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 TICLE 

 

A Bayesian Approach to Calibrating High-Throughput Virtual 
Screening Results and Application to Organic Photovoltaic 
Materials  

E.O. Pyzer-Knappa, G.N. Simmb,  and A. Aspuru Guzika * 

 

 

A novel approach for calibrating quantum-chemical properties determined as part of a high-throughput virtual screen to 

experimental analogs is presented.  Information on the molecular graph is extracted through the use of extended 

connectivity fingerprints, and exploited using a Gaussian process to calibrate both electronic properties such as frontier 

orbital energies, and optical gaps and device properties such as short circuit current density, open circuit voltage and  power 

conversion efficiency.  The Bayesian nature of this process affords a  value for uncertainty in addition to each calibrated 

value.  This allows the  researcher to gain intuition about the model as well as the ability to respect its bounds. 

 

 Introduction 

High-throughput virtual screening (HTVS) is a popular method for 
accelerating the discovery of both materials and pharmaceutical 
leads1–17.  In HTVS, simplifications or approximations are often 
required to make this procedure computationally tractable, resulting 
in subtle differences between experimental and theoretical property 
definitions.  In these cases, it is likely that a calibration will be 
performed on the calculated results, in order to facilitate comparison 
between calibrated and experimental data.  

In this study, we investigate the relationship between calculated and 
experimentally observed values for electronic and device properties 
of organic photovoltaics. This area has been the subject of many 
high-throughput screening efforts7–9, such as the Harvard Clean 
Energy Project (CEP)6,18 in which errors in the model due to in vacuo 
calculations and oligomer vs polymer results were accounted for 
using an empirical linear calibration.  Additionally, von Lilienfeld et 
al. have used a similar ‘adjustment’ method to predict the results of 
computationally expensive models from much simpler, cheaper, 
calculations19. 

Here we present an advance upon this calibration technique, which 
takes into account both quantum chemical information, and 
information about the molecular graph.  In addition, this technique 
reports an uncertainty alongside each calibration – providing a 
confidence that the method is being used appropriately. 

 

Computational Methods and Theoretical 
Background 

Experimental Results and Theoretical Calculations 

We recently reported the Harvard Organic Photovoltaic Dataset 

(HOPV15), which contains experimental results for 266 donor 

materials from bulk heterojunction devices, alongside 

corresponding quantum-chemical calculations performed using the 

BP8620,21, B3LYP20,22, M06-2x23,24 and PBE025,26 functionals and the 

def2-SVP27 basis set on the BP86/def2-SVP optimized geometry.   

Within HOPV15, in order to simplify the conformational landscape, 
and only sample conformers whose electronic structure contributes 
to changes in photovoltaic efficiency, calculations are performed on 
the photovoltaic core – i.e. the molecule with any solubilizing long 
hydrocarbon chains replaced with a single methyl group.  If this 
reduction resulted in two experimental results referring to the same 
‘pruned’ molecule, the result set containing the larger experimental 
value for the power conversion efficiency (PCE) was used, since this 
best represents the potential of the core.  

The highest occupied molecular orbital (HOMO), lowest unoccupied 
molecular orbital (LUMO), power conversion efficiency (PCE), open 
circuit voltage (VOC), and short circuit current density (JSC), are used 
in this study, with computational values for PCE, VOC and JSC 
generated using the Scharber model28, and all computational 
properties reported as Boltzmann averages over conformers. 

Relating Molecular Structure to the Accuracy of Calculated Values 

Many models, including density functionals22,23, are constructed by 

fitting to values contained within a dataset.  Since it is possible to 

reduce this fitting to a set of well-defined parameters, these are 

known as parametric methods.  Parametric methods perform 

exceptionally well within the bounds of the model,  but are 

a. Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford 
Street, Cambridge, MA, 02138, USA 

b. Department of Chemistry, ETH Zürich, Laboratorium für Physikalische Chemie, 
HCIG 236,Vladimir-Prelog-Weg 2,8093 Zürich, Switzerland 

Electronic Supplementary Information (ESI) available: [details of any 
supplementary information available should be included here]. See 
DOI: 10.1039/x0xx00000x 



  

 

 

Figure 1 Force directed graphs showing how the deviation between calculated and experimental values is cast into molecular space.  The error in highest occupied 

molecular orbital energy, lowest unoccupied molecular orbital energy, optical gap (top row, left to right) and open circuit potential, short circuit current density and 

power conversion efficiency as calculated by the Scharber model (bottom row,  left to right) are displayed via the colour of each node, which is itself representative of 

a molecule. Nodes are placed using the FDP algorithm, and connections are made between these nodes when their Tanimoto similarity between 512 bit, radius 2 

Morgan circular fingerprints is > 0.65. 

ill defined when these bounds are broken.29,30  A good example of 

this is the failure of density functionals trained using ground state 

structures to reproduce transition states accurately31.    

