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Abstract

We introduce novel algorithms for the quantum simulation of fermionic systems which are
dramatically more efficient than those based on the Lie—Trotter—Suzuki decomposition. We present
the first application of a general technique for simulating Hamiltonian evolution using a truncated
Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The key difficulty
in applying algorithms for general sparse Hamiltonian simulation to fermionic simulation is thata
query, corresponding to computation of an entry of the Hamiltonian, is costly to compute. This means
that the gate complexity would be much higher than quantified by the query complexity. We solve this
problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially
faster than classical sampling. While the approaches presented here are readily applicable to a wide
class of fermionic models, we focus on quantum chemistry simulation in second quantization,
perhaps the most studied application of Hamiltonian simulation. Our central result is an algorithm
for simulating an N spin—orbital system that requires 5(N >t) gates. This approach is exponentially
faster in the inverse precision and at least cubically faster in N than all previous approaches to
chemistry simulation in the literature.

1. Introduction

As small, fault-tolerant quantum computers come increasingly close to viability [ 1-4] there has been substantial
renewed interest in quantum simulating chemistry due to the low qubit requirements and industrial importance
of the electronic structure problem. A recent series of papers tried to estimate the resources required to quantum
simulate a small but classically intractable molecule [5-9]. Although qubit requirements seem modest, initial
predictions of the time required were daunting. Using arbitrarily high-order Trotter formulas, the tightest
known bound® on the gate count of the second quantized, Trotter-based quantum simulation of chemistry is
5(N 8 /e°) [10, 11], where € is the precision required and N is the number of spin—orbitals. However, using
significantly more practical Trotter decompositions, the best known gate complexity for this quantum
algorithm is O(N°/t3/€) [6].

Fortunately, numerics indicated that the average circuit depth for real molecules may be closer to
5(N 6\/1‘3—/5) [7], or 5(2 3N 4\/t3—/5) [9] when only trying to simulate ground states, where Z is the largest nuclear
charge for the molecule. While this improved scaling restores hope that fault-tolerant devices will have an
impact on some classically intractable chemistry problems, the Trotter-based quantum simulation of large

6 We use the typical computer science convention that f € ©(g), forany functions fand g, if fis asymptotically upper and lower bounded by
multiples of g, O indicates an asymptotic upper bound, O indicates an asymptotic upper bound up to polylogarithmic factors, {2 indicates
the asymptotic lower bound and f € o(g) implies f/g — 0 in the asymptotic limit.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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(e.g. N > 500) molecules still seems prohibitively costly [9, 12, 13]. This limitation would preclude simulations
of many important molecular systems, such as those involved in biological nitrogen fixation and high-T,
superconductivity [12, 13].

The canonical quantum algorithm for quantum chemistry, based on the Trotter—Suzuki decomposition
which was first applied for universal quantum simulation in [ 14, 15], was introduced nearly one decade ago [16].
This approach was later refined for implementation with a set of universal quantum gates in [17]. With the
exception of the adiabatic algorithm described in [18] and a classical variational optimization strategy making
use of a quantum wavefunction ansatz described in [19-21], all prior quantum algorithms for chemistry have
been based on Trotterization [20, 22-28].

Trotter—Suzuki approaches were also applied to simulation of evolution under sparse Hamiltonians with the
entries given by an oracle [29, 30]. A related problem is the simulation of continuous query algorithms; in 2009,
Cleve et al showed how to achieve such simulation with exponentially fewer discrete queries than Trotterization
interms of 1 /€ [31]. The algorithm of [31] still required a number of ancilla qubits that scaled polynomially in
1/ €, but this limitation was overcome in [32] which demonstrated that the ancilla register in [31] could be
compressed into exponentially fewer qubits. In [33, 34], Berry et al combined the results of [29-32] to show
exponentially more precise sparse Hamiltonian simulation techniques. A major contribution of [33] was to use
oblivious amplitude amplification to make the algorithm from [31, 32] deterministic, whereas prior versions
had relied on probabilistic measurement of ancilla qubits. An improvement introduced in [34] was to show how
to simulate arbitrary Hamiltonians using queries that are not self-inverse (a requirement of the procedure in
[33]). We focus on the methodology of [34] which is relatively self-contained.

The algorithm of [34] approximates the propagator using a Taylor series expansion rather than the Trotter—
Suzuki decomposition. By dividing the desired evolution into a number of simulation segments proportional to
the Hamiltonian norm, one can truncate the Taylor series at an order which scales logarithmically in the inverse
of the desired precision [34]. The truncated Taylor series must be expressed as a weighted sum of unitary
operators. To simulate the action of this operator, one first initializes the system along with an ancilla register
thatindexes all terms in the Taylor series sum. The ancilla register is then put in a superposition state with
amplitudes proportional to the coefficients of terms in the Taylor series sum. Next, an operator is applied to the
system which coherently executes a single term in the Taylor series sum that is selected according to the ancilla
register in superposition. Finally, by applying the inverse of the procedure which prepares the ancilla register,
one probabilistically simulates evolution under the propagator. The algorithm is made deterministic using an
oblivious amplitude amplification procedure from [33].

In the present paper we develop two new algorithms for the application of the Hamiltonians terms, which we
refer to as the ‘database’ algorithm and the ‘on-the-fly” algorithm. In the database algorithm, the ancilla register’s
superposition state is prepared with amplitudes from a precomputed classical database. In the on-the-fly
algorithm, those amplitudes are computed and prepared on-the-fly, in a way that is exponentially more precise
than classically possible.

2. Overview of results

The simulation procedure described in [34] assumes the ability to represent the Hamiltonian as a weighted sum
of unitaries which can be individually applied to a quantum state. Specifically, we must be able to express the
simulation Hamiltonian as
r
H=7} W,H, )
y=1
where the W, are complex-valued scalars’, the H., are unitary operators and a mechanism is available for
selectively applying the H.,. Using the Jordan—Wigner transformation [35, 36] or the Bravyi—Kitaev
transformation [37-39], the second quantized molecular Hamiltonian can be mapped toasumof I' € O(N*)
local Hamiltonians. Since these local Hamiltonians are each a tensor product of Pauli operators multiplied by
some coefficient, they automatically satisfy the form of equation (1).
We will need a circuit referred to in [34] as SELECT (H ) which is queried within the algorithm such that

SELECT(H)|v) Ivb) = |7) H,|v). ()

7 The convention of [34] requires that the W, are real, non-negative scalars. This treatment remains general as arbitrary phases can be
factored into the H,. However, we break with that convention and allow the W/, to take arbitrary complex values. This is done for pedagogical
purposes: so that we may separately describe computation of the H. and the W, for the chemistry Hamiltonian. Consequentially, our
equation (39) differs from the analogous equation in [34] by a complex conjugate operator.
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One could construct SELECT (H ) by storing all the Pauli strings in a database. However, accessing this data would
have time complexity of atleast {2(I"). Instead, we compute and apply the Pauli strings using O(IN) gates (which
can be parallelized to O(1) circuit depth) by dynamically performing the Jordan—Wigner transformation on the
quantum hardware.

