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Abstract
We introduce novel algorithms for the quantum simulation of fermionic systemswhich are
dramaticallymore efficient than those based on the Lie–Trotter–Suzuki decomposition.Wepresent
thefirst application of a general technique for simulatingHamiltonian evolution using a truncated
Taylor series to obtain logarithmic scalingwith the inverse of the desired precision. The key difficulty
in applying algorithms for general sparseHamiltonian simulation to fermionic simulation is that a
query, corresponding to computation of an entry of theHamiltonian, is costly to compute. Thismeans
that the gate complexity would bemuch higher than quantified by the query complexity.We solve this
problemwith a novel quantumalgorithm for on-the-fly computation of integrals that is exponentially
faster than classical sampling.While the approaches presented here are readily applicable to awide
class of fermionicmodels, we focus on quantum chemistry simulation in second quantization,
perhaps themost studied application ofHamiltonian simulation. Our central result is an algorithm

for simulating anN spin–orbital system that requires N t5( )
~

gates. This approach is exponentially
faster in the inverse precision and at least cubically faster inN than all previous approaches to
chemistry simulation in the literature.

1. Introduction

As small, fault-tolerant quantum computers come increasingly close to viability [1–4] there has been substantial
renewed interest in quantum simulating chemistry due to the low qubit requirements and industrial importance
of the electronic structure problem. A recent series of papers tried to estimate the resources required to quantum
simulate a small but classically intractablemolecule [5–9]. Although qubit requirements seemmodest, initial
predictions of the time requiredwere daunting. Using arbitrarily high-order Trotter formulas, the tightest
known bound6 on the gate count of the second quantized, Trotter-based quantum simulation of chemistry is

N t o8 1( )( )
~

[10, 11], where ò is the precision required andN is the number of spin–orbitals. However, using
significantlymore practical Trotter decompositions, the best known gate complexity for this quantum

algorithm is N t9 3( )
~

[6].
Fortunately, numerics indicated that the average circuit depth for realmoleculesmay be closer to

N t6 3( )
~

[7], or Z N t3 4 3( )
~

[9]when only trying to simulate ground states, whereZ is the largest nuclear
charge for themolecule.While this improved scaling restores hope that fault-tolerant devices will have an
impact on some classically intractable chemistry problems, the Trotter-based quantum simulation of large
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(e.g. N 500> )molecules still seems prohibitively costly [9, 12, 13]. This limitationwould preclude simulations
ofmany importantmolecular systems, such as those involved in biological nitrogen fixation and high-Tc

superconductivity [12, 13].
The canonical quantumalgorithm for quantum chemistry, based on theTrotter–Suzuki decomposition

whichwasfirst applied for universal quantum simulation in [14, 15], was introduced nearly one decade ago [16].
This approachwas later refined for implementationwith a set of universal quantum gates in [17].With the
exception of the adiabatic algorithmdescribed in [18] and a classical variational optimization strategymaking
use of a quantumwavefunction ansatz described in [19–21], all prior quantumalgorithms for chemistry have
been based onTrotterization [20, 22–28].

Trotter–Suzuki approaches were also applied to simulation of evolution under sparseHamiltonianswith the
entries given by an oracle [29, 30]. A related problem is the simulation of continuous query algorithms; in 2009,
Cleve et al showed how to achieve such simulationwith exponentially fewer discrete queries thanTrotterization
in terms of 1  [31]. The algorithmof [31] still required a number of ancilla qubits that scaled polynomially in
1  , but this limitationwas overcome in [32]which demonstrated that the ancilla register in [31] could be
compressed into exponentially fewer qubits. In [33, 34], Berry et alcombined the results of [29–32] to show
exponentiallymore precise sparseHamiltonian simulation techniques. Amajor contribution of [33]was to use
oblivious amplitude amplification tomake the algorithm from [31, 32] deterministic, whereas prior versions
had relied on probabilisticmeasurement of ancilla qubits. An improvement introduced in [34]was to showhow
to simulate arbitraryHamiltonians using queries that are not self-inverse (a requirement of the procedure in
[33]).We focus on themethodology of [34]which is relatively self-contained.

The algorithmof [34] approximates the propagator using a Taylor series expansion rather than the Trotter–
Suzuki decomposition. By dividing the desired evolution into a number of simulation segments proportional to
theHamiltonian norm, one can truncate the Taylor series at an orderwhich scales logarithmically in the inverse
of the desired precision [34]. The truncated Taylor seriesmust be expressed as aweighted sumof unitary
operators. To simulate the action of this operator, onefirst initializes the system alongwith an ancilla register
that indexes all terms in the Taylor series sum. The ancilla register is then put in a superposition state with
amplitudes proportional to the coefficients of terms in the Taylor series sum.Next, an operator is applied to the
systemwhich coherently executes a single term in the Taylor series sum that is selected according to the ancilla
register in superposition. Finally, by applying the inverse of the procedure which prepares the ancilla register,
one probabilistically simulates evolution under the propagator. The algorithm ismade deterministic using an
oblivious amplitude amplification procedure from [33].

In the present paperwe develop two new algorithms for the application of theHamiltonians terms, whichwe
refer to as the ‘database’ algorithm and the ‘on-the-fly’ algorithm. In the database algorithm, the ancilla register’s
superposition state is preparedwith amplitudes from a precomputed classical database. In the on-the-fly
algorithm, those amplitudes are computed and prepared on-the-fly, in away that is exponentiallymore precise
than classically possible.

2.Overview of results

The simulation procedure described in [34] assumes the ability to represent theHamiltonian as aweighted sum
of unitaries which can be individually applied to a quantum state. Specifically, wemust be able to express the
simulationHamiltonian as

H W H , 1
1

( )å=
g

g g
=

G

where theWγ are complex-valued scalars7, theHγ are unitary operators and amechanism is available for
selectively applying theHγ. Using the Jordan–Wigner transformation [35, 36] or the Bravyi–Kitaev
transformation [37–39], the second quantizedmolecularHamiltonian can bemapped to a sumof N4( )G Î
localHamiltonians. Since these localHamiltonians are each a tensor product of Pauli operatorsmultiplied by
some coefficient, they automatically satisfy the formof equation (1).

Wewill need a circuit referred to in [34] as HSELECT( )which is queriedwithin the algorithm such that

H H . 2SELECT( )∣ ∣ ∣ ∣ ( )g y g yñ ñ = ñ ñg

7
The convention of [34] requires that theWγ are real, non-negative scalars. This treatment remains general as arbitrary phases can be

factored into theHγ. However, we breakwith that convention and allow theWγ to take arbitrary complex values. This is done for pedagogical
purposes: so that wemay separately describe computation of theHγ and theWγ for the chemistryHamiltonian. Consequentially, our
equation (39) differs from the analogous equation in [34] by a complex conjugate operator.
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One could construct HSELECT( ) by storing all the Pauli strings in a database.However, accessing this data would
have time complexity of at least ( )W G . Instead, we compute and apply the Pauli strings using N( ) gates (which
can be parallelized to 1( ) circuit depth) by dynamically performing the Jordan–Wigner transformation on the
quantumhardware.