Additionally, potentially systematic sources of error are introduced 
through the difference between some calculated and experimental 
property definitions28, the use of simplified model systems to reduce 
computational effort, and the use of an approximate density 
functional32. If systematic failings and errors are related to the 
chemical structures of the molecules in question33, casting this 
problem into molecular space could afford a method for applying 
appropriate corrections which take into account the chemical 
makeup of the molecules in question.   

To test this hypothesis we construct force-directed graphs for each 
property for which we have both experimental and simulated values.  
In order to cast this problem into chemical space, we extract 
information on each molecule as the 512-bit extended-connectivity 
(Morgan circular) fingerprint34, with the connectivity radius 
calculated at the two-bond level using the implementation in the 
RDKit35.  Each molecule is a node on this graph and nodes are 
connected when the Tanimoto similarity36 is > 0.65.   The FDP37 
algorithm, contained within the package Graphviz38 was then used to 
structure the graph so that the edge-length was related to the 
similarity of molecules (i.e. the closer two connected nodes are, the 
more similar the molecules).  Similar approaches have been used to 
perform ‘materials cartography’ – mapping chemical structure to 
properties in order to locate promising new materials39.  Each node 
on the graph was coloured to represent the error in the calculation, 
as defined by the difference between calculated and experimental 
values.  

As can be seen from Figure 1, broadly speaking clusters formed 

which appear on this graph share a similar deviation from 

experiment – as represented by the fill colour.  This suggests 

that by mapping this problem onto molecular space, we will be 

able to perform a per cluster correction, and improve the 

accuracy of our calibration between calculated and 

experimental properties.  

 

Gaussian Processes 

Gaussian process regressions (GPs) have been extensively 

studied by the machine learning community and are known for 

their sophisticated and consistent theory combined with 

relative computational tractability40,41.  They have been 

somewhat used within the scientific community to build 

structure-property relationship rules42–45, although remain 

remarkably under-utilized, given their potential for strong 

predictive power.   

 

While a probability distribution describes random variables 

which are scalars or vectors, a GP describes a distribution over 

functions.   Within the framework of Bayesian inference, we can 

make predictions on an unknown data based upon input to 

target mappings described in a prior.  This prior includes a 

covariance function – sometimes known as a kernel – which 

maps the covariance between function values.  We build our 

covariance function upon the Tanimoto similarity T(xp, xq)36, 

utilizing the popular squared exponential form for the kernel 

function itself: 

 
𝑘(𝑥𝑝 , 𝑥𝑞) =  𝜎𝑓

2𝑒𝑥𝑝 (−
1

2𝑙
(1 − 𝑇(𝑥𝑝 −  𝑥𝑞))) + 𝛿𝑝𝑞𝜎𝑛

2          (1)  

Here, 𝜎𝑓
2 is the signal variance, l is a length scale, 𝛿𝑝𝑞 is the noise 

variance, and 𝜎𝑛
2 is a Kroneka delta, which takes the value 1 when 

p=q else 0.  The values for these hyperparameters were trained to 

optimize the log marginal likelihood using the L-BFGS algorithm46.  In 

order to make a prediction, the Gaussian process places weights 



 

 

upon the functions of the prior distribution depending on how likely 

they are to model the target function.  Thus the posterior distribution 

is sampled providing predictions (means), and also uncertainties for 

these predictions (standard deviations).  

 

In contrast to the earlier discussed parametric methods, a 

Gaussian process is non-parametric and thus very few 

assumptions need to be made about the target function.  

Additionally, the accuracy of a non-parametric method will only 

increase with the size of the prior (i.e. more data). 

Results and Discussion 

Gaussian processes were used to learn the deviation of 

computational results from their experimental analogues – i.e. 

to learn the function which calibrates one to the other.   

