetts General Hospital) for critical reading of the manuscript.

References

1. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a 
putative mediator for T cell commitment. Science. 1992; 258:808–812. [PubMed: 1439790] 

2. Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST. The lymphoid transcription factor LyF-1 is 
encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol. 
1994; 14:7111–7123. [PubMed: 7935426] 

3. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger 
DNA-binding proteins. Mol Cell Biol. 1994; 14:8292–8303. [PubMed: 7969165] 

4. Molnar A, Wu P, Largespada DA, Vortkamp A, Scherer S, Copeland NG, Jenkins NA, Bruns G, 
Georgopoulos K. The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA 
binding proteins, highly conserved in human and mouse. J Immunol. 1996; 156:585–592. [PubMed: 
8543809] 

5. Koipally J, Heller EJ, Seavitt JR, Georgopoulos K. Unconventional potentiation of gene expression 
by Ikaros. J Biol Chem. 2002; 277:13007–13015. [PubMed: 11799125] 

6. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A. The Ikaros gene is 
required for the development of all lymphoid lineages. Cell. 1994; 79:143–156. [PubMed: 7923373] 

Yoshida and Georgopoulos Page 8

Int J Hematol. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, Nelms KA, Smale ST, 
Goodnow CC. Widespread failure of hematolymphoid differentiation caused by a recessive niche-
filling allele of the Ikaros transcription factor. Immunity. 2003; 19:131–144. [PubMed: 12871645] 

8. Joshi I, Yoshida T, Jena N, Qi X, Zhang J, Van Etten RA, Georgopoulos K. Loss of Ikaros DNA-
binding function confers integrin-dependent survival on pre-B cells and progression to acute 
lymphoblastic leukemia. Nat Immunol. 2014; 15:294–304. [PubMed: 24509510] 

9. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE, Lawson GW, 
Bensinger SJ, Farnham PJ, Witte ON, et al. Selective regulation of lymphopoiesis and 
leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013; 14:1073–1083. [PubMed: 
24013668] 

10. Zhang J, Jackson AF, Naito T, Dose M, Seavitt J, Liu F, Heller EJ, Kashiwagi M, Yoshida T, 
Gounari F, et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls 
lymphocyte development and prevents leukemogenesis. Nat Immunol. 2011; 13:86–94. [PubMed: 
22080921] 

11. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST. Targeting of Ikaros to 
pericentromeric heterochromatin by direct DNA binding. Genes Dev. 2000; 14:2146–2160. 
[PubMed: 10970879] 

12. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ. Genome-wide analyses reveal properties of 
redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 2007; 
21:1882–1894. [PubMed: 17652178] 

13. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, 
a molecular control of lymphocyte development. Embo J. 1996; 15:5358–5369. [PubMed: 
8895580] 

14. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, Wu P, Neben S, 
Georgopoulos K. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to 
regulate lymphocyte differentiation. Embo J. 1997; 16:2004–2013. [PubMed: 9155026] 

15. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, Morgan BA. Helios, a novel 
dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol. 1998; 
8:508–515. [PubMed: 9560339] 

16. Honma Y, Kiyosawa H, Mori T, Oguri A, Nikaido T, Kanazawa K, Tojo M, Takeda J, Tanno Y, 
Yokoya S, et al. Eos: a novel member of the Ikaros gene family expressed predominantly in the 
developing nervous system. FEBS Lett. 1999; 447:76–80. [PubMed: 10218586] 

17. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K. Selective 
defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null 
mutation. Immunity. 1996; 5:537–549. [PubMed: 8986714] 

18. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S. Function of Ikaros as a tumor 
suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res. 2013; 3:1–13. [PubMed: 
23358883] 

19. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. Chromatin deacetylation by an 
ATP-dependent nucleosome remodelling complex. Nature. 1998; 395:917–921. [PubMed: 
9804427] 

20. Wade PA, Jones PL, Vermaak D, Wolffe AP. A multiple subunit Mi-2 histone deacetylase from 
Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol. 1998; 
8:843–846. [PubMed: 9663395] 

21. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W. NURD, a novel complex with both 
ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell. 1998; 2:851–
861. [PubMed: 9885572] 

22. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA 
methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999; 23:62–66. 
[PubMed: 10471500] 

23. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, Winandy S, Viel A, Sawyer A, Ikeda T, et 
al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in 
lymphocytes. Immunity. 1999; 10:345–355. [PubMed: 10204490] 

Yoshida and Georgopoulos Page 9

Int J Hematol. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. O’Neill DW, Schoetz SS, Lopez RA, Castle M, Rabinowitz L, Shor E, Krawchuk D, Goll MG, 
Renz M, Seelig HP, et al. An ikaros-containing chromatin-remodeling complex in adult-type 
erythroid cells. Mol Cell Biol. 2000; 20:7572–7582. [PubMed: 11003653] 