The algorithmof [34] also requires an operator that we refer to as WPREPARE( )which applies themapping

W W0
1

, 3PREPARE log

1

( )∣ ∣ ( )å gñ =
L

ñ
g

g
Ä G

=

G

where W N1
4∣ ∣ ( )L º å Îg g=

G , is a normalization factor that will turn out to have significant ramifications
for the algorithm complexity. In thefirst of two algorithms discussed in this paper, we implement WPREPARE( )
using a database via a sequence of totally controlled rotations at cost ( ) G . Because ourfirst approach uses a
database to store classically precomputed values ofWγ in order to implement WPREPARE( ), we refer to the first
algorithm as the ‘database’ algorithm.

While we suggest a different strategy in section 3, a database could also be used to construct HSELECT( ). That
is, a controlled operation is performedwhich appliesH1 if 1g = , followed by a controlled operationwhich
performsH2 if 2g = , and so forth. This would result in a slightly higher gate count than WPREPARE( ), because
each of theΓ controlled operationsmust act on Nlog( ) qubits even if the Bravyi–Kitaev transformation is
used.Nevertheless, thismight represent a simpler solution than our construction of HSELECT( ) for early
experimental implementations.

Our second algorithm involvesmodifications to the algorithmof [34]which allows us to avoid some of this
overhead.We exploit the fact that the chemistryHamiltonian is easy to express as a special case of equation (1) in
which the coefficients are defined by integrals such as

W w z zd , 4( ) ( )

ò=g g

 

where the integrand w z( )g

represents a scalar-valued function of the vector z


, which is an element of the

integration domain  . Because our approach involves computing integrals on-the-fly, we refer to the second
algorithm as the ‘on-the-fly’ algorithm.We begin by numerically approximating the integrals as finite Riemann
sums such as

W w z , 5
1

( ) ( ) åm
»g

r

m

g r
=



where zr

is a point in the integration domain at grid point ρ. Equation (5) represents a discretization of the

integral in equation (4) usingμ grid points where the domain of the integral, denoted as  , has been truncated to
have total volume  . This truncation is possible because the functions w z( )g


can be chosen to decay

exponentially over the integration domain for themolecular systems usually studied in chemistry. Note that this
might not be true for other systems, such as conductingmetals.

Our algorithm is effectively able to numerically compute this integral with complexity logarithmic in the
number of grid points. Itmight be thought that this is impossible, becausemethods of evaluating numerical
integrals on quantum computers normally only give a square-root speedup over classicalMonte-Carlo
algorithms [40]. The difference here is that we do not output the value of the integral. The value of the integral is
only used to control theweight of a term in theHamiltonian under which the state evolves.

We construct a circuit which computes the values of w z( )g r


for the quantum chemistryHamiltonianwith

N( )
~

gates.We call this circuit wSAMPLE( ) and define it by its action

w w z0 , 6SAMPLE Mlog( )∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )g r g rñ ñ ñ = ñ ñ ñ~
g r

Ä 

where w z( )~
g r


is the binary representation of w z( )g r


using Mlog qubits.
By expanding theWγ in equation (1) in terms of the easily computed w z( )g


as in equation (5), we are able to

compute analogous amplitudes to those in equation (3) in an efficient fashion. Thus, we no longer need the
database that characterizes that algorithm. State preparationwhere the state coefficients can be computed on the
quantum computer ismore efficient thanwhen they are stored on, and accessed from, a database [41]. The
worst-case complexity is the square root of the dimension (here it would be ( ) mG ), whereas the database
state preparation has complexity linear in the dimension (which is ( ) G forWγ). Here this would not be an
improvement, as we have increased the dimension in the discretization of the integral.

However, theworst-case complexity is only if the amplitudes can take arbitrary values (as this would enable a
search algorithm,where the square root of the dimension is optimal [42]). If the amplitudes differ only by
phases, the complexity of the state preparation is logarithmic in the dimension.We therefore decompose each
w z( )g


into a sumof termswhich differ only by a sign, w zm, ( )g


. Then, although the dimension is increased, the

complexity of the state preparation is reduced. In turn, we can express theHamiltonian as a sumof unitaries
weighted by identical amplitudes which differ only by an easily computed sign

3
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H w z H . 7
m

M

m
1 1 1

, ( ) ( ) åååz
m

=
g r

m

g r g
=

G

= =



As discussed above, the state preparation needed can be performedmuchmore efficiently because the
amplitudes are now identical up to a phase. Bymaking a single query to wSAMPLE( ) and then performing phase-
kickbackwe can implement the operator wPREPARE( )whose action is

w w z0
1

, 8PREPARE L
L

m
log

1
, ℓ( )∣ ( ) ∣ ( )

ℓ

( ) ål
z
m

ñ = ñg r
Ä

=



where m L M,ℓ∣ ∣ ∣ ∣ ( )g r mñ = ñ ñ ñ Î Q G and L l z mº , is a normalization factor that will turn out to have

significant ramifications for the algorithm complexity. Later, wewill show that N4( )l Î
~

and that wPREPARE( )
can be implementedwith N( )

~
gate count, the cost of a single query to wSAMPLE( ).

The database algorithmperforms evolution underH for time t bymaking t( ) L
~

queries to both HSELECT( )
and WPREPARE( ). Because WPREPARE( ) requires ( ) G = N4( ) gates, the overall gate count of this approach

scales as N t4( ) L
~

. To avoid the overhead from WPREPARE( ), our on-the-fly algorithm exploits amodified

version of the truncatedTaylor series algorithmwhich allows for the same evolution bymaking t( ) l
~

queries to

HSELECT( ) and wPREPARE( ). As wPREPARE( ) requires N( )
~

gates, the gate count for our on-the-fly algorithm

scales as N t( ) l
~

.
The paper is outlined as follows. In section 3we introduce the second quantized encoding of the

wavefunction and construct HSELECT( ). In section 4we review the procedure in [34] to demonstrate our
database algorithmwhich uses HSELECT( ) and WPREPARE( ) to perform a quantum simulationwhich is
exponentiallymore precise thanTrotterization. In section 5we show that one canmodify the procedure in [34]
to allow for essentially the same result while simultaneously computing the integrals on-the-fly, and showhow
to implement wPREPARE( ) so as to compute the integrals on-the-fly. In section 6we bound the errors on the
integrals by analyzing the integrands. In section 7we discuss applications of these results and future research
directions.

3. TheHamiltonian oracle

Themolecular electronic structureHamiltonian describes electrons interacting in afixed nuclear potential.
Using atomic units inwhich the electronmass, electron charge, Coulomb’s constant and ÿ are unitywemay
write the electronicHamiltonian as

H
Z

R r r r2

1
, 9

i

r

i j

i

i j i j i i j

2

, ,

i

∣ ∣ ∣ ∣
( )å å å= -


-

-
+

->
   



where Ri


are the nuclei coordinates,Zi are the nuclear charges, and ri


are the electron coordinates [43].We

represent the system in a basis ofN single-particle spin–orbital functions usually obtained as the solution to a
classicalmean-field treatment such asHartree–Fock [43]. Throughout this paper, ri j( )j


denotes the ith spin–

orbital occupied by the jth electronwhich is parameterized in terms of spatial degrees of freedom rj

.