The algorithm of [34] also requires an operator that we refer to as PREPARE(W ) which applies the mapping

I
PREPARE(W)|0)®logl" = % > AW, ©)
y=1

where A = 25:1 W, | € O(N*), is anormalization factor that will turn out to have significant ramifications
for the algorithfn complexity. In the first of two algorithms discussed in this paper, we implement PREPARE(W)
using a database via a sequence of totally controlled rotations at cost O(I"). Because our first approach uses a
database to store classically precomputed values of W, in order to implement PREPARE(W ), we refer to the first
algorithm as the ‘database’ algorithm.

While we suggest a different strategy in section 3, a database could also be used to construct SELECT (H ). That
is, a controlled operation is performed which applies H; if v = 1, followed by a controlled operation which
performs H, if y = 2, and so forth. This would result in a slightly higher gate count than PREPARE(W ), because
each of the I controlled operations must act on O(log N') qubits even if the Bravyi—Kitaev transformation is
used. Nevertheless, this might represent a simpler solution than our construction of SELECT (H ) for early
experimental implementations.

Our second algorithm involves modifications to the algorithm of [34] which allows us to avoid some of this
overhead. We exploit the fact that the chemistry Hamiltonian is easy to express as a special case of equation (1) in
which the coefficients are defined by integrals such as

W, = fz w, (2) dz, )

where the integrand w,, () represents a scalar-valued function of the vector Z, which is an element of the
integration domain Z. Because our approach involves computing integrals on-the-fly, we refer to the second
algorithm as the ‘on-the-fly’ algorithm. We begin by numerically approximating the integrals as finite Riemann
sums such as

Y & R
W, m = w, (Z), 5)
1 p=1

where Z, is a point in the integration domain at grid point p. Equation (5) represents a discretization of the
integral in equation (4) using  grid points where the domain of the integral, denoted as Z, has been truncated to
have total volume V. This truncation is possible because the functions w, (Z) can be chosen to decay
exponentially over the integration domain for the molecular systems usually studied in chemistry. Note that this
might not be true for other systems, such as conducting metals.

Our algorithm is effectively able to numerically compute this integral with complexity logarithmic in the
number of grid points. It might be thought that this is impossible, because methods of evaluating numerical
integrals on quantum computers normally only give a square-root speedup over classical Monte-Carlo
algorithms [40]. The difference here is that we do not output the value of the integral. The value of the integral is
only used to control the weight of a term in the Hamiltonian under which the state evolves.

We construct a circuit which computes the values of w, (Z,) for the quantum chemistry Hamiltonian with

5(1\7 ) gates. We call this circuit SAMPLE (w) and define it by its action
SAMPLE(W) |7) [p) [0)°8™ = 1) |p) [, (Z,)), (6)

where W, (Z,) is the binary representation of w, (z,) using log M qubits.

By expanding the W, in equation (1) in terms of the easily computed w, (z) as in equation (5), we are able to
compute analogous amplitudes to those in equation (3) in an efficient fashion. Thus, we no longer need the
database that characterizes that algorithm. State preparation where the state coefficients can be computed on the
quantum computer is more efficient than when they are stored on, and accessed from, a database [41]. The
worst-case complexity is the square root of the dimension (here it would be O(\/ﬁ )), whereas the database
state preparation has complexity linear in the dimension (which is O(I") for W.,). Here this would not be an
improvement, as we have increased the dimension in the discretization of the integral.

However, the worst-case complexity is only if the amplitudes can take arbitrary values (as this would enable a
search algorithm, where the square root of the dimension is optimal [42]). If the amplitudes differ only by
phases, the complexity of the state preparation is logarithmic in the dimension. We therefore decompose each
wy (Z) into a sum of terms which differ only by a sign, w,,, (Z). Then, although the dimension is increased, the
complexity of the state preparation is reduced. In turn, we can express the Hamiltonian as a sum of unitaries
weighted by identical amplitudes which differ only by an easily computed sign

3
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CV I M p
= Z Z ZW%W (Z,)H,. 7
y=1lm=1p=1
As discussed above, the state preparation needed can be performed much more efficiently because the
amplitudes are now identical up to a phase. By making a single query to SAMPLE (w) and then performing phase-
kickback we can implement the operator PREPARE (w) whose action is

i L [V
PREPARE(w)[0)®lo8() = " > 7«vvq,,m(zp)lzf), (8)
/=1

where|Z) = |v)|m)|p), L € ©(TMp)and A = L{V/ i, is anormalization factor that will turn out to have
significant ramifications for the algorithm complexity. Later, we will show that A € 5(N 4) and that PREPARE (w)
can be implemented with 5(N ) gate count, the cost of a single query to SAMPLE(w).

The database algorithm performs evolution under H for time ¢ by making O(AL) queries to both SELECT(H)
and PREPARE(W). Because PREPARE(W) requires O(I")=0O(N*) gates, the overall gate count of this approach
scalesas O(N*At). To avoid the overhead from PREPARE(W), our on-the-fly algorithm exploits a modified
version of the truncated Taylor series algorithm which allows for the same evolution by making O\ queries to
SELECT (H ) and PREPARE(w). As PREPARE (W) requires 5(N ) gates, the gate count for our on-the-fly algorithm
scales as 5(N/\t).

The paper is outlined as follows. In section 3 we introduce the second quantized encoding of the
wavefunction and construct SELECT (H ). In section 4 we review the procedure in [34] to demonstrate our
database algorithm which uses SELECT (H ) and PREPARE(W) to perform a quantum simulation which is
exponentially more precise than Trotterization. In section 5 we show that one can modify the procedure in [34]
to allow for essentially the same result while simultaneously computing the integrals on-the-fly, and show how
to implement PREPARE(w) so as to compute the integrals on-the-fly. In section 6 we bound the errors on the
integrals by analyzing the integrands. In section 7 we discuss applications of these results and future research
directions.