 

In order to assess the performance of the calibration in a 

quantitative manner, we utilize two measures of error; the 

Pearson R coefficient, and a weighted RMSD.  The Pearson R 

coefficient is a measure of the liner correlation between two 

variables, and is bounded at 0 (no correlation) and 1 (perfect 

correlation).  In this study, increases in the Pearson R coefficient 

when the calibration has been applied are strongly indicative of 

an improvement of the performance.  For the RMS Error, we 

include a weight to each point related to the uncertainty in the 

prediction returned by the Gaussian process. This weight is 

derived through normalizing the standard deviations of each 

prediction returned by the Gaussian process against the most 

certain point in the prediction. If these were not included, the  

Figure 2 The results of calibrating B3YP/def2-SVP quantum-chemical results for the 

Highest occupied molecular orbital  (HOMO), lowest unoccupied molecular orbital 

(LUMO) and optical gap to the experimental HOPV15 data set.  The uncertainty in the 

calibrated values is represented in the fill colour; the lighter the colour, the more 

uncertain the calibration. 

measures would assume that each point is equally certain, thus 

removing a key piece of information from the scoring function  

In this way, we do not punish a poor calibration if it is also 

known to be highly uncertain.  This was not done for the 

Pearson R coefficient, since bounding cases calculated on the 

distribution of points suggested that the un-weighted metric 

was representative.   

 

We first examine the performance of calibrating the electronic 

properties of these molecules; the HOMO, LUMO and gap.  A 

plot of predicted and experimental values for these properties 

is shown in Figure 2.  This plot shows the results when 

calibrating the B3LYP20,22 functional and def2-SVP basis set27 – 

the results for the other functionals can be seen in the ESI, but 

are broadly similar.  The hue of each point is related to the 

certainty of each prediction – the lighter the point, the more 

uncertain it is.  Points were calibrated on a leave-one-out basis, 

in which the prior was formed using all points except the point 

being calibrated, with the process being repeated until all points 

had been calibrated. 

 

It can be seen that whilst for these properties the quantum-

chemical method performs reasonably, there is significant 

improvement when the calibration is applied.  This is especially 

true for the calculation of the gap – a key property in the 

prediction of the performance of photovoltaic materials.  This 

may be due in part to the correction of a systematic error in 

assuming that the gap can be adequately described by the 

difference in energy levels of the LUMO and HOMO.  For this 

assumption to hold well, the ionization potential (IP) and 

electron affinity (EA) would have to be well described by these 

frontier orbitals, which is not necessarily the case in DFT47.  The 

success of this calibration does show, however, that it is not 

necessary to calculate the EA and IP explicitly to rectify this 

error.  This is of particular importance in the realm of high-

throughput virtual screening, where an increase in the 

necessary number of calculations per molecule can swiftly 

accumulate, resulting in a significant decrease in the size of the 

libraries which can be screened. 

 

Macroscopic properties, such as JSC, VOC, and PCE, present 

additional challenges to successful calibration.  Since these 

properties have additional intermolecular contributions, 

capturing these in molecular fingerprints may prove 

challenging.  Success in the prediction of lattice energy48 and 

solubility49 – properties both strongly related to intermolecular 

interactions – from the molecular structure does provide hope 

that these interactions can be somewhat captured, albeit in an 

implicit manner, in molecular fingerprints.  Additionally, 

experimental measurements of device performance are 

notoriously noisy, introducing increasing amounts of 

uncertainty into the model.  This method counters this through 

the application of some controlled noise to the data.  The 

amount of noise was optimized against the log marginal 

likelihood to provide the function which was most robust to the 

data it was trained on. 



 

 

Figure 3 The results of calibrating B3YP/def2-SVP quantum-chemical results for 
the open-circuit potential (VOC), short circuit current density (JSC), and power 
conversion efficiency (PCE) to the experimental HOPV15 data set.  The uncertainty 
in the calibrated values is represented in the fill colour; the lighter the colour, the 
more uncertain the calibration. 

 

Figure 3 shows the results of the calibration of B3LYP20,22/def2-

SVP27 quantum chemical derived properties to the experimental 

VOC, JSC and PCE extracted from HOPV15.  These properties were 

extracted from the quantum-chemical values for the frontier 

orbitals using the Scharber model28.  As with Figure 2, the colour 

of each calibrated point represents the uncertainty of the 

prediction, with light points being more uncertain. 

 

The calibrated results in Figure 3 show significant 

improvements over the raw quantum-chemical results, 

demonstrating the power of this model.  It can be seen that the 

PCE is particularly poorly predicted by the combination of the 

Scharber model and quantum-chemical results.  The 

complementary study, in which the Scharber model is used in 

tandem with experimental values for the HOMO and gap shows 

a similar degree of correlation to that calculated with raw 

quantum-chemical results, and is shown in Figure 4.  Since our 

calibrated results improve upon the use of the Scharber model 

with experimental values, we propose that errors arising from 

assumptions in the Scharber model seen in Figure 4 are being 

implicitly corrected for in the Bayesian prior. We are currently 

investigating extending this methodology to provide such a 

method as a generic framework for building such data-driven, 

non-parametric models.  