In second quantization, antisymmetry is enforced by the operators whereas infirst quantization
antisymmetry is explicitly in thewavefunction. The second quantized representation of equation (9) is

H h a a h a a a a
1

2
, 10

ij
ij i j

ijk
ijk i j k ( )

ℓ
ℓ ℓ

† † †å å= +

where the one-electron and two-electron integrals are

h r
Z

R r
r r

2
d , 11ij i

q

q

q
j

2

( )
∣ ∣

( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*ò åj j= -


-

-


 
 

h
r r r r

r r
r rd d . 12ijk

i j k1 2 1 2

1 2
1 2

( ) ( ) ( ) ( )

∣ ∣
( )ℓ

ℓ* *
ò

j j j j
=

-

   

 
 

The operators ai
† and aj in equation (10) obey the fermionic anti-commutation relations

a a a a a a, , , , 0. 13i j ij i j i j{ } { } { } ( )† † †d= = =

In general, theHamiltonian in equation (10) contains N4( ) terms, except in certain limits of very large

molecules where use of a local basis and truncation of terms lead to scaling on the order of N 2( )
~

[8]. The spatial
encoding of equation (10) requires N( )Q qubits, one for each spin–orbital.

4
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While fermions are antisymmetric, indistinguishable particles, qubits are distinguishable and have no
special symmetries. Accordingly, in order to construct the operator HSELECT( ), which applies terms in the
second quantizedHamiltonian to qubits as in equation (2), wewill need amechanism formapping the fermionic
raising and lowering operators in equation (10) to operators which act on qubits. Operators which raise or lower
the state of a qubit are trivial to represent using Paulimatrices

1 0
1

2
i , 14j j

x
j
y∣ ∣ ( ) ( )s s s= ñá = -+

0 1
1

2
i . 15j j

x
j
y∣ ∣ ( ) ( )s s s= ñá = +-

Throughout this paper, ,j
x

j
ys s and j

zs denote Paulimatrices acting on the jth tensor factor. However, these
qubit raising and lowering operators do not satisfy the fermionic anti-commutation relations in equation (13).
To enforce this requirement we can apply either the Jordan–Wigner transformation [35, 36] or the Bravyi–
Kitaev transformation [37–39].

The action of aj
† or ajmust also introduce a phase to thewavefunctionwhich depends on the parity (i.e. sum

modulo 2) of the occupancies of all orbitals with index less than j[38]. If f 0, 1j { }Î denotes the occupancy of

orbital j then

a f f f f f f f f0 1 1 , 16j N j j
f

N j j1 1 1 1 1 1s

j
s1

1

∣ ( ) ∣ ( )† ñ = - ñå
+ - + -=

-
   

a f f f f f f f f1 1 0 , 17j N j j
f

N j j1 1 1 1 1 1s

j
s1

1

∣ ( ) ∣ ( )ñ = - ñå
+ - + -=

-
   

a f f f f1 0, 18j N j j1 1 1∣ ( )† ñ =+ - 

a f f f f0 0. 19j N j j1 1 1∣ ( )ñ =+ - 

In general, two pieces of information are needed in order tomake sure the qubit encoding of the fermionic state
picks up the correct phase: the occupancy of the state and the parity of the occupancy numbers up to j. The
Jordan–Wigner transformationmaps the occupancy of spin–orbital j directly into the state of qubit j. Thus, in
the Jordan–Wigner transformation, occupancy information is stored locally. However, in order tomeasure the
parity of the state in this representation, one needs tomeasure the occupancies of all orbitals less thanj. Because
of this, the Jordan–Wigner transformed operators areN-local, whichmeans that some of the Jordan–Wigner
transformed operators are tensor products of up toNPauli operators. The Jordan–Wigner transformed
operators are

a
1

2
i , 20j j

s

j

s
z

j
x

j
y

j
z z

1

1

1 1⨂ ( ) ( )† s s s s s sº = - Ä Ä+

=

-

- 

a
1

2
i . 21j j

s

j

s
z

j
x

j
y

j
z z

1

1

1 1⨂ ( ) ( )s s s s s sº = + Ä Ä-

=

-

- 

It would be convenient if we could construct HSELECT( ) by applying the Jordan–Wigner transform and
acting on the quantum state, one spin–orbital index at a time. For instance, HSELECT( )might control the
application of a fermionic operator as follows

ijk ijk a

ijk a a

ijk a a a

ijk a a a a . 22

k

j k

i j k

ℓ ℓ
ℓ
ℓ

ℓ

∣ ∣ ∣ ∣
∣ ∣
∣ ∣

∣ ∣ ( )

ℓ

ℓ

ℓ

ℓ

†

† †

y y
y

y

y

ñ ñ ñ ñ
ñ ñ

ñ ñ

ñ ñ







However, the operators aj
† and aj are not unitary because the operators s+ and s- are not unitary. To correct this

problem,we add four qubits to the selection register where each of the four qubits indicates whether the xs or
the i ys part of the s+ and s- operators should be applied for each of the four fermionic operators in a string
such as a a a ai j k ℓ

† † . For ease of exposition, we define new fermionic operators which are unitary, aj q,
† and aj q, ,

where q 0, 1{ }Î

a a, i , 23j j
x

s

j

s
z

j j
y

s

j

s
z

,0
1

1

,1
1

1

⨂ ⨂ ( )† †s s s sº º -
=

-

=

-

a a, i . 24j j
x

s

j

s
z

j j
y

s

j

s
z

,0
1

1

,1
1

1

⨂ ⨂ ( )s s s sº º
=

-

=

-

Weuse these definitions to rewrite theHamiltonian in equation (10) so that it is explicitly aweighted sumof
unitary Pauli products of the formwe require in equation (1)

5
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H
h

a a
h

a a a a
4 32

. 25
q q ij

ij
i q j q

q q q q ijk

ijk
i q j q k q q, , , , , ,

1 2

1 2

1 2 3 4

1 2 3 4
( )

ℓ

ℓ
ℓ

† † †åå å å= +

Inspection reveals that applying the transformations in equations (23) and (24) to equation (25) gives the same
expression as applying the transformations in equations (20) and (21) to equation (10). By removing factors of
1/2 fromboth transformation operators and instead placing them in equation (25), we obtain transformation
operators that are always unitary tensor products of Pauli operators.

Accordingly, we can implement HSELECT( ) in the spirit of equation (22) by using four additional qubits and
the transformation operators in equations (23) and (24) so that

ijk q q q q ijk q q q q a

ijk q q q q a a

ijk q q q q a a a

ijk q q q q a a a a . 26

q

k q q

j q k q q

i q j q k q q

1 2 3 4 1 2 3 4 ,

1 2 3 4 , ,

1 2 3 4 , , ,

1 2 3 4 , , , ,

4

3 4

2 3 4

1 2 3 4

ℓ ℓ
ℓ

ℓ

ℓ

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ( )

ℓ

ℓ

ℓ

ℓ

†

† †

y y

y

y

y

ñ ñ ñ ñ ñ ñ

ñ ñ ñ

ñ ñ ñ

ñ ñ ñ








A circuit which implements these operators controlled on the selection register is straightforward to construct.
Furthermore, the transformation of the terms can be accomplished in 1( ) time. Because the Jordan–Wigner
transformation isN-local, the number of gates required to actually apply the unitaries in HSELECT( ) is N( ) .
However, the terms in equations (23) and (24) are trivial to apply in parallel so that each query takes 1( ) time.