3. The Hamiltonian oracle

The molecular electronic structure Hamiltonian describes electrons interacting in a fixed nuclear potential.
Using atomic units in which the electron mass, electron charge, Coulomb’s constant and 7 are unity we may
write the electronic Hamiltonian as

He oyl oy Ay L ©)

i 2 ]IR - | 1j>1'|ri_rj|

where R; are the nuclei coordinates, Z;are the nuclear charges, and 7 are the electron coordinates [43]. We
represent the system in a basis of N single-particle spin—orbital functions usually obtained as the solution to a
classical mean-field treatment such as Hartree-Fock [43]. Throughout this paper, ; (7j) denotes the ith spin—
orbital occupied by the jth electron which is parameterized in terms of spatial degrees of freedom 7.

In second quantization, antisymmetry is enforced by the operators whereas in first quantization
antisymmetry is explicitly in the wavefunction. The second quantized representation of equation (9) is

H= th]tl a + — 5 Zhl]kfa a aidg, (10)
ij ijk¢

where the one-electron and two-electron integrals are

hy = fso*(r)[—— - T ]so]mdr, (1)

q|q

d7 d#. (12)

AGICAGAGIINGY)
hige = f —
7 — 7l
The operators a,” and a;in equation (10) obey the fermionic anti-commutation relations
{a], a;} = &5, {a/, al} = {ai, a;} = 0. (13)
In general, the Hamiltonian in equation (10) contains O(N*) terms, except in certain limits of very large

molecules where use of alocal basis and truncation of terms lead to scaling on the order of 5(N 2) [8]. The spatial
encoding of equation (10) requires © (N) qubits, one for each spin—orbital.
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While fermions are antisymmetric, indistinguishable particles, qubits are distinguishable and have no
special symmetries. Accordingly, in order to construct the operator SELECT (H ), which applies terms in the
second quantized Hamiltonian to qubits as in equation (2), we will need a mechanism for mapping the fermionic
raising and lowering operators in equation (10) to operators which act on qubits. Operators which raise or lower
the state of a qubit are trivial to represent using Pauli matrices

1 .
of = )0 = Z(oF — o), (14)

o; = [0) (1] = %(O’}C + iaf). (15)

Throughout this paper, o}, o’} and ¢ denote Pauli matrices acting on the jth tensor factor. However, these
qubit raising and lowering operators do not satisfy the fermionic anti-commutation relations in equation (13).
To enforce this requirement we can apply either the Jordan—Wigner transformation [35, 36] or the Bravyi—
Kitaev transformation [37-39].

The action of ajT or a;must also introduce a phase to the wavefunction which depends on the parity (i.e. sum
modulo 2) of the occupancies of all orbitals with index less than j [38]. If f] € {0, 1} denotes the occupancy of
orbital jthen

il fyfip1 Ofi ) = (CDXC b fyeo i 1 f)s (16)
affyfipn Ui f) = (CDZCE fyee oo O f)s (17)
aflfyfi Uy = 0, (18)
ajl fyfi41 0fj-yfh) = 0. (19)

In general, two pieces of information are needed in order to make sure the qubit encoding of the fermionic state
picks up the correct phase: the occupancy of the state and the parity of the occupancy numbers up to j. The
Jordan—Wigner transformation maps the occupancy of spin—orbital j directly into the state of qubit j. Thus, in
the Jordan—Wigner transformation, occupancy information is stored locally. However, in order to measure the
parity of the state in this representation, one needs to measure the occupancies of all orbitals less than j. Because
of this, the Jordan—Wigner transformed operators are N-local, which means that some of the Jordan—Wigner
transformed operators are tensor products of up to N Pauli operators. The Jordan—Wigner transformed
operators are

i)l 1 .
4 =0 @oi= (0] —iop & oo, 20
he

_ 1 .

aj =0 @iofz E(o?+1o§)®o§_lm®of (21)
s=

It would be convenient if we could construct SELECT (H ) by applying the Jordan—Wigner transform and

acting on the quantum state, one spin—orbital index at a time. For instance, SELECT (H ) might control the
application of a fermionic operator as follows

lijke) 1)) = lijke) aclyp)

— |ijke) axaclip)
— |ijk¢) a}L araz|y)
— |ijk¢) afa}'akafW). (22)
However, the operators a]T and a;are not unitary because the operators o and o~ are not unitary. To correct this
problem, we add four qubits to the selection register where each of the four qubits indicates whether the o* or
the +i o” part of the 0" and o~ operators should be applied for each of the four fermionic operators in a string

suchas a;' a}' aa. For ease of exposition, we define new fermionic operators which are unitary, a;  and a;,4,
where g € {0, 1}

j—1 j—1
a})o =0 R i, a;l =i 0”}’ X o?, (23)
s=1 s=1

j—1 j—1

ajp=0;Q0;, ap=ioc; Qo (24)
s=1 s=1

We use these definitions to rewrite the Hamiltonian in equation (10) so that it is explicitly a weighted sum of

unitary Pauli products of the form we require in equation (1)
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ke
H= ZZ ,ql Qg, + D D " qu ja, Hods 3sq,0 (25)

9,9, i 99,954, k¢ 32

Inspection reveals that applying the transformations in equations (23) and (24) to equation (25) gives the same
expression as applying the transformations in equations (20) and (21) to equation (10). By removing factors of
1/2 from both transformation operators and instead placing them in equation (25), we obtain transformation
operators that are always unitary tensor products of Pauli operators.

Accordingly, we can implement SELECT (H ) in the spirit of equation (22) by using four additional qubits and
the transformation operators in equations (23) and (24) so that

|ijk€)19,9,9594) 100) — k€ ) 19,9, d59,) ac.q,1%)
= [ijk€) 14,9,59,) kg, a2.9,11)
= 1ijk€)19,4,95d4) 0} 4, kg, 32,0,10)
= [ikE) 19, 0,9594) 7, 0 Okoa, @0,0,10). (26)

A circuit which implements these operators controlled on the selection register is straightforward to construct.
Furthermore, the transformation of the terms can be accomplished in O(1) time. Because the Jordan—Wigner
transformation is N-local, the number of gates required to actually apply the unitaries in SELECT (H) is O(N).
However, the terms in equations (23) and (24) are trivial to apply in parallel so that each query takes O(1) time.