 

While the Pearson R values shown in Figure 3 would suggest 

that the VOC is predicted the worst, it is the failure of the model 

to predict PCEs > ~ 5% which is particularly troubling; since 

these are the very values we are interested in. Since the 

Scharber model was built using experimental data28, whilst the 

performance of the raw quantum-chemical inputs is not 

surprising, it strongly illustrated the importance of a model 

which provides a ‘warning’ when it is not being used in 

situations for which it is designed.  

  

Application to High Throughput Screening of Organic 

Photovoltaics 

The low Pearson R and high weighted RMS error of the un-

calibrated values highlight the importance of calibration when 

applying quantum-chemical results to certain photovoltaic 

properties.   

Figure 5 Highest occupied molecular orbital (HOMO) energies (eV), Boltzmann 
averaged over conformers, as calculated by BP86, B3LYP PBE0 and M06-2x with 
the def2-SVP basis calculated for 100,000 molecules from the Clean Energy Project 
Database (top) and the values for the same set of molecules after calibration 
(bottom).   

Figure 4 The experimental power conversion efficiency shows a similar 
degree of correlation to the power conversion efficiency calculated using 
the Scharber model, but the low Pearson r value of 0.14 highlights the need 
for calibrating these values. This distributions plotted on the secondary axes 
show the distributions predicted by the Scharber model (X) experimentally 
observed (Y) 



 

 

A good relationship between predicted and experimentally 

observed properties is paramount in the area of high-

throughput screening, where design principles are   

built from trends in the data, and so errors and the re-ranking 

of candidates can have calamitous results In order to 

demonstrate this, 100,000 molecules were randomly selected 

from the CEPDB50 to represent the results of a high-throughput 

virtual screen.  The CEPDB contains the properties for each 

BP8620,21/def2-SVP27 optimized geometry calculated at each of 

the functionals contained within this study.  Since each 

functional is constructed in a different way, the properties 

calculated differ with the functional used.   

 

 

Figure 5 shows the distributions of HOMO energies Boltzmann 

averaged over each conformer in a molecule for the 100,000 

molecule set. Values have been calculated using four different 

functionals: B3LYP20,22, BP8620,21, PBE025,26 and M06-2x23,24 at 

the def2-SVP27 basis.  It can be clearly seen in the top plot (pre-

calibration) that these values are very functional dependent.   

Figure 7 The power conversion efficiency as calculated by BP86, B3LYP PBE0 and 
M06-2x with the def2-SVP basis pre (top) and post (bottom) calibration. Here, 
molecules with a predicted PCE less than 0 have been set to 0 to represent a 
physical result. The y-axis of the calculated PCE has been cut at 15,000 since the 
information is swamped by the highly skewed M06-2x distribution, which is shown 
alone in Figure 6. It can be seen that both the value and the distribution of values 
differs wildly between functionals.  It can be seen that this functional dependence 
is removed once our calibration scheme is applied. 

Analogous plots for the LUMO and gap, contained within the 

ESI, show the same dependence.  Since these values are used to 

calculate the PCE and other photovoltaic properties, this is 

problematic as the properties, and identities, of candidates 

selected for further study should not depend upon the method 

used to calculate them. After calibration, however, these 

distributions strongly overlap, removing the functional 

dependence.   

Thus, whichever functional is chosen for the study, a similar 

answer is returned – a behaviour much more congruent with 

experiment, and thus affording a greater confidence that the 

calculated property is representative of what would be 

observed if the experiment were to be performed. This 

argument extends into the PCE, which is the  primary fitness 

function used for many high throughput virtual screening 

efforts.  Since the PCE as calculated by the Scharber model is 

extremely sensitive to the energy levels of the HOMO and 

LUMO of the electron donor, small functional dependencies can 

manifest in vast differences in the distributions and values of 

PCEs obtained (Figure 7, top).   