Whereas the Jordan–Wigner transformation stores occupancy information locally and parity information
N-locally, the Bravyi–Kitaev transformation stores both parity and occupancy information in a number of
qubits that scales as Nlog( ) [37–39]. For this reason, the operators obtained using the Bravyi–Kitaev basis act
on atmost Nlog( ) qubits. Itmight be possible to apply the Bravyi–Kitaev transformationwith Nlog( ) gates,
whichwould allow for an implementation of HSELECT( )with Nlog( ) instead of N( ) gates. However, the
Bravyi–Kitaev transformation ismuchmore complicated and this would not change the asymptotic scaling of
our complete algorithm. The reason for this is because the total cost will depend on the sumof the gate count of

HSELECT( ) and the gate count of WPREPARE( ) or wPREPARE( ), and the latter procedures always require at least
N( ) gates.

4. SimulatingHamiltonian evolution

Using themethod of [34], Hamiltonian evolution can be simulatedwith an exponential improvement in
precision over Trotter-basedmethods by approximating the truncated Taylor series of the time evolution
operatorU e Hti= - .We begin by partitioning the total simulation time t into r segments of time t/r. For each of
these r segments we perform aTaylor expansion of the propagator and truncate the series at orderK, i.e.

U
Ht r

k

t r

k
W W H H

e
i

i
, 27

r
Ht r

k

K k

k

K k

i

0

0 , , 1k

k k

1

1 1

( )
!

( )
!

( )

å

å å

º »
-

=
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g g
g g g g

-

=

= ¼ =

G

 

where in the second linewe have expandedH as in equation (1). Notice that if we truncate the series at orderK,
we incur error

H t r

K 1
. 28

K 1( )
( )!

( )
⎛
⎝⎜

⎞
⎠⎟

+

+ 

If wewish for the total simulation to have error less than ò, each segmentmust have error less than r .
Accordingly, if we set r H t   then our total simulationwill have error atmost ò if

K
r

r

log

log log
. 29

( )
( )

( )
⎛
⎝⎜

⎞
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


Î

Wenowdiscuss howone can actually implement the truncated evolution operator in equation (27). First
note that the sum in equation (27) takes the form

U V j k

t

r k
W W V H H

, , , , ,

, i , 30
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j j k
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k j
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~

g g g g
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where theVj are unitary andU
~
is close to unitary. Our simulation uses an ancillary ‘selection’ register

j k K1∣ ∣ ∣ ∣g gñ = ñ ñ ñ , where k K0   and 1  g Gu for all υ.Wewill encode k in unary, which requires
K( )Q qubits, so that k 1 0k K k∣ ∣ñ = ñ- . Additionally, we encode each ∣g ñu in binary using log( )Q G qubits.While

we needK of the ∣g ñu registers, we note that only kwill actually be in use for a given value of k∣ ñ. The total number
of ancilla qubits required for the selection register j∣ ñ, denoted as J, scales as

J K
N r

r
log

log log

log log
. 31( ) ( ) ( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟




Î Q G =

Bymaking K( ) queries to HSELECT( ) from section 2, we can implement an operator to apply theVjwhich
is referred to in [34] as VSELECT( )

V j j V , 32SELECT j( )∣ ∣ ∣ ∣ ( )y yñ ñ = ñ ñ

where theVj are defined as in equation (30). This is equivalent to k applications of HSELECT( ), using each of the
∣g ñu registers, togetherwith kmultiplications by−i. In order to obtain k applications of HSELECT( ), wemay
perform a controlled formof H KSELECT( ) times, with each successive qubit in the unary representation of k as
the control. Given that the gate count for HSELECT( ) scales as N( ) , we can implement VSELECT( )with NK( )
gates. Applying the Pauli strings in parallel leads to circuit depths of 1( ) and K( ) , respectively. Table 1 lists
relevant parameters alongwith their bounds in our database algorithm. Table 2 lists relevant operators and their
gate counts in our database algorithm.

Wewill also need an operator that we refer to as PREPARE( )b , which initializes a state

s
j0

1
, 33PREPARE J

j
j( )∣ ∣ ( )åb bñ = ñÄ

where s is a normalization factor. To implement PREPARE( )b we first prepare the state

t r

k

t r

k
k . 34

k

K k

k

K k

0

1 2

0

( )
!

( )
!

∣ ( )
⎛
⎝⎜

⎞
⎠⎟å åL L

ñ
=

-

=

Using the convention that R exp i 2y
y( ) [ ]q q sº - , we apply Ry 1( )q to thefirst qubit of the unary encoding for

k followed by Ry k( )q to the kth qubit controlled on qubit k 1- for all k K2,[ ]Î sequentially, where

t r

k

t r

q
2arcsin 1

1
. 35k

k

q k

K q1
1

( )
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( )
!

( )
⎛

⎝
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⎛
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⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟åq º -

L
-

L-

=

-

To each of theK remaining components of the selection register K1∣ ∣g gñ ñ , we apply WPREPARE( ) once, which
acts as

Table 1.Database algorithmparameters and bounds.

Parameter Explanation Bound

Λ Normalization factor, equation (37) N4( )

r Number of time segments, equation (40) t ln 2( )L
K Truncation point for Taylor series, equation (29) r

r

log

log log( )( )
( )






Γ Number of terms in unitary decomposition, equation (1) N4( )

J Number of ancilla qubits in selection register, equation (31) K log( )Q G

Table 2.Database algorithmoperators and gate counts.

Operator Purpose Gate count

HSELECT( ) Applies specified terms fromdecomposition, equation (2) N( )

VSELECT( ) Applies specified strings of terms, equation (32) NK( )

WPREPARE( ) Prepares a superposition of states weighted by coefficients, equation (3) ( ) G
PREPARE( )b Prepares a superposition of states weighted by coefficients, equation (33) K( ) G
 Probabilistically performs simulation underH for time t/r, equation (39) K( ) G
P Projects systemonto 0 J∣ ñÄ state of selection register, equation (42) K log( )Q G
G Amplification operator to implement sumof unitaries, equation (43) K( ) G
PG r( ) Entire algorithm rK( ) G
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W W0
1

, 36PREPARE log

1

( )∣ ∣ ( )å gñ =
L

ñ
g

g
Ä G

=

G

where

W N, . 37
1

4∣ ∣ ( ) ( )åL º L Î
g

g
=

G

In principle, we only need to perform W kPREPARE( ) times, because the registers past k are not used.However, it
is simpler to perform W KPREPARE( ) times, because it does not require control on k.