Whereas the Jordan—Wigner transformation stores occupancy information locally and parity information
N-locally, the Bravyi—Kitaev transformation stores both parity and occupancy information in a number of
qubits that scales as O(log N) [37-39]. For this reason, the operators obtained using the Bravyi—Kitaev basis act
on at most O(log N) qubits. It might be possible to apply the Bravyi—Kitaev transformation with O(log N) gates,
which would allow for an implementation of SELECT (H ) with O(log N) instead of O(N) gates. However, the
Bravyi—Kitaev transformation is much more complicated and this would not change the asymptotic scaling of
our complete algorithm. The reason for this is because the total cost will depend on the sum of the gate count of
SELECT(H ) and the gate count of PREPARE(W) or PREPARE (), and the latter procedures always require at least
O(N) gates.

4. Simulating Hamiltonian evolution

Using the method of [34], Hamiltonian evolution can be simulated with an exponential improvement in
precision over Trotter-based methods by approximating the truncated Taylor series of the time evolution
operator U = e~ !, We begin by partitioning the total simulation time ¢ into r segments of time ¢/r. For each of
these r segments we perform a Taylor expansion of the propagator and truncate the series at order K i.e.

K, - X
U, = /7 Z(fﬂ—g/r)
k=0 :
K T Nk
=y YUY woHH, @7)
k=07, ..., y=1 K

where in the second line we have expanded H as in equation (1). Notice that if we truncate the series at order K,

we incur error
HIl ¢ K+1
of LI /5 o8
(K+ D!
If we wish for the total simulation to have error less than ¢, each segment must have error less than ¢ /r.
Accordingly, if we set r > ||H]||t then our total simulation will have error at most € if
1
o| tegl/e) ) (29)
log log(r/€)

We now discuss how one can actually implement the truncated evolution operator in equation (27). First
note that the sum in equation (27) takes the form

U= ZﬂJVJ’ =k Yinv0)s
j

tk
/8] = rk_k[Wh .WYk’ = ( l)k "fk’ (30)
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Table 1. Database algorithm parameters and bounds.

Parameter Explanation Bound
A Normalization factor, equation (37) O(N%)
r Number of time segments, equation (40) At/In(2)
. . . . log(r/ €)
K Truncation point for Taylor series, equation (29) O (m)
r Number of terms in unitary decomposition, equation (1) O(N*
J Number of ancilla qubits in selection register, equation (31) O(K logI)

Table 2. Database algorithm operators and gate counts.

Operator Purpose Gate count
SELECT(H) Applies specified terms from decomposition, equation (2) O(N)
SELECT (V') Applies specified strings of terms, equation (32) O(NK)
PREPARE(W) Prepares a superposition of states weighted by coefficients, equation (3) om)
PREPARE((3) Prepares a superposition of states weighted by coefficients, equation (33) O(KT)

w Probabilistically performs simulation under H for time ¢/r, equation (39) O(KT)

P Projects system onto |0)¥/ state of selection register, equation (42) O(K logI)
G Amplification operator to implement sum of unitaries, equation (43) O(KT)
(PG) Entire algorithm O@KT)

where the V;are unitary and U is close to unitary. Our simulation uses an ancillary ‘selection’ register

[7) = k) |%) -+ ) where 0 < k < Kand1 < ~, < I forall v. We will encode k in unary, which requires

O (K) qubits, so that |k) = |1F0X—F). Additionally, we encode each |7,) in binary using © (log I') qubsits. While
we need K of the |y, ) registers, we note that only k will actually be in use for a given value of |k). The total number
of ancilla qubits required for the selection register | j), denoted as J, scales as

log (N) log(r/e))

log log(r/¢€) 1)

J € O(K logT') = O(

By making O(K) queries to SELECT (H ) from section 2, we can implement an operator to apply the V;which
isreferred to in [34] as SELECT (V)

SELECT(V)|j) 1) = 1) Vile), (32)

where the V; are defined as in equation (30). This is equivalent to k applications of SELECT (H ), using each of the
|,) registers, together with k multiplications by —i. In order to obtain k applications of SELECT (H), we may
perform a controlled form of SELECT (H) K times, with each successive qubit in the unary representation of k as
the control. Given that the gate count for SELECT (H ) scales as O(IN), we can implement SELECT (V') with O(NK)
gates. Applying the Pauli strings in parallel leads to circuit depths of O(1) and O(K), respectively. Table 1 lists
relevant parameters along with their bounds in our database algorithm. Table 2 lists relevant operators and their
gate counts in our database algorithm.

We will also need an operator that we refer to as PREPARE((3), which initializes a state

PREPARE(3)]0)¥) = \/gz\/ﬁjlj% (33)
j

where sis a normalization factor. To implement PREPARE((3) we first prepare the state

K K\~1/2 x k
(Z(At/’r)] 5 (At/r) ", 34)

=0 K =0V K

Using the convention that R, (§) = exp[—i 6 ¢’ /2], weapply R, (0,) to the first qubit of the unary encoding for
k followed by R, () to the kth qubit controlled on qubit k — 1forall k € [2, K]sequentially, where

A/ KA/

0y = 2arcsin| |1
k- 1! ik 4

(35)

To each of the K remaining components of the selection register |,)- --|7;), we apply PREPARE(W) once, which
actsas
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0) {1y (61)

|0) ——— Ry (62)

0) 18y (0x) |-
j0y®leel — L pREPARE (W)
|0)®loel — {pREPARE (W)

Figure 1. The circuit for PREPARE((3) as described in equation (33). An expression for 0y is given in equation (35). PREPARE(W ) is
implemented using a precomputed classical database.

PREPARE(W)[0)#losT" — Eﬂ/ AL (36)
where
r
A=Y W],  Ac ON?. (37)
=1

In principle, we only need to perform PREPARE(W) k times, because the registers past k are not used. However, it
is simpler to perform PREPARE(W) K times, because it does not require control on k.

Using results from [44], PREPARE(W) can be implemented with O(I") gates by using a classically
precomputed database of the I' molecular integrals. The gate count for PREPARE((3) thus scales as O(KT).
However, this construction is naturally parallelized to depth O(K + I). A circuit implementing PREPARE(() is
shownin figure 1.

The general strategy for implementing the truncated evolution operator in equation (30) becomes clear if we
consider what happens to state |1/) when we apply PREPARE(3) followed by the operator SELECT(V)

SELECT(V ) PREPARE((3) |0)¥])) = Z |] Vil). (38)

The similarity of this state to the state ﬁlw) motivates the operator
= (PREPARE(3) ® I)'SELECT(V)(PREPARE(3) ® 1),

WOV [g5) = §|o> D) + 1 - 51—2|<I>>, (39)

where | ®) is a state with the ancilla qubits orthogonal to |0>®] . Note that in [34], the authors use the convention
that all W, are positive and phases are incorporated into the operators H.,. Since we depart from that convention
for reasons described in section 2, the second application of PREPARE(3) in equation (39) is the transpose of the
first application, in contrast to [34] where the conjugate transpose is used instead. The circuit implementing W
is shown in figure 2.

