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Discrepancies Between Score Trends from NAEP and State Tests:  
A Scale-Invariant Perspective 

 

 
State test score trends are widely interpreted as indicators of educational improvement.  To 

validate these interpretations, state test score trends are often compared to trends on other tests 

such as the National Assessment of Educational Progress (NAEP).  These comparisons raise 

serious technical and substantive concerns.  Technically, the most commonly used trend statistics 

– for example, the change in the percent of proficient students – are misleading in the context of 

cross-test comparisons.  Substantively, it may not be reasonable to expect that NAEP and state 

test score trends should be similar.  This paper motivates then applies a “scale-invariant” 

framework for cross-test trend comparisons to compare “high-stakes” state test score trends from 

2003 to 2005 to NAEP trends over the same period.  Results show that state trends are 

significantly more positive than NAEP trends.  The paper concludes with cautions against the 

positioning of trend discrepancies in a framework where only one trend is considered “true.” 

 

 State test score trends are among the most prominent large-scale educational statistics.  

Positive trends are interpreted as an improvement in the education of students and as an increase 

in student learning.  As states implement educational policies under the No Child Left Behind 

(NCLB) Act of 2001, trend statistics are also interpreted as evidence that these policies are or are 

not functioning as intended. 

 These high-stakes interpretations are largely supported by data from two sources.  State 

testing programs include one or more test batteries and report aggregated state-level results by 

grade, subject, and year.  The National Assessment of Educational Progress (NAEP) has 

provided state-level results at various intervals since 1990, most recently in 2003 and 2005.  
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Hereafter, this paper uses the shorthand “State” (with the capital “S”) and “NAEP” to distinguish 

between these two data sources. 

 State testing programs and NAEP are both charged with reporting and describing what 

students in each state know and are able to do.  Both State tests and NAEP provide a highly 

visible and interpretable summary measure, “Percent Proficient” or “Percent Proficient and 

Above,” for each subject, grade and year and subgroup tested.  NAEP has reported state-level 

results for the Spring of 2003 and 2005, for Reading and Mathematics, and for grades 4 and 8.  

Where State tests coincide with these subjects, grades, and years, it seems straightforward to 

assume that State and NAEP results will correspond.   

 These assumptions have led to a large number of reports, articles, and newspaper 

headlines.  Reports that have taken advantage of the recent release of 2005 state NAEP results 

for State-NAEP comparisons include those by the Thomas B. Fordham Foundation (2005), the 

Education Trust (Hall & Kennedy, 2006), Education Week (2006), the Civil Rights Project at 

Harvard University (Lee, 2006), and Policy Analysis for California Education (Fuller, Gesicki, 

Kang, & Wright, 2006).  A sampling of widely cited papers comparing State and NAEP results 

includes Linn, Graue, and Sanders (1990), Koretz and Barron (1998), Klein, Hamilton, 

McCaffrey, and Stecher (2000), and Linn, Baker and Betebenner (2002).  Trend discrepancies 

are provocative.  Given two tests that have the same name (e.g., Reading, Mathematics) and 

sample from the same population (e.g., 4th graders in California), juxtaposing discrepant trends 

frames them as contradictory. 

 In contrast, this paper considers the act of comparing State and NAEP results as the act of 

comparing the height of two children on pogo sticks.  There are technical and substantive issues 

that arise in this comparison.  Technically, it is impossible to compare the heights of these 
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children until the pogo sticks are removed.  Substantively, once the pogo sticks are removed, it 

may be reasonable to ask, should we expect the heights of these children to be the same?  The 

pogo sticks in this analogy represent the unsuitable properties of the trend statistics often used in 

State-NAEP comparisons.  The significance of the children in this analogy is that they are not 

twins; neither are State tests and NAEP; and this fact should temper expectations about the 

similarity of results.  To maintain this analogy, this paper will proceed by describing the 

problems with pogo sticks, comparing the children’s heights without the pogo sticks, and listing 

some reasons why their heights might be expected to differ. 

 

Technical Issues Arising in State-NAEP Comparisons 

 The perception and implementation of NCLB depend crucially on the concept of 

proficiency – a child is left behind if she or he is not proficient.  In practice, this requires the 

dichotomization of test score scales into proficient and not proficient regions.  This proficiency 

framework has led to the quantification of test score trends as the change in the percent of 

proficient students.  The class of proficiency-based statistics can be generally described as 

Percent Above Cut (PAC) statistics, where the cut score in this case refers to the passing score 

that delineates proficiency.  Trends in this framework are expressed as changes in PACs. 