Using results from [44], WPREPARE( ) can be implementedwith ( ) G gates by using a classically
precomputed database of theΓmolecular integrals. The gate count for PREPARE( )b thus scales as K( ) G .
However, this construction is naturally parallelized to depth K( ) + G . A circuit implementing PREPARE( )b is
shown infigure 1.

The general strategy for implementing the truncated evolution operator in equation (30) becomes clear if we
consider what happens to state ∣yñwhenwe apply PREPARE( )b followed by the operator VSELECT( )

V
s

j V0 . 38SELECT PREPARE J

j

j
j( ) ( )∣ ∣ ∣ ∣ ( )åb y

b
yñ ñ = ñ ñÄ

The similarity of this state to the stateU ∣yñ~
motivates the operator

V

s
U

s

,

0
1

0 1
1

, 39

PREPARE SELECT PREPARE

J
2

( ( ) ) ( )( ( ) )

∣ ∣ ∣ ∣ ∣ ( )





b b

y y

º Ä Ä

ñ ñ= ñ ñ + - Fñ~Ä

 

where ∣Fñ is a statewith the ancilla qubits orthogonal to 0 J∣ ñÄ . Note that in [34], the authors use the convention
that allWγ are positive and phases are incorporated into the operatorsHγ. Sincewe depart from that convention
for reasons described in section 2, the second application of PREPARE( )b in equation (39) is the transpose of the
first application, in contrast to [34]where the conjugate transpose is used instead. The circuit implementing
is shown infigure 2.

At this point, we choose the number of segments to be

r t ln 2 . 40( ) ( )= L

Since HL  , our choice ofK in equation (29) remains valid. The additional factor of1 ln 2( ) is included to
satisfy a requirement of oblivious amplitude amplification as described in [33] so that

s
k

1
ln 2 2. 41

j
j

k

K
k

0

∣ ∣
!

( ) ( )å åb= = »
=

Figure 1.The circuit for PREPARE( )b as described in equation (33). An expression for kq is given in equation (35). WPREPARE( ) is
implemented using a precomputed classical database.
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Wenowdefine a projection operatorP onto the target state, which has support on the empty ancilla register

P

P
s

U

0 0 ,

0
1

0 . 42

J

J J

(∣ ∣)

∣ ∣ ∣ ∣ ( ) y y

º ñá Ä

ñ ñ= ñ ñ~

Ä

Ä Ä



Wealso define the amplification operator

G R R , 43( )†  º -

where R P2= - is the reflection operator.With these definitions, we follow the procedure in [34]which uses
the oblivious amplitude amplification procedure of [33] to deterministically execute the intended unitary.We
useG in conjunctionwith P to amplify the target state

PG
s

U
s

UU U0 0
3 4

. 44
3

∣ ∣ ∣ ˜ ∣ ( )†⎜ ⎟⎛
⎝

⎞
⎠y yñ ñ = ñ - ñ~ ~~

Recalling the definition ofUr in equation (27), our choices ofK in equation (29) and r t ln 2= L imply that

PG U r0 0 , 45r∣ ∣ ∣ ∣ ( ) ( )y yñ ñ - ñ ñ Î 

so that the total error from applying oblivious amplitude amplification to all the segments will again be order ò.
To summarize, the database algorithm is as below.

(1) Express theHamiltonian as a weighted sumof unitary operators as in equation (1).

(2) Subdivide the simulation time t into r t ln 2( )= L segments, whereΛ is defined in equation (37).

(3) Expand the evolution for time t/r as a truncated Taylor seriesUr, as defined in equation (27). (Steps 1 to 3 are
classical pre-processing.)

(4) For each segment perform the following steps.

(a) Prepare a superposition state with amplitudes proportional to Wg , where Wγ are the weights of the
Hamiltonians in the sum. This is achieved using the operator WPREPARE( ), defined in equation (3).

(b) Create the superposition of states k∣ ñ encoded in unary, as given in equation (34), where the amplitudes
correspond to the square roots of theweights for a truncated Taylor series. This is achieved using the
controlled rotations by kq , depicted infigure 3, where the values of kq are given by equation (35). The
overall operation performed in steps (a) and (b) is denoted PREPARE( )b , and defined in equation (33).

(c) Use the ancillas prepared in steps (a) and (b) as controls for the operations Vj, defined in equation (30);
this controlled operation is denoted VSELECT( ), and defined in equation (32). This controlled operation
corresponds toK controlled phase shifts and applications of HSELECT( ), defined in equation (2). The
result of VSELECT( ) is that it applies a superposition of the terms in the truncatedTaylor series
expansion of theHamiltonian evolution to the target state.

(d) Apply PREPARE( )b to invert the state preparation in steps (a) and (b). Then, if the ancilla qubits were
measured as all zero, that would correspond to a success and giveUr applied to the target state.

Figure 2.The circuit implementing . The oval indicates the control register for VSELECT( ).

9

New J. Phys. 18 (2016) 033032 RBabbush et al



(e) Apply oblivious amplitude amplification to obtain success with unit probability.

The gate count of the entire algorithm is thus r times the cost of implementing VSELECT( ) plus the cost of
implementing PREPARE( )b . Thoughwe implement VSELECT( )with NK( ) gates, our brute-force construction
of WPREPARE( ) led to a gate count for PREPARE( )b which scales as K( ) G . Thus, the total gate count of our
database algorithm scales as

rK
N t Nt

Nt
N t

log

log log
. 46

4
8( ) ( )

( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟




  G =

L
=

~

While this bound suggests an exponentiallymore precise algorithm than those based onTrotterization, in the
remainder of our paperwe discuss an evenmore efficient algorithmwith improved dependence onN.

5. Evolution under integralHamiltonians

In section 4we analyzed the database algorithm for quantum simulating chemistryHamiltonians in amanner
that is exponentiallymore precise thanTrotterization. Themost costly part of that procedure is the
implementation of WPREPARE( ), as in equation (3), which prepares a superposition state with amplitudes that
are given by integrals over spin–orbitals, as in equations (11) and (12). Instead of classically precomputing these
integrals and implementing WPREPARE( )with a database, the strategy we introduce is to numerically sample the
integrals on-the-fly using the quantum computer. Because of this, we call this the ‘on-the-fly’ algorithm. To
accomplish this, we discretize the integrals as sums and design a circuit which returns the integrand of these
integrals at particular domain points. Themotivation for approximating integrals as sums comes from a direct
analogy between the discretization of time in the Taylor series approach for simulating time-dependent
Hamiltonians [34] and the discretization of space in Riemann integration.

In [34], the time-ordered exponential is approximated by a Taylor series up to orderK, and the integrals are
then discretized as follows on each segment

tH t t
k
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where  is the time ordering operator. Now let us suppose that ourHamiltonian does not change in time, but
instead that theHamiltonian itself is given as a definite integral over the spatial region  so that

H z zd . 48( ) ( )

ò=

 

The second quantizedHamiltonian given by equation (25) is similar to this, except it includes both terms hij,
which are integrals over one spatial coordinate, and hijkℓ, which are integrals over two spatial coordinates.While
those integrands are also defined over all space, the integrands decay exponentially in space sowe can
approximate them as definite integrals over the finite region  , having volume  . Thenwe can approximate the
integral by

H z z zd , 49
1

( ) ( ) ( )




ò åm

» »
r

m

r
=

  

where zr

is a point in the domain  at the ρth grid point.