At this point, we choose the number of segments to be

r = At/In(2). (40)

Since A > ||H||, our choice of K in equation (29) remains valid. The additional factor of 1 /In(2) is included to
satisfy a requirement of oblivious amplitude ampliﬁcation asdescribed in [33] so that

s = Zlﬂ,l = Z—ln(Z)" ~ 2. (41)
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10) 1 V

0) | o :

0) L
:Oi PREPARE((3) PREPARE(S) "

|O>®logF J LI L L

| seLECT(V) []

|O>®logF i [ [ [

Figure 2. The circuit implementing V. The oval indicates the control register for SELECT (V).

We now define a projection operator P onto the target state, which has support on the empty ancilla register
P = (lo)oh¥ @ 1,
1 ~
PWI0)*|4) = ;|0>®’U|Z/J>- (42)

We also define the amplification operator
G = —WRW'RW, (43)

where R = 1 — 2P is the reflection operator. With these definitions, we follow the procedure in [34] which uses
the oblivious amplitude amplification procedure of [33] to deterministically execute the intended unitary. We
use Gin conjunction with P to amplify the target state

PG} = 10)(20 - 2000w (44)

N

Recalling the definition of U, in equation (27), our choices of Kin equation (29) and r = A¢/In 2 imply that
[ PGIO) ) — 10) Uilh)|| € O(e/7), (45)

so that the total error from applying oblivious amplitude amplification to all the segments will again be order e.
To summarize, the database algorithm is as below.

(1) Express the Hamiltonian as a weighted sum of unitary operators as in equation (1).
(2) Subdivide the simulation time tinto r = At/In(2) segments, where A is defined in equation (37).

(3) Expand the evolution for time #/r as a truncated Taylor series U,, as defined in equation (27). (Steps 1 to 3 are
classical pre-processing.)

(4) For each segment perform the following steps.

(a) Prepare a superposition state with amplitudes proportional to ,/W,, where W, are the weights of the
Hamiltonians in the sum. This is achieved using the operator PREPARE(W), defined in equation (3).

(b) Create the superposition of states |k) encoded in unary, as given in equation (34), where the amplitudes
correspond to the square roots of the weights for a truncated Taylor series. This is achieved using the
controlled rotations by 6y, depicted in figure 3, where the values of 6 are given by equation (35). The
overall operation performed in steps (a) and (b) is denoted PREPARE((3), and defined in equation (33).

(c) Use the ancillas prepared in steps (a) and (b) as controls for the operations V}, defined in equation (30);
this controlled operation is denoted SELECT (V'), and defined in equation (32). This controlled operation
corresponds to K controlled phase shifts and applications of SELECT(H ), defined in equation (2). The
result of SELECT (V') is that it applies a superposition of the terms in the truncated Taylor series
expansion of the Hamiltonian evolution to the target state.

(d) Apply PREPARE(3)" to invert the state preparation in steps (a) and (b). Then, if the ancilla qubits were
measured as all zero, that would correspond to a success and give U, applied to the target state.

9
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(e) Apply oblivious amplitude amplification to obtain success with unit probability.

The gate count of the entire algorithm is thus r times the cost of implementing SELECT (V) plus the cost of
implementing PREPARE (). Though we implement SELECT (V') with O(NK) gates, our brute-force construction
of PREPARE(W) led to a gate count for PREPARE(3) which scales as O(KT"). Thus, the total gate count of our
database algorithm scales as

N*Atlog(Nt/¢)

OCRT) = [ log log (N#/€)

) O(N®). (46)
While this bound suggests an exponentially more precise algorithm than those based on Trotterization, in the
remainder of our paper we discuss an even more efficient algorithm with improved dependence on N.

5. Evolution under integral Hamiltonians

In section 4 we analyzed the database algorithm for quantum simulating chemistry Hamiltonians in a manner
that is exponentially more precise than Trotterization. The most costly part of that procedure is the
implementation of PREPARE(W), as in equation (3), which prepares a superposition state with amplitudes that
are given by integrals over spin—orbitals, as in equations (11) and (12). Instead of classically precomputing these
integrals and implementing PREPARE (W) with a database, the strategy we introduce is to numerically sample the
integrals on-the-fly using the quantum computer. Because of this, we call this the ‘on-the-fly’ algorithm. To
accomplish this, we discretize the integrals as sums and design a circuit which returns the integrand of these
integrals at particular domain points. The motivation for approximating integrals as sums comes from a direct
analogy between the discretization of time in the Taylor series approach for simulating time-dependent
Hamiltonians [34] and the discretization of space in Riemann integration.

In [34], the time-ordered exponential is approximated by a Taylor series up to order K, and the integrals are
then discretized as follows on each segment

ot/ K (—i)k t/r
Texp[1 o H(t)dt:l%ZT . TH (ty)... H () dt
k=0 :
K (_ koop—l
~ 3 lii,r) Z H (t;)... H(t)), (47)
k=0 s eemrde=0

where 7 is the time ordering operator. Now let us suppose that our Hamiltonian does not change in time, but
instead that the Hamiltonian itself is given as a definite integral over the spatial region Z so that

H= L H(Z)dz. (48)

The second quantized Hamiltonian given by equation (25) is similar to this, except it includes both terms A,
which are integrals over one spatial coordinate, and h;j., which are integrals over two spatial coordinates. While
those integrands are also defined over all space, the integrands decay exponentially in space so we can
approximate them as definite integrals over the finite region Z, having volume V. Then we can approximate the
integral by

1w
H~ f H@E ~ LY HE), (49)
Z H p=1

where Z, is a point in the domain Z at the pth grid point.
As in section 4, we begin by dividing t into r segments. We turn our attention to a single segment

U ~ exp[—iif H(E)dZ]

e

k= 0

K (—it/n) o
—;()T fz H@E)-H G dzZ, (50)

where in the second line we have performed a Taylor expansion of the propagator and truncated at order K. In
equation (50), the bolded symbol Z indicates a vector of vectors. Like before, if > ||H||t then the relationship
between K and € is given by equation (29). To approximate the integral, we divide it into  regions of volume
V/ 1. We now have

10
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K sk [ # ok 1A% L
Z(—ltV) SHE Z(_ltV) )9 > 2
o= = W( = H(Zp)] B k W 7H(zm)"'H(Zﬂk)' 51