 Both the pervasiveness of the PAC framework and the problems with the framework 

have been demonstrated on recent covers of this very publication.  In the Fall 2006 issue of 

Educational Measurement: Issues and Practice, then Editor Steve Ferrara presented discrepant 

score trends, as measured by the change in the percent of proficient students, in a figure from the 

aforementioned Policy Analysis for California Education report (Fuller, Gesicki, Kang, & 

Wright, 2006).  In an earlier, Spring 2005 issue, Ferrara covered a figure from Paul Holland’s 
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2002 paper.  This figure shows the dramatic dependency of the change-in-gap statistic on the 

selection of the cut score.   

 The choice of cover visuals is interesting in that one raises technical concerns about the 

other.  The take-home message from Holland’s (2002) paper is that PAC-based gap trends are 

easily sign-reversible under different selections of cut scores.  For example, the achievement gap 

between two groups of students may be increasing in terms of the percent of proficient students 

while decreasing in terms of the percent of “basic” students.  Though Holland’s paper focused on 

gap trends as opposed to score trends, the extensions are straightforward.  Holland’s paper is 

under-cited given the popularity of PAC-based trend statistics, and this section briefly rephrases 

Holland’s cautions on changes-in-gaps in the context of trends and trend comparisons.  To return 

to the previous analogy, this discussion concerns the problems with pogo sticks. 

 The interpretive problems with PAC-based statistics may be simply explained by their 

interaction with unimodal distributions.  If a unimodal distribution of test scores shifts in the 

positive direction, the rate at which examinees cross a cut score will not be constant.  As the 

mode of the distribution approaches the cut score, more and more examinees will cross in equal 

units of time.  After the mode of the distribution passes the cut score, fewer and fewer examinees 

will cross in equal units of time.  If the cut score were different under this model, the trend would 

be different.  In this sense, PAC-based trends may be described as pliable under the choice of cut 

score. 

 Two test score distributions may be represented by Cumulative Distribution Functions 

(CDFs) that return the proportion of examinees at or below a cut score.  Succinctly, a CDF, F(x) 

takes a score x and returns a proportion p of examinees at or below that score.  Figure 1 shows 

two normally distributed CDFs from two time points on an arbitrary score scale.  The 
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distributions have different means and standard deviations and are designated as F1(x) and F2(x).  

The unimodal nature of the distributions can be observed by noting the steep rise in the CDFs 

towards their modes where they accumulate the most examinees. 

----------------------------------- 

Insert Figure 1 About  Here 

----------------------------------- 

 Holland (2002) observes that the PAC-based trend can be viewed on CDFs as the vertical 

slice between the two CDFs.  If F1(x) returns p1, the percent of students at or below a proficiency 

cut score x, and F2(x) returns p2, the percent at or below that same cut score, the change in the 

percent above a cut score is simply (1 – p2) – (1 – p1) or F1(x) – F2(x).  The vertical difference 

between these two CDFs is displayed around the x-axis as a dotted line.  These are the PAC-

based trends for cut scores at those respective locations on the score scale.  The figure shows that 

a different selection of cut score will change and even reverse the sign of the PAC-based trend 

and resulting trend interpretations.  In this example, high cut scores will report a negative trend, 

while a cut score just above 500 will capture the slice across the distributions with the largest 

positive vertical trend.   

 The pogo stick analogy is apt because, even if test score distributions on NAEP and State 

tests have equal vertical distances at respective percentile levels (an unrealistic assumption), 

PAC-based score trends reflect only a slice across the test score distributions of interest.  The 

pliability of PAC-based score trends under choices of cut score is not addressed in PAC-based 

trend comparisons, thus these comparisons are akin to the comparison of the height of children 

on pogo sticks. 
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 The extent of this pliability in real data is nontrivial.  Figure 2 shows the pliability of 

PAC-based trends from the first fifteen states in alphabetical order for NAEP Grade 4 Reading 

from 2003 to 2005.  For each state shown, three PAC-based trends are calculated from the three 

NAEP cutpoints: the changes in the percents of students above Basic, Proficient and Advanced.  

The range of those three trends are shown in the figure.  For example, Arizona’s PAC-based 

score trend ranges from +1% to -2% depending on the cut score selected.  Connecticut’s PAC-

based score trend may range from -5% to -1% for cut scores between Basic and Advanced.  

Space limitations prevent displays across all states, grades, subjects and State testing programs, 

but these fifteen states are representative of PAC-based trend pliability over the data used in this 

study. 