As in section 4, we begin by dividing t into r segments.We turn our attention to a single segment
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where in the second linewe have performed aTaylor expansion of the propagator and truncated at orderK. In
equation (50), the bolded symbol z


indicates a vector of vectors. Like before, if r H t   then the relationship

betweenK and ò is given by equation (29). To approximate the integral, we divide it intoμ regions of volume
 m.We nowhave
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For the second quantizedHamiltonian, theWγ in equation (1) are integrals over scalar functions w z( )g

as in

equation (4). Using this property it is clear that

z w z H 52
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( ) ( ) ( ) å=
g
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and the segmentUr can be expressed as
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The second quantizedHamiltonian given in equation (25) is a sumof termswhich are integrals over one
spatial coordinate and termswhich are integrals over two spatial coordinates. This case is easily accounted for by
taking z


to be a vector including both spatial coordinates, and  to be the product of the volumes for the two

coordinates. One can take the termswith the integral over the single spatial coordinate to also be integrated over
the second spatial coordinate, and divided by the volume of integration of that second coordinate to give the
correct normalization.Wemay nowproceedwith the truncatedTaylor series simulation as in section 4.
Whereas our database algorithm required WPREPARE( ) to create a superposition of states weighted by theWg , as
in equation (3), our on-the-fly algorithmwill need to create a superposition of states weighted by the scalar
integrands w z( )g r


.

As thefirst step, we discuss amethod for dynamically decomposing each w z( )g

into a sumof termswhich

differ only by a sign, w zm, ( )g

. That is, the decomposition is of the form

w z w z w z, 1, 1 , 54
m

M

m m
1

, ,( ) ( ) ( ) { } ( )åz» Î - +g g g
=

  

where ζ is the precision of the decomposition and

t
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The sum in equation (54) corresponds to w z( )g

rounded to the nearestmultiple of 2 z , so

w z w z . 56
m

M

m
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,( ) ( ) ( )åz z-g g
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To accomplish this on-the-fly, we perform logic on the output of wSAMPLE( )which acts as

w w z0 , 57SAMPLE Mlog( )∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )g r g rñ ñ ñ = ñ ñ ñ~
g r

Ä 

where w z( )~
g r


is the binary representation of w z( )g r


using Mlog qubits. In particular, wewill need to determine
whether the w zm, ( )g


for a given value ofm should be 1 or−1. Since the superpositionwe desire should be

weighted by the square root of this coefficient, we need to prepare states that either do or do not have a phase
factor i 1= - so

w z
w z w z m M

w z w z m M

2 ,

i 2 ,
58ℓ

ℓ
ℓ
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g r g r

g r g r
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 
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where mℓ∣ ∣ ∣ ∣g rñ = ñ ñ ñand w z∣ ( )ñ~
g r


was obtained from wSAMPLE( ). The phase factor can be obtained using
phase-kickback in the usual way. Thenwe apply wSAMPLE( ) a second time to erase the register w z∣ ( )ℓ ñ~

r


. A single
query to this circuit allows for the construction of wPREPARE( )with the same complexity as wSAMPLE( ).
Accordingly, the overall action of wPREPARE( ) is

w w z0
1

, 59PREPARE L
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m
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1
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where L M( )mÎ Q G and

L w zmax . 60
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g
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

Before explaining the integrand circuit we briefly comment on the additional resources required for the
Taylor series simulation under a discretized, position-dependent, integrandHamiltonian. As in the constant
Hamiltonian case, we need one register with K( )Q qubits to encode k∣ ñandK registers of log( )Q G qubits to
encode k1∣ ∣g gñ ñ . However, we also need extra ancilla qubits to store the value ofm, the grid point registers, as
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well as the value registers which are used by the integrand oracle wSAMPLE( ). This represents an additional
ancilla overhead of K Mlog( ( ))mQ .

The sources of simulation error are also similar to the constantHamiltonian case. Aswe show in section 6,
we can approximate the integrals with discrete sums to precision ò at a cost that is logarithmic in1  . The error
due to the discrete sum is controlled by the choice ofμ, whichwe need to select so that the resulting error per
segment is less than r . Themost costly integrals (due to the size of their domain)will be the two-electron
integrals in equation (12)which have integrands of the form

w z h x y
x y x y

x y
, , 61ijk

i j k( ) ( )
( ) ( ) ( ) ( )

∣ ∣
( )ℓ

ℓ* *j j j j
= =

-
g
  

   

 

where x

and y


represent the three spatial degrees of freedomof two separate electrons. In section 6, we bound

the cost to the quantumalgorithmof estimating the corresponding integrals.
To summarize, the on-the-fly algorithm is as described below.

(1)Decompose theHamiltonian into an integral which is approximated as z1 ( )åm r
m

r=


, as in equation (49).

(2) Subdivide the simulation time t into r t ln 2( )l= segments, whereλ is defined in equation (60).

(3) Expand the evolution for time t/r by a truncated Taylor series as in equation (51). (Steps 1 to 3 are classical
pre-processing.)

(4) For each segment perform the following steps.

(a) Apply wPREPARE( ), as defined in equation (59), to create a superposition of states mℓ∣ ∣ ∣ ∣g rñ = ñ ñ ñ
weighted by i or i- .

(b) Create the superposition of states k∣ ñencoded in unary, as given in equation (34), except withΛ replaced
withλ.

(c) Apply VSELECT( ), i.e.K controlled phase shifts and applications of HSELECT( ), to coherently execute
all terms in the truncated Taylor series.

(d) Apply the transpose of the state preparation in step (a) and step (b).

(e) Apply oblivious amplitude amplification to obtain success with unit probability.

Note that the key difference between this algorithm and that described in section 4 is the state preparation in
wPREPARE( ), which corresponds to terms in the discretized integral. The superposition of unary-encoded states

k∣ ñ ismodified, but only in thatΛ is replacedwithλ. In the next sectionwe detail how to construct the oracle for
the discretized integral, and its cost.