=0 TP p=1

For the second quantized Hamiltonian, the W, in equation (1) are integrals over scalar functions w, (Z) asin
equation (4). Using this property it is clear that

r
HE) = > w,(D)H, (52)
y=1
and the segment U, can be expressed as
K : k T I3
Ur ~ Z(lltw > Do Wy G wy Ep ) Hyp Hy (53)

Kkt
k=0 "M k'ﬂ,’l,“.,”,/kzl Prs s Pp=1

The second quantized Hamiltonian given in equation (25) is a sum of terms which are integrals over one
spatial coordinate and terms which are integrals over two spatial coordinates. This case is easily accounted for by
taking Z to be a vector including both spatial coordinates, and ) to be the product of the volumes for the two
coordinates. One can take the terms with the integral over the single spatial coordinate to also be integrated over
the second spatial coordinate, and divided by the volume of integration of that second coordinate to give the
correct normalization. We may now proceed with the truncated Taylor series simulation as in section 4.
Whereas our database algorithm required PREPARE(W ) to create a superposition of states weighted by the W., as
in equation (3), our on-the-fly algorithm will need to create a superposition of states weighted by the scalar
integrands w, (z,).

As the first step, we discuss a method for dynamically decomposing each w, (Z) into a sum of terms which
differ only by a sign, w,,, (Z). That s, the decomposition is of the form

M
wy (Z) = (Y wm (@), Wym(Z) € {—1, +1}, (54)
m=1
where (is the precision of the decomposition and
Ce e(FLVt), M € ©(max |w,@)1/0). (55)

The sum in equation (54) corresponds to w;, () rounded to the nearest multiple of 2 ¢, so

<. (56)

M
Ww (2) - C ZW%m (2)
m=1

To accomplish this on-the-fly, we perform logic on the output of SAMPLE (w) which acts as
SAMPLE(W)|7) |p) [0)1°6M = 1) |p) 1, (7)), (57)

where W, (Z,) is the binary representation of w, (z,) using log M qubits. In particular, we will need to determine
whether the w, ,,, (Z) for a given value of m should be 1 or —1. Since the superposition we desire should be
weighted by the square root of this coefficient, we need to prepare states that either do or do not have a phase

factori = /—1 so
€)W, (Z,)) W, (Z,) > 2m — M),

i o\ A o (58)
i12) 1w, (Z))) Wy (Z)) < @2m — M),

12) 1, (Z,)) — {
where |£) = |y)|m)|p) and | (Z,)) was obtained from SAMPLE (w). The phase factor can be obtained using
phase-kickback in the usual way. Then we apply SAMPLE (w) a second time to erase the register |/ (Z,) ). A single
query to this circuit allows for the construction of PREPARE (w) with the same complexity as SAMPLE (w).
Accordingly, the overall action of PREPARE(w) is

I & oy
PREPARE(w)[0)®lo8 ) — " S [P wym @) 1), (59)
=1\ M

A= Lg € O(I'Vmax |w, (@)|). (60)
I Zy
Before explaining the integrand circuit we briefly comment on the additional resources required for the
Taylor series simulation under a discretized, position-dependent, integrand Hamiltonian. As in the constant
Hamiltonian case, we need one register with © (K) qubits to encode |k) and K registers of © (log I') qubits to
encode |7;)---|,). However, we also need extra ancilla qubits to store the value of 1, the grid point registers, as

where L € ©(I'Mu) and
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well as the value registers which are used by the integrand oracle SAMPLE(w). This represents an additional
ancilla overhead of © (K log(Mpu)).

The sources of simulation error are also similar to the constant Hamiltonian case. As we show in section 6,
we can approximate the integrals with discrete sums to precision € at a cost that is logarithmicin 1/¢. The error
due to the discrete sum is controlled by the choice of i, which we need to select so that the resulting error per
segment is less than ¢ /r. The most costly integrals (due to the size of their domain) will be the two-electron
integrals in equation (12) which have integrands of the form

CACIAGHIAEIIENE)

wy (@) = hijjpe (X, Y) = ] , (61)

where ¥ and y represent the three spatial degrees of freedom of two separate electrons. In section 6, we bound
the cost to the quantum algorithm of estimating the corresponding integrals.
To summarize, the on-the-fly algorithm is as described below.

(1) Decompose the Hamiltonian into an integral which is approximated as %25’:1 H(Z,), as in equation (49).

(2) Subdivide the simulation time tinto r = At/In(2) segments, where A is defined in equation (60).

(3) Expand the evolution for time t/r by a truncated Taylor series as in equation (51). (Steps 1 to 3 are classical
pre-processing.)

(4) For each segment perform the following steps.

(a) Apply PREPARE(w), as defined in equation (59), to create a superposition of states |£) = |y)|m)|p)
weighted byior —i.

(b) Create the superposition of states |k) encoded in unary, as given in equation (34), except with A replaced
with \.

(c) Apply SELECT(V), i.e. K controlled phase shifts and applications of SELECT(H), to coherently execute
all terms in the truncated Taylor series.

(d) Apply the transpose of the state preparation in step (a) and step (b).

(e) Apply oblivious amplitude amplification to obtain success with unit probability.

Note that the key difference between this algorithm and that described in section 4 is the state preparation in
PREPARE (W), which corresponds to terms in the discretized integral. The superposition of unary-encoded states
|k) is modified, but only in that A is replaced with \. In the next section we detail how to construct the oracle for
the discretized integral, and its cost.

6. The integrand oracle

In section 5, we showed how one can implement the truncated Taylor series simulation technique by replacing a
superposition state having amplitudes given by integrals with a superposition state having amplitudes given by
their integrands, as well as a way of decomposing those integrands. We begin this section by constructing a
circuit which allows us to sample from the integrands as in equation (57). First, we will need a circuit which
computes values of the N spin—orbital basis functions ¢, (Z,) to ¢y, (Z,) at Z,, a real-valued position vector at grid
point p. The action of each these oracles is

Q¢j|P> |0>®IOgM = |P> W] (E,})>, (62)

where $;(Z,) represents the binary expansion of @ (Z,) using log M qubits. We will need N different circuits of
this form, one for each basis function ¢, (Z) to ¢y (2). Usually, the molecular spin—orbital basis functions are
represented as sums of Gaussians multiplied by polynomials [43]. In that case, the quantum circuit Qg can be
implemented as a reversible classical circuit that evaluates and sums the Gaussians associated with o (Z). For
example, in the STO-nG basis set, each orbital is a linear combination of n Gaussian basis functions [43]. In
general, Gaussian functions may be evaluated classically with complexity that is at most polylogarithmicin 1/¢
[45]. The use of Gaussians has a historical precedent; they are used because those functions are simple to
integrate on a classical computer. However, the use of a Gaussian basis is not necessarily an optimal strategy for a
quantum implementation. We leave open the problem of determining an optimal representation of molecular
orbital basis functions for evaluation on a quantum computer and develop a strategy based on the model
chemistries used in classical treatments of electronic structure.