25. Sridharan R, Smale ST. Predominant interaction of both Ikaros and Helios with the NuRD complex 
in immature thymocytes. J Biol Chem. 2007; 282:30227–30238. [PubMed: 17681952] 

26. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D. The dermatomyositis-specific autoantigen 
Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling 
activities. Cell. 1998; 95:279–289. [PubMed: 9790534] 

27. Becker PB, Horz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem. 2002; 71:247–
273. [PubMed: 12045097] 

28. Shimono Y, Murakami H, Kawai K, Wade PA, Shimokata K, Takahashi M. Mi-2 beta associates 
with BRG1 and RET finger protein at the distinct regions with transcriptional activating and 
repressing abilities. J Biol Chem. 2003; 278:51638–51645. [PubMed: 14530259] 

29. Williams CJ, Naito T, Arco PG, Seavitt JR, Cashman SM, De Souza B, Qi X, Keables P, Von 
Andrian UH, Georgopoulos K. The chromatin remodeler Mi-2beta is required for CD4 expression 
and T cell development. Immunity. 2004; 20:719–733. [PubMed: 15189737] 

30. Naito T, Gomez-Del Arco P, Williams CJ, Georgopoulos K. Antagonistic interactions between 
Ikaros and the chromatin remodeler Mi-2beta determine silencer activity and Cd4 gene expression. 
Immunity. 2007; 27:723–734. [PubMed: 17980631] 

31. Yoshida T, Hazan I, Zhang J, Ng SY, Naito T, Snippert HJ, Heller EJ, Qi X, Lawton LN, Williams 
CJ, et al. The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal 
and multilineage differentiation. Genes Dev. 2008; 22:1174–1189. [PubMed: 18451107] 

32. Gomez-del Arco P, Kashiwagi M, Jackson AF, Naito T, Zhang J, Liu F, Kee B, Vooijs M, Radtke 
F, Redondo JM, et al. Alternative promoter usage at the Notch1 locus supports ligand-independent 
signaling in T cell development and leukemogenesis. Immunity. 2010; 33:685–698. [PubMed: 
21093322] 

33. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, 
Borge OJ, Thoren LA, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-
megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005; 
121:295–306. [PubMed: 15851035] 

34. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions 
directed by Ikaros. Nat Immunol. 2006; 7:382–391. [PubMed: 16518393] 

35. Lai AY, Kondo M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent 
hematopoietic progenitors. J Exp Med. 2006; 203:1867–1873. [PubMed: 16880261] 

36. Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus 
marks the earliest lymphocyte progenitors in bone marrow. Immunity. 2002; 17:117–130. 
[PubMed: 12196284] 

37. Yokota T, Sudo T, Ishibashi T, Doi Y, Ichii M, Orirani K, Kanakura Y. Complementary regulation 
of early B-lymphoid differentiation by genetic and epigenetic mechanisms. Int J Hematol. 2013; 
98:382–389. [PubMed: 23999941] 

38. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in 
mouse bone marrow. Cell. 1997; 91:661–672. [PubMed: 9393859] 

39. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, Meraz A, Bhandoola A. 
Thymopoiesis independent of common lymphoid progenitors. Nat Immunol. 2003; 4:168–174. 
[PubMed: 12514733] 

40. Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. Revised map of the human 
progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid 
development. Nat Immunol. 2010; 11:585–594. [PubMed: 20543838] 

41. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, 
Rout R, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid 
leukemia. Cancer Cell. 2011:138–152. [PubMed: 21251617] 

42. Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C, Fan JB, Dick JE. The transcriptional 
architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. 
Nat Immunol. 2013; 14:756–763. [PubMed: 23708252] 

Yoshida and Georgopoulos Page 10

Int J Hematol. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Dias S, Mansson R, Gurbuxani S, Sigvardsson M, Kee BL. E2A Proteins Promote Development of 
Lymphoid-Primed Multipotent Progenitors. Immunity. 2008; 29:217–227. [PubMed: 18674933] 

44. Ng SY, Yoshida T, Zhang J, Georgopoulos K. Genome-wide Lineage-Specific Transcriptional 
Networks Underscore Ikaros-Dependent Lymphoid Priming in Hematopoietic Stem Cells. 
Immunity. 2009

45. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that 
gives rise to all myeloid lineages. Nature. 2000; 404:193–197. [PubMed: 10724173] 

46. Rumfelt LL, Zhou Y, Rowley BM, Shinton SA, Hardy RR. Lineage specification and plasticity in 
CD19-early B cell precursors. J Exp Med. 2006; 203:675–687. [PubMed: 16505143] 

47. Mansson R, Zandi S, Anderson K, Martensson IL, Jacobsen SE, Bryder D, Sigvardsson M. B-
lineage commitment prior to surface expression of B220 and CD19 on hematopoietic progenitor 
cells. Blood. 2008; 112:1048–1055. [PubMed: 18495958] 

48. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H. Adult T-cell 
progenitors retain myeloid potential. Nature. 2008; 452:768–772. [PubMed: 18401412] 

49. Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. 
Nature. 2008; 452:764–767. [PubMed: 18401411] 

50. Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y. A map for lineage restriction of 
progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev. 2010; 
238:23–36. [PubMed: 20969582] 

51. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid 
development of leukemia and lymphoma. Cell. 1995; 83:289–299. [PubMed: 7585946] 

52. Winandy S, Wu L, Wang JH, Georgopoulos K. Pre-T cell receptor (TCR) and TCR-controlled 
checkpoints in T cell differentiation are set by Ikaros. J Exp Med. 1999; 190:1039–1048. 
[PubMed: 10523602] 

53. Jeannet R, Mastio J, Macias-Garcia A, Oravecz A, Ashworth T, Geimer Le Lay AS, Jost B, Le 
Gras S, Ghysdael J, Gridley T, et al. Oncogenic activation of the Notch1 gene by deletion of its 
promoter in Ikaros-deficient T-ALL. Blood. 2010; 116:5443–5454. [PubMed: 20829372] 

54. Ashworth TD, Pear WS, Chiang MY, Blacklow SC, Mastio J, Xu L, Kelliher M, Kastner P, Chan 
S, Aster JC. Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG 
recombinase and a conserved internal translational start site in Notch1. Blood. 2010; 116:5455–
5464. [PubMed: 20852131] 

55. Urayama KY, Chokkalingam AP, Manabe A, Mizutani S. Current evidence for an inherited genetic 
basis of childhood acute lymphoblastic leukemia. Int J Hematol. 2013; 97:3–19. [PubMed: 
23239135] 

56. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew 
S, Ma J, Pounds SB, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic 
leukaemia. Nature. 2007; 446:758–764. [PubMed: 17344859] 

57. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau 
MM, Pui CH, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of 
Ikaros. Nature. 2008; 453:110–114. [PubMed: 18408710] 

58. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, 
Rusch M, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 
2012; 481:157–163. [PubMed: 22237106] 

59. Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, Ebert A, Werner B, Roth 
M, Cimmino L, et al. Stage-specific control of early B cell development by the transcription factor 
Ikaros. Nat Immunol. 2014; 15:283–293. [PubMed: 24509509] 

60. Dupuis A, Gaub MP, Legrain M, Drenou B, Mauvieux L, Lutz P, Herbrecht R, Chan S, Kastner P. 
Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia. 
2013; 27:503–507. [PubMed: 22868967] 

61. Marcais A, Jeannet R, Hernandez L, Soulier J, Sigaux F, Chan S, Kastner P. Genetic inactivation 
of Ikaros is a rare event in human T-ALL. Leuk Res. 2010; 34:426–429. [PubMed: 19796813] 

62. Kaufmann C, Yoshida T, Perotti EA, Landhuis E, Wu P, Georgopoulos K. A complex network of 
regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. Embo J. 2003; 
22:2211–2223. [PubMed: 12727887] 

Yoshida and Georgopoulos Page 11

Int J Hematol. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Yoshida T, Landhuis E, Dose M, Hazan I, Zhang J, Naito T, Jackson AF, Wu J, Perroti EA, 
Kaufmann C, et al. Transcriptional regulation of the Ikzf1 locus. Blood. 2013

64. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, Ito T, Ando H, Waldman MF, 
Thakurta A, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells 
by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin 
ligase complex CRL4(CRBN. ) Br J Haematol. 2014; 164:811–821. [PubMed: 24328678] 

65. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin 
WG Jr. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros 
proteins. Science. 2014; 343:305–309. [PubMed: 24292623] 

66. Watanabe R, Tokuhira M, Kizaki M. Current approaches for the treatment of multiple myeloma. 
Int J Hematol. 2013; 97:333–344. [PubMed: 23475758] 

67. Cortes M, Georgopoulos K. Aiolos is required for the generation of high affinity bone marrow 
plasma cells responsible for long-term immunity. J Exp Med. 2004; 199:209–219. [PubMed: 
14718515] 

68. Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011; 6:249–274. 
[PubMed: 21261519] 

69. Hosen N. Multiple myeloma-initiating cells. Int J Hematol. 2013; 97:306–312. [PubMed: 
23420183] 

Yoshida and Georgopoulos Page 12

Int J Hematol. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic representation of the Ikaros isoforms, DNA binding motifs and of the 
Ikaros-NuRD complex and its mode of action in lymphocytes
(a) Exon composition containing Zn finger motifs involved in DNA binding and protein 

dimerization is shown for Ikaros isoforms and Ikaros family members (Aiolos, Helios and 