 

 

It can be seen that, whilst PBE0 and B3LYP display fairly similar 

values and distributions, M06-2X and BP86 do not share this 

desirable property.  The fact that M06-2X predicts essentially all 

structures to have a PCE of 0 (Figure 6) is especially troubling 

and is most likely due to the overestimation of the gap by this 

functional which can been seen in the quantum-chemical 

predictions for this property by the MO6-2x functional 

contained within the ESI.  If this functional alone had been 

selected, and no calibration performed, the result of the 

screening would have been incredibly pessimistic, and may 

have discouraged further research.  Once our calibration 

scheme is applied (Figure 7, bottom), this functional 

dependence is removed; providing a greater confidence in the 

values returned.   

Conclusions 

We show how a Bayesian approach to calibration, here 

implemented as a Gaussian process with a prior based upon 

relevant experimental observations, is a robust method for 

relating the results of quantum chemical calculations to 

experiment.  For each of the properties in the HOPV15 dataset 

studied here - HOMO, LUMO, gap, PCE, VOC, and JSC – values for 

the weighted RMS error between the calculated and 

experimental values, and the Pearson r correlation coefficient 

both improve significantly once the calibration is applied.  

 

Figure 6 The distribution of values for the Scharber power conversion efficiency 
calculated using the M06-2x functional at the def2-SVP basis are significantly 
skewed towards predicting a 0% power conversion efficiency.  Here, all values 
for the power conversion efficiency predicted to be below 0 have been set to 0 
to represent a physical result. 



 

 

Additionally, we show how the application of this calibration 

method to the results of a high-throughput virtual screen 

removes the functional dependence of calculated properties, 

hence providing increased confidence that the result returned 

is directly comparable to experiment.  This also increases the 

reliability and reproducibility of the candidate rankings, 

affording increased confidence that any extracted QSPR is an 

actual trend, and not an artefact of the choice of functional. 

 

Finally, the Bayesian nature of our proposed calibration results 

in a confidence in each calibration point being returned.  This is 

an invaluable tool, since it can inform the user that the scheme 

is being used for systems for which it is not designed, or for 

which the prior is not informative.   
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Figure S1: The results of calibrating BP86/def2-SVP quantum-chemical results for the Highest occupied molecular orbital  (HOMO), lowest unoccupied 
molecular orbital (LUMO) and optical gap to the experimental HOPV15 data set.  The uncertainty in the calibrated values is represented in the fill 
colour; the lighter the colour, the more uncertain the calibration. 

  



 

Figure S2: The results of calibrating BP86/def2-SVP quantum-chemical results for the open-circuit potential (VOC), short circuit current density (JSC), 
and power conversion efficiency (PCE) to the experimental HOPV15 data set.  The uncertainty in the calibrated values is represented in the fill colour; 
the lighter the colour, the more uncertain the calibration. 

  



 

 

 

Figure S3: The results of calibrating PBE0/def2-SVP quantum-chemical results for the Highest occupied molecular orbital  (HOMO), lowest unoccupied 
molecular orbital (LUMO) and optical gap to the experimental HOPV15 data set.  The uncertainty in the calibrated values is represented in the fill 
colour; the lighter the colour, the more uncertain the calibration. 

  



 

Figure S4: The results of calibrating PBE0/def2-SVP quantum-chemical results for the open-circuit potential (VOC), short circuit current density (JSC), 
and power conversion efficiency (PCE) to the experimental HOPV15 data set.  The uncertainty in the calibrated values is represented in the fill colour;  
the lighter the colour, the more uncertain the calibration. 

  



 

 

 

Figure S5: The results of calibrating M06-2X/def2-SVP quantum-chemical results for the Highest occupied molecular orbital  (HOMO), lowest 
unoccupied molecular orbital (LUMO) and optical gap to the experimental HOPV15 data set.  The uncertainty in the calibrated v alues is represented 
in the fill colour; the lighter the colour, the more uncertain the calibration. 

  



 

Figure S6: The results of calibrating M06-2X/def2-SVP quantum-chemical results for the open-circuit potential (VOC), short circuit current density (JSC), 
and power conversion efficiency (PCE) to the experimental HOPV15 data set.  The uncertainty in the calibrated values is represented in the fill colour; 
the lighter the colour, the more uncertain the calibration. 

  



 

Figure S7: Lowest unoccupied molecular orbital (LUMO) energies (eV), Boltzmann averaged over conformers, calculated for 100,000 molecules from the 
Clean Energy Project Database (top) and the values for the same set of molecules after calibration (bottom).   

  



 

Figure S8: Optical gap energies (eV), Boltzmann averaged over conformers, calculated for 100,000 molecules from the Clean Energy Project Database 
(top) and the values for the same set of molecules after calibration (bottom).   

 