12
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Figure 3. An oracle which returns the value of a particular basis function at a particular position Z depending on the state of an ancilla
register | j) which selects the oracle. Here j is represented in binary, where j' refers to the first bit of j, and j* refers to the second bit of j.
This example is only valid when there are four basis functions.

Next, we combine N different ngj circuits, one for each @ (2), to construct a circuit @ which allows us to
apply any of the N basis functions. This circuit will have depth O(Npolylog(Nt/¢)) and may be constructed as
the block diagonal operator

Q

N
[T 1)l ®Q,, (63)
j=1

Thus, Q isasequence of Q, circuits with the spin—orbital selection completely controlled on a register encoding
the basis function index j. There will be a factor of log (Nt / ¢ ) in the complexity because the controlled
operations need to access O(log N) qubits for j, as well as O(log (Nt / € )) qubits storing the position Z. In
addition, the circuit needs to perform analytic operations (e.g. calculating exponentials for STO-1nG), which will
contribute an additional factor polynomial in log(Nt/ ¢ ). An example implementation of Q for four basis
functions is shown in figure 3.

We now discuss how one can use Q to compute the two-electron integrands in equation (61). To avoid
singularities that would occur when two electrons occupy the same point in space, we change variables in
equation (61)so that ¢ = ¥ — 7. With this substitution, the integral becomes

fso;"@) FE - Dp@®pE -0

- d¢ d’x. (64)
I€]
Expressing Z in spherical polar coordinates, with £ = |§|, we have
[e@¢E - Do @eE - & ¢sind ds o do &% (65)

We define the maximum value of any spin—orbital function as ¢, ,, and the maximum value of its derivative in
any directionas ¢/ . Inaddition, we truncate the integral at a finite distance X, Now assume that we
discretize X in intervals of size 0x along each degree of freedom. We can take the maximum value of £ to be x5,
and choose 6§ = 6x, 60 = 6¢ = 6x/Xmax -

The primary contribution to the complexity is in terms of the number of segments. The maximum value in
the integrand of equation (65) is upper bounded by xax g | . When discretizing the integral, each term in the
sum is no larger than O (Xmax A, x4 (8x/Xmax)?) = O(g: | 6x® /xmax) and there are O((xpax/6x)° ) terms
Multiplying these together gives us the contribution of the integral to the scaling of our on-the-fly algorithm,

O(@h | X (66)

which corresponds to the factor of Vmax; ,|w, (2) | in equation (60). But how do ¢, and x,y scale with N?
The maximum values ¢, are predetermined by the model chemistry, and hence are independent of N.
Determining the appropriate value of x,,,, is a little more complicated.

Because the Hamiltonian is a sum of O(N*) of the integrals, each integral should be approximated within
error O(e /(N*)) to ensure that the final error is bounded by €. Since the functions o (Z) can be chosen to decay
exponentially, x,,,,, can be chosen logarithmically in the allowable error e. The quantum chemistry problem is
always defined within a particular basis, specified as part of a model chemistry [43]. The model chemistry
prescribes how many spin—orbitals, how many basis functions, and what type of basis functions should be
associated with each atom in a molecule. This includes a specification for parameters of the basis functions
which impose a particular maximum value ¢, as well as a cutoff distance beyond which each o @)is
negligibly small. However, the space between basis functions on different atoms must grow as the cube root of N,
because the molecular volume will grow as O(N). This would imply that the value of x,,,,, needed scales as

Xmax € O(NV3log (Nt/¢)). (67)
Nevertheless, each individual orbital ¢; (Z) is non-negligible on a region that grows only as O(log N) fora

given model chemistry. Itis therefore advantageous to modify the grid used for the integral so it only includes
points where one of the associated orbitals is non-negligible. This can be performed at unit cost if the center of
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each spin—orbital function is provided in an additional register when querying the circuit Q. As above, the region
where the orbital can be regarded as non-negligible can be chosen logarithmically in ¢, to ensure that the overall
error in the simulation is within error e.

To be more specific, the coordinates for X can be chosen to be centered around the center of orbital ¢;, with
the components of X only going up to a maximum value scaling as

Xmax € O(log(Nt/¢)). (68)
For ¢, we onlywish to take values such that o — €) are non-negligible. Here it should be noted that the

spherical polar coordinates are only advantageous if we are in a region where £ is near zero, where the Cartesian
coordinates would have a divergence. In regions where E is large, the extra factor of € for the integral in spherical
polar coordinates increases the complexity.

Therefore, if the minimum value of |7§'| such that o * - Z) is non-negligible is O(log (Nt/¢)), then the

maximum value of |¢] such that o - &) is non-negligible will also be O(log (Nt/¢)). Therefore we can use
spherical polar coordinates, and obtain scaling as in equation (66) with x,,, as in equation (68). On the other
hand, if the minimum value of |{| such that ¢, (X — &) isnon-negligible is 2 (log (Nt /¢)), then we can use

Cartesian coordinates, and the division by |Z| can only lower the complexity. We obtain a contribution to the

complexity scaling as O( @fnax x2 ) With X0, as in equation (68). Here the power of x4 is 3 rather than 5,

because we divide instead of multiplying by |Z| as we did with spherical polar coordinates.

Next we consider the grid size needed to appropriately bound the error in the discretized integration. The
analysis in the case where Cartesian coordinates are used is relatively straightforward. Considering a single block
in six dimensions with sides of length éx, the value of the integrand can only vary by the maximum derivative of
the integrand times 6x (up to a constant factor). The error for the approximation of the integral on this cube is
therefore that maximum derivative times §x’. Then the number of these blocks in the integral is O((Xmax/0x)°),
giving an overall error scaling as x5 Ox times the maximum derivative of the integrand.