Eos). Exons are shown as light blue boxes. Dark blue bars indicate zinc fingers. (b) 

Transcription factor binding motifs identified in the vicinity of Ikaros enrichment peaks at 

enhancer regions in thymocytes. Two highly enriched Ikaros binding motifs identified by de 

novo motif search on its chromatin binding sites. (c) Structure of the Ikaros-NuRD complex 

and of Mi-2β. The NuRD complex contains Class I histone deacetylases (HDAC1/2) and the 
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ATP-dependent chromatin remodeler Mi-2β (and α). (d) A model of negative and positive 

regulation by the NuRD complex. Targeting of the Mi-2β–NuRD complex to permissive 

chromatin (H3K4me3, H3K9Ac) is restricted to lymphoid genes by the Ikaros family 

proteins. Our hypothesis is that NuRD’s repressive activities are poised by Ikaros extensive 

DNA binding at its target sites. Upon reduction in Ikaros activity either through 

posttranslational modification of the protein or through Ikaros inactivating mutations 

increases chromatin access of the Mi-2β–NuRD complex and loss of lymphoid gene 

expression. Upon loss of Ikaros, the NuRD complex also re-distributes to new sites 

associated with promoters of transcriptionally poised genes that support cell growth, 

proliferation and metabolism causing their activation in part by displacing the PRC2 

complex. Ik, Ikaros; Aio, Aiolos; polII, RNA polymerase II; PRC, polycomb repressive 

complex.
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Figure 2. Cellular and transcriptional hierarchies in early hematopoiesis
(a) The lineage potential of each progenitor in the hematopoietic hierarchy is denoted by 

letter size. B, B cells; T, T cells; E, erythroid; M, myeloid. Relative changes in Ikaros 

expression in this developmental hierarchy is shown at the bottom. Red arrows indicate 

critical stages where Ikaros family proteins are up-regulated. (b) The two cascades of 

lineage specific gene programs that originate in the multi-potent HSC and segregate within 

the erythroid and lympho-myeloid, pathways are shown. The early lympho-myeloid cascade 

is comprised of two layers of gene expression, the s-myly is primed in the HSC and further 

induced in the LMPP and downstream progeny whereas r-myly is primed in the LMPP. In 

sharp contrast, only one layer is seen in the early erythroid cascade reflecting a lack of 
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progressive lineage restriction points. (c) Effects of Ikaros deficiency on the stem and s-

myly signatures. A heatmap of gene expression of the s-myly and stem cell signatures in the 

HSC, LMPP, GMP, MEP and proB from WT and Ikaros null mice is shown. The signature 

designation is provided on the right side. The red bars indicate the up-regulated genes and 

the green bar indicates the down-regulated genes upon loss of Ikaros. The leg of the s-myly 

signature that is down-regulated is highly enriched for lymphoid promoting genes, whereas 

the middle section of the s-myly signature that is up-regulated is highly enriched for myeloid 

promoting growth factors and transcription regulators. Examples of the deregulated genes 

are provided in each box.
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Figure 3. Effects of Ikaros mutations in early lymphoid development and homeostasis
(a) A summary of Ikaros’ roles in early lymphocyte differentiation as revealed by various 

mouse genetic models. ΔIk, germline Ikaros null mutation; Ikdn. germline Ikaros dominant 

negative mutation; IkE5Δ/Δ, B cell specific conditional Ikaros dominant negative mutation. 

(b) A diagram of interactions between integrin, IL-7R and pre-BCR signaling in WT large 

pre-B cells and the effects of an Ikaros dominant negative mutation (IkE5Δ/Δ) on this 

signaling network. The strength of the effect of individual signaling pathways on cellular 

properties such as survival, self-renewal and proliferation is depicted by letter size. Green 

arrows and red bars indicate positive and negative interactions respectively. pFAK, 
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phosphorylated FAK; IL-7R, Interleukin-7 receptor; GHR, growth factor and/or cytokine 

receptor.
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Figure 4. A summary of regulatory elements, their activities and stage specificity at the Ikaros 
gene (Ikzf1)
(a) A summary of the activities of the regions tested in transgenic mouse models (C, D, E, F, 

G, H, I, J) at the Ikzf1 locus [34,62,63]. Two promoter regions (A and B) and a promoter 

element (p) are shown. (b) A diagram of the activities of the lympho-myeloid promoter B 

and enhancers during lymphopoiesis. Promoter B (+p) provides Ikaros expression in the 

HSC, B cells, myeloid and DN1-3 thymocytes, however, enhancers J, E, F, H, I are required 

to maintain the expression in restricted chromatin environments. The enhancer C(D) is 

required for up-regulation of Ikaros from the HSC to the LMPP and it can further maintain 

the expression throughout T cell development. Although enhancer H cannot provide activity 

in the LMPP, it can support the expression past DN3 stages.
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