6. The integrand oracle

In section 5, we showed howone can implement the truncated Taylor series simulation technique by replacing a
superposition state having amplitudes given by integrals with a superposition state having amplitudes given by
their integrands, as well as away of decomposing those integrands.We begin this section by constructing a
circuit which allows us to sample from the integrands as in equation (57). First, wewill need a circuit which
computes values of theN spin–orbital basis functions z1( )j r


to zN ( )j r


at zr

, a real-valued position vector at grid

point ρ. The action of each these oracles is

Q z0 , 62M
j

log
j
∣ ∣ ∣ ∣ ( ) ( )r r jñ ñ = ñ ñj r

Ä 

where zj ( )j r


 represents the binary expansion of zj ( )j r


using Mlog qubits.Wewill needN different circuits of
this form, one for each basis function z1( )j


to zN ( )j


. Usually, themolecular spin–orbital basis functions are

represented as sums ofGaussiansmultiplied by polynomials [43]. In that case, the quantum circuit Q
jj can be

implemented as a reversible classical circuit that evaluates and sums theGaussians associatedwith zj ( )j

. For

example, in the STO-nGbasis set, each orbital is a linear combination of nGaussian basis functions [43]. In
general, Gaussian functionsmay be evaluated classically with complexity that is atmost polylogarithmic in1 
[45]. The use ofGaussians has a historical precedent; they are used because those functions are simple to
integrate on a classical computer. However, the use of aGaussian basis is not necessarily an optimal strategy for a
quantum implementation.We leave open the problemof determining an optimal representation ofmolecular
orbital basis functions for evaluation on a quantum computer and develop a strategy based on themodel
chemistries used in classical treatments of electronic structure.
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Next, we combineN different Q
jj circuits, one for each zj ( )j


, to construct a circuit which allows us to

apply any of theN basis functions. This circuit will have depth N Ntpolylog( ( )) andmay be constructed as
the block diagonal operator

j j Q . 63
j

N

1
j

∣ ∣ ( ) = ñá Ä j
=

Thus, is a sequence of Q
jj circuits with the spin–orbital selection completely controlled on a register encoding

the basis function index j. Therewill be a factor of Ntlog( ) in the complexity because the controlled
operations need to access Nlog( ) qubits for j, as well as Ntlog( ( )) qubits storing the position z


. In

addition, the circuit needs to perform analytic operations (e.g. calculating exponentials for STO-nG), whichwill
contribute an additional factor polynomial in Ntlog( ) . An example implementation of for four basis
functions is shown infigure 3.

We nowdiscuss howone can use to compute the two-electron integrands in equation (61). To avoid
singularities that would occurwhen two electrons occupy the same point in space, we change variables in
equation (61) so that x yx = -

  
.With this substitution, the integral becomes

x x x x
xd d . 64

i j k 3 3
( ) ( ) ( ) ( )

∣ ∣
( )ℓ* *

ò
j j x j j x

x
x

- -
     


 

Expressing x

in spherical polar coordinates, with ∣ ∣x xº


, we have

x x x x xsin d d d d . 65i j k
3( ) ( ) ( ) ( ) ( )ℓ* *òj j x j j x x q x q f- -

      

Wedefine themaximumvalue of any spin–orbital function as maxj and themaximumvalue of its derivative in
any direction as maxj¢ . In addition, we truncate the integral at afinite distance xmax. Now assume that we
discretize x


in intervals of size xd along each degree of freedom.We can take themaximumvalue of x to be xmax,

and choose x x x, maxdx d dq df d= = = .
The primary contribution to the complexity is in terms of the number of segments. Themaximumvalue in

the integrand of equation (65) is upper bounded by xmax max
4j .When discretizing the integral, each term in the

sum is no larger than x x x x x xmax max
4 4

max
2

max
4 6

max( ( ) ) ( ) j d d j d= and there are x xmax
6(( ) ) d terms

Multiplying these together gives us the contribution of the integral to the scaling of our on-the-fly algorithm,

x , 66max
4

max
5( ) ( ) j

which corresponds to the factor of w zmax z , ∣ ( )∣ g g
 in equation (60). But howdo maxj and xmax scale withN?

Themaximumvalues maxj are predetermined by themodel chemistry, and hence are independent ofN.
Determining the appropriate value of xmax is a littlemore complicated.

Because theHamiltonian is a sumof N4( ) of the integrals, each integral should be approximatedwithin
error N t4( ( )) to ensure that thefinal error is bounded by ò. Since the functions zj ( )j


can be chosen to decay

exponentially, xmax can be chosen logarithmically in the allowable error ò. The quantum chemistry problem is
always definedwithin a particular basis, specified as part of amodel chemistry [43]. Themodel chemistry
prescribes howmany spin–orbitals, howmany basis functions, andwhat type of basis functions should be
associatedwith each atom in amolecule. This includes a specification for parameters of the basis functions
which impose a particularmaximumvalue ,maxj as well as a cutoff distance beyondwhich each zj ( )j


is

negligibly small. However, the space between basis functions on different atomsmust grow as the cube root ofN,
because themolecular volumewill grow as N( ) . This would imply that the value of xmax needed scales as

x N Ntlog . 67max
1 3( ( )) ( )Î

Nevertheless, each individual orbital zj ( )j

is non-negligible on a region that grows only as Nlog( ) for a

givenmodel chemistry. It is therefore advantageous tomodify the grid used for the integral so it only includes
points where one of the associated orbitals is non-negligible. This can be performed at unit cost if the center of

Figure 3.Anoracle which returns the value of a particular basis function at a particular position z

depending on the state of an ancilla

register j∣ ñwhich selects the oracle.Here j is represented in binary, where j1 refers to thefirst bit of j, and j2 refers to the second bit of j.
This example is only validwhen there are four basis functions.
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each spin–orbital function is provided in an additional register when querying the circuit. As above, the region
where the orbital can be regarded as non-negligible can be chosen logarithmically in ò, to ensure that the overall
error in the simulation is within error ò.

To bemore specific, the coordinates for x

can be chosen to be centered around the center of orbital ij , with

the components of x

only going up to amaximumvalue scaling as

x Ntlog . 68max ( ( )) ( )Î

For x

, we onlywish to take values such that xj ( )j x-

 
are non-negligible. Here it should be noted that the

spherical polar coordinates are only advantageous if we are in a regionwhere x

is near zero, where theCartesian

coordinates would have a divergence. In regionswhere x

is large, the extra factor of ξ for the integral in spherical

polar coordinates increases the complexity.
Therefore, if theminimumvalue of ∣ ∣x


such that xj ( )j x-

 
is non-negligible is Ntlog( ( )) , then the

maximumvalue of ∣ ∣x

such that xj ( )j x-

 
is non-negligible will also be Ntlog( ( )) . Thereforewe can use

spherical polar coordinates, and obtain scaling as in equation (66)with xmax as in equation (68). On the other
hand, if theminimumvalue of ∣ ∣x


such that xj ( )j x-

 
is non-negligible is Ntlog( ( ))W , thenwe can use

Cartesian coordinates, and the division by ∣ ∣x

can only lower the complexity.We obtain a contribution to the

complexity scaling as xmax
4

max
3( ) j with xmax as in equation (68). Here the power of xmax is 3 rather than 5,

becausewe divide instead ofmultiplying by ∣ ∣x

aswe didwith spherical polar coordinates.