The maximum derivative of the integrand can be bounded in the following way. For the derivative with
respect to any component of X, we obtain the derivative of the integrand scaling as

/ 3
O( sDmax (pmax ], (69)

xmax

where we have used the fact that we are only using Cartesian coordinates for |§| = Q(xmay)- For the derivative of
the integrand with respect to any component of £ in the numerator of the integrand, the same scaling is
obtained. For derivatives with respect to components of £ in the denominator, the scaling is

4
o(—*”r;ax ] (70)
X

max

Opverall, we therefore bound the error when discretizing in Cartesian coordinates as
O((Phnas T Prax/Ximax) Py Ximay 6%)- (71)

The analysis for spherical polar coordinates is a little more subtle, but it is largely equivalent if we scale the
angular variables. It is convenient to define scaled angular variables

0' = Xmax, ¢ = Xmax - (72)

Then the discretization lengths for all variables are 6x. The volume of each block in the discretization is again
8x%, and there are O((xmax/0x)® ) blocks. The total error is again therefore the maximum derivative of the
integrand multiplied by x . éx.

The derivative of the integrand with respect to any component of X is again given by equation (69).
Multiplication by ¢ gives a factor O (xmay), but the change of variables to 6" and ¢/ gives division by a factor of
x.2. - The derivative of the integrand with respect to &, 6’ or ¢/ in any of the spin orbitals again gives a factor
scaling as in equation (69). The derivative of the integrand with respect to £ or 6 in & sin (0’ /xmay) scales as in
equation (70).

As aresult, regardless of whether Cartesian coordinates are used or spherical polar coordinates, the error due
to discretization is bounded as in equation (71). Thus, to achieve error in the integral no larger than O(¢e /(N*)),

we require that

bx € © (73)

1
N4t (So;mx + @max/xmax ) sD;ax X;ax
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Figure 4. Circuit to sample the integrand of equation (65). The circuit combines four copies of Q with R and M. The target registers
for Q and R are denoted by boxes, and the control registers are denoted by circles.

The total number of terms in the sum then scales as

6 4 0
0((%) ): @[(N P + ¢max/xmax)wiaxx&ﬂ) ] (74)

€

This is quite large, but because we only need to use a number of qubits that is the logarithm of this, it only
contributes a logarithmic factor to the complexity. Because the logarithm scales as O(log(Nt/ ¢)), it contributes
this factor to the complexity of SAMPLE(w).

Given Q, computing the integrand in equation (65) is straightforward. We need to call Q four times on
registers that contain X and E Let R denote a circuit computing the value of £ sin # when queried with the point
&.This circuit has the following action:

RIE)[0) = [£)]¢sin6). (75)

The final element of our sampler circuit will be a reversible multiplier M which simply multiplies together five
registers in a reversible fashion. This construction of SAMPLE (w) is shown in figure 4 and enables us to evaluate
the integrand of equation (65), i.e.

FHEE - D@ @ - O Esind, (76)

Next we consider how to construct a circuit for the one-electron integrals in equation (11). First, one
constructs N additional circuits similar to the ones in equation (62) that return Vchj (Z) as opposed to o ).
These oracles are incorporated into a one-electron version of @ which is called along with a routine to compute
the nuclear Coulomb interactions. The one-electron integrals have singularities at the positions of the nuclei.
Similar to the two-electron integrals, these singularities can be avoided by using spherical polar coordinates.
Each term in the sum over the nuclei should use spherical polar coordinates centered at that nucleus. Selection
between the one-electron and two-electron routines is specified by | ). Putting this together with the circuit in
figure 4, we can implement SAMPLE (w) with O(N log N) gates, and, as discussed in section 5, PREPARE(w) has
the same complexity.

While the 5(N ) gate count of PREPARE(w) is much less than the O(N*) gate count of PREPARE(W), our on-
the-fly algorithm requires more segments than the database algorithm. Whereas our database algorithm
requires r = At/In(2) segments where A is the normalization in equation (3), our on-the-fly algorithm requires
r = At/In(2) segments where A € O(T'g!  x7. ) is the normalization in equation (59), which is accounted for
in equations (60) and (66). Thus, by performing the algorithm in section 4 using PREPARE (w) instead of
PREPARE(W) and taking r = At/In(2), we see that our on-the-fly algorithm scales as
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O(NK) = O(NKA?). (77)
Using the scaling in equation (68), we can bound A as
A€ OTgt  xma) € ON*[log(Nt/€)F), (78)

so that the overall gate count of the on-the-fly algorithm scales as
O(N5 Kt) = O(N). (79)

Recall that the O notation indicates that logarithmic factors have been omitted. The full scaling includes a power
of thelogarithm of 1/¢.

To summarize, in this section we have provided the algorithm for the operation SAMPLE (w) used in
section 5. To achieve this operation, the key steps are:

(1) Convert from«yto (i, j, k, £), and from the sampling point p to the corresponding values of ¥ and Z

(2) Apply the circuit shown in figure 4 to sample the integrand hy; (X, X — Z) = w, (Z) (see equation (61)).

(3) The circuit of step 2 uses controlled-Q operations which calculate the value of an orbital ¢, (Z), and are
performed using a circuit of the form in figure 3.

7. Discussion

We have introduced two novel algorithms for the simulation of molecular systems based primarily on the results
of [34]. Our database algorithm involves using a database to store the molecular integrals; its gate count scales as

O(N®t). Our on-the-fly algorithm involves computing those integrals on-the-fly; its gate count scales as O(N®t).
Both represent an exponential improvement in precision over Trotter-based methods which scale as

5(N 9\/1'3—/6) when using reasonably low-order decompositions, and over all other approaches to date.

Specifically, our database algorithm scales like 5(N 4At) where we have used thebound A € O(N*).
However, we believe this bound is very loose. As discussed in [8, 43], the use of local basis sets leads to a number
of two-electron integrals that scales as O(N?) in certain limits of large molecules. Accordingly, the true scaling of
the database algorithm is likely to be closer to O(N®t). It also seems possible that our integration scheme is
suboptimal; it is possible that it can be improved by taking account of smaller values of A

Our asymptotic analysis suggests that these algorithms will allow for the quantum simulation of molecular
systems larger than would be possible using Trotter-based methods. However, numerical simulations will be
crucial in order to further optimize these algorithms and better understand their scaling properties. Just as recent
work showed significantly more efficient implementations of the original Trotterized quantum chemistry
algorithm [5-9], we believe the implementations discussed here are far from optimal. Furthermore, just as was
observed for Trotterized quantum chemistry [7, 9], we believe our simulations might scale much better when
only trying to simulate ground states of real molecules. In light of this, numerical simulations may indicate that
the scaling for real molecules is much less than our bounds predict.
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