Next we consider the grid size needed to appropriately bound the error in the discretized integration. The
analysis in the case where Cartesian coordinates are used is relatively straightforward. Considering a single block
in six dimensions with sides of length xd , the value of the integrand can only vary by themaximumderivative of
the integrand times xd (up to a constant factor). The error for the approximation of the integral on this cube is
therefore thatmaximumderivative times x7d . Then the number of these blocks in the integral is x xmax

6(( ) ) d ,
giving an overall error scaling as x xmax

6 d times themaximumderivative of the integrand.
Themaximumderivative of the integrand can be bounded in the followingway. For the derivative with

respect to any component of x

, we obtain the derivative of the integrand scaling as

x
, 69max max

3

max

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

j j¢

wherewe have used the fact that we are only usingCartesian coordinates for xmax∣ ∣ ( )x = W


. For the derivative of
the integrandwith respect to any component of x


in the numerator of the integrand, the same scaling is

obtained. For derivatives with respect to components of x

in the denominator, the scaling is

x
. 70max

4

max
2

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

j

Overall, we therefore bound the errorwhen discretizing inCartesian coordinates as

x x x . 71max max max max
3

max
5(( ) ) ( ) j j j d¢ +

The analysis for spherical polar coordinates is a littlemore subtle, but it is largely equivalent if we scale the
angular variables. It is convenient to define scaled angular variables

x x, . 72max max ( )q q f f¢ º ¢ º

Then the discretization lengths for all variables are xd . The volume of each block in the discretization is again
x6d , and there are x xmax

6(( ) ) d blocks. The total error is again therefore themaximumderivative of the
integrandmultiplied by x xmax

6 d .
The derivative of the integrandwith respect to any component of x


is again given by equation (69).

Multiplication by ξ gives a factor xmax( ) , but the change of variables to q¢ and f¢ gives division by a factor of
xmax

2 . The derivative of the integrandwith respect to ,x q¢ or f¢ in any of the spin orbitals again gives a factor
scaling as in equation (69). The derivative of the integrandwith respect to ξ or q¢ in xsin max( )x q¢ scales as in
equation (70).

As a result, regardless of whether Cartesian coordinates are used or spherical polar coordinates, the error due
to discretization is bounded as in equation (71). Thus, to achieve error in the integral no larger than N t4( ( )) ,
we require that

x
N t x x

1
. 73

4
max max max max

3
max
5( )

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

d
j j j

Î Q
¢ +
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The total number of terms in the sum then scales as

x

x

N t
x x . 74max

6 4

max max max max
3

max
6

6

( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟


d

j j j= Q ¢ +

This is quite large, but becausewe only need to use a number of qubits that is the logarithmof this, it only
contributes a logarithmic factor to the complexity. Because the logarithm scales as Ntlog( ( )) , it contributes
this factor to the complexity of wSAMPLE( ).

Given, computing the integrand in equation (65) is straightforward.Weneed to call four times on
registers that contain x


and x


. Let denote a circuit computing the value of sinx q when queriedwith the point

x

. This circuit has the following action:

0 sin . 75∣ ∣ ∣ ∣ ( ) x x x qñ ñ = ñ ñ
 

Thefinal element of our sampler circuit will be a reversiblemultiplierwhich simplymultiplies togetherfive
registers in a reversible fashion. This construction of wSAMPLE( ) is shown infigure 4 and enables us to evaluate
the integrand of equation (65), i.e.

x x x x sin . 76i j k( ) ( ) ( ) ( ) ( )ℓ* *j j x j j x x q- -
     

Nextwe consider how to construct a circuit for the one-electron integrals in equation (11). First, one
constructsN additional circuits similar to the ones in equation (62) that return zj

2 ( )j

as opposed to zj ( )j


.

These oracles are incorporated into a one-electron version of which is called alongwith a routine to compute
the nuclear Coulomb interactions. The one-electron integrals have singularities at the positions of the nuclei.
Similar to the two-electron integrals, these singularities can be avoided by using spherical polar coordinates.
Each term in the sumover the nuclei should use spherical polar coordinates centered at that nucleus. Selection
between the one-electron and two-electron routines is specified by ∣gñ. Putting this togetherwith the circuit in
figure 4, we can implement wSAMPLE( )with N Nlog( ) gates, and, as discussed in section 5, wPREPARE( ) has
the same complexity.

While the N( )
~

gate count of wPREPARE( ) ismuch less than the N4( ) gate count of WPREPARE( ), our on-
the-fly algorithm requiresmore segments than the database algorithm.Whereas our database algorithm
requires r t ln 2( )= L segments whereΛ is the normalization in equation (3), our on-the-fly algorithm requires
r t ln 2( )l= segments where xmax

4
max
5( )l jÎ Q G is the normalization in equation (59), which is accounted for

in equations (60) and (66). Thus, by performing the algorithm in section 4 using wPREPARE( ) instead of
WPREPARE( ) and taking r t ln 2( )l= , we see that our on-the-fly algorithm scales as

Figure 4.Circuit to sample the integrand of equation (65). The circuit combines four copies of with  and. The target registers
for and  are denoted by boxes, and the control registers are denoted by circles.
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rNK NK t . 77( ) ( ) ( )  l=
~ ~

Using the scaling in equation (68), we can boundλ as

x N Ntlog , 78max
4

max
5 4 5( ) ( [ ( )] ) ( ) l jÎ G Î

so that the overall gate count of the on-the-fly algorithm scales as

N Kt N t . 795 5( ) ( ) ( ) =
~ ~

Recall that the
~
notation indicates that logarithmic factors have been omitted. The full scaling includes a power

of the logarithmof 1  .
To summarize, in this sectionwe have provided the algorithm for the operation wSAMPLE( ) used in

section 5. To achieve this operation, the key steps are:

(1)Convert from γ to i j k, , , ℓ( ), and from the sampling point ρ to the corresponding values of x

and x


.

(2)Apply the circuit shown infigure 4 to sample the integrand h x x w z,ijkl ( ) ( )x- = g
   

(see equation (61)).

(3)The circuit of step 2 uses controlled- operations which calculate the value of an orbital zj ( )j

, and are

performed using a circuit of the form infigure 3.

7.Discussion

Wehave introduced two novel algorithms for the simulation ofmolecular systems based primarily on the results
of [34]. Our database algorithm involves using a database to store themolecular integrals; its gate count scales as

N t8( )
~

. Our on-the-fly algorithm involves computing those integrals on-the-fly; its gate count scales as N t5( )
~

.
Both represent an exponential improvement in precision over Trotter-basedmethodswhich scale as

N t9 3( )
~

when using reasonably low-order decompositions, and over all other approaches to date.

Specifically, our database algorithm scales like N t4( ) L
~

wherewe have used the bound N4( )L Î .
However, we believe this bound is very loose. As discussed in [8, 43], the use of local basis sets leads to a number

of two-electron integrals that scales as N 2( )
~

in certain limits of largemolecules. Accordingly, the true scaling of

the database algorithm is likely to be closer to N t6( )
~

. It also seems possible that our integration scheme is
suboptimal; it is possible that it can be improved by taking account of smaller values of hijkℓ.

Our asymptotic analysis suggests that these algorithmswill allow for the quantum simulation ofmolecular
systems larger thanwould be possible using Trotter-basedmethods.However, numerical simulationswill be
crucial in order to further optimize these algorithms and better understand their scaling properties. Just as recent
work showed significantlymore efficient implementations of the original Trotterized quantum chemistry
algorithm [5–9], we believe the implementations discussed here are far fromoptimal. Furthermore, just as was
observed for Trotterized quantum chemistry [7, 9], we believe our simulationsmight scalemuch better when
only trying to simulate ground states of realmolecules. In light of this, numerical simulationsmay indicate that
the scaling for realmolecules ismuch less than our bounds predict.
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