----------------------------------- 

Insert Figure 2 About  Here 

----------------------------------- 

 Pliability does not cast doubt on tests or test results as a whole.  Pliability is statistic-

specific – it describes the range of interpretations of a statistic under decisions that may be 

considered arbitrary.  The pliability in this figure demonstrates that attempts to generalize from a 

single PAC-based trend to the trajectory of a full distribution are, to the degree shown, short-

sighted.  This short-sightedness is compounded in comparisons of PAC-based trends across 

testing programs.  If a statistic has high pliability, this does not suggest that the data are flawed.  

Rather, a different statistic or graphical display should be chosen to summarize the data.   

 Alternative candidates for two-wave trend depiction include average-based statistics, 

such as effect sizes, and changes-in-percentiles, for example, the difference between medians.  

Average-based statistics are sensitive to every point in the respective score distribution and are 
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statistically convenient, but average-based trends are pliable under the choice of score scale.  

Spencer (1983) describes the conditions under which monotone transformations can reverse the 

ordering of averages, the sign of trends, and interpretations of trend magnitude.  Likewise, 

comparisons of percentiles are pliable under both the choice of scale transformation and the 

choice of percentile level.  For applications within a single testing program, average-based 

statistics will be robust and descriptive.  However, for comparisons across testing programs, the 

vagaries of multiple different score scales may be such that a scale-invariant trend statistic is 

most appropriate.  This next section introduces a trend statistic that is remarkably impliable and 

particularly well suited for the comparison of score trends across tests with different score scales. 

 

A Scale-Invariant Framework for Comparing Test Score Trends  

 The cornerstone of this scale-invariant framework is the Probability-Probability (PP) plot 

(Gnanadesikan, 1977).  A PP plot can be defined for test score distributions at times 1 and 2 that 

returns a proportion p1 = F1 [F2
-1(p2)] for all p2.  The PP Plot can be interpreted as returning the 

proportion of time 1 examinees below given percentiles of the time 2 distribution.  Equivalently, 

given a score, x, the PP Curve contains (p2, p1), the proportions from each distribution below that 

score.  Visually the PP Plot is contained within the unit square, and, for continuous distributions, 

PP curves travel from the origin to the point (1,1).  Deviations above the p1= p2 diagonal reflect 

that the proportion of time 1 students below a score is greater than the proportion of time 2 

students below that same score.  Thus, if the PP curve is largely above the diagonal, this denotes 

a positive trend.  Figure 3 shows a PP plot constructed from the CDFs in Figure 1.  PP plots have 

been used for distributional comparisons in the context of gaps by Haertel, Thrash and Wiley 

(1978), Spencer (1983), and Livingston (2006).  PP plots have conceptual and mathematical ties 
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to the nonparametric Mann-Whitney U statistic, Receiver Operator Characteristic (ROC) Curves, 

and Lorenz Curves. 

----------------------------------- 

Insert Figure 3 About  Here 

----------------------------------- 

 The PP plot is constructed solely from vertical slices across CDFs.  A monotone 

transformation of scale may contort the CDFs horizontally, but will not change the vertical 

relationships between the cumulative proportions.  As such, the PP plot is invariant to monotone 

transformations of the score scale, and any statistic derived from the PP plot is likewise 

transformation-invariant.  A useful statistic is the area under the PP curve, which is equal to the 

probability that a randomly drawn test score from time 2 is greater than a randomly drawn test 

score from time 1.  This statistic can be simply designated P(X2>X1).  In the ROC literature, 

P(X2>X1) is often called the Area Under the ROC Curve (AUC) (e.g., Hanley & McNeil, 1983), 

though the use and interpretation of this statistic differs in that context.  In the nonparametric 

literature, P(X2>X1) can be shown to be the expected value of a linear transformation of the 

Mann-Whitney U statistic, U/mn, where m and n are the numbers of scores in the time 1 and 2 

distributions respectively.  P(X2>X1) lends itself reasonably well to interpretation, where 50% is 

no overall trend; values greater than 50% suggest an positive trend (time 2 scores are greater than 

time 1 scores); and values less than 50% suggest a negative trend. 

 The usefulness of this statistic is that it is invariant to discretionary choices such as cut 

score, percentile, and score scale.  P(X2>X1) does not change under any positive monotone 

transformation.  Any transformation of P(X2>X1) is therefore also scale-invariant.  A second 

statistic of interest assumes P(X2>X1) arises from two normal distributions with unit variance 
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separated by a distance V (Ho & Haertel, 2005).  The transformation  )(*2 12
1 XXPV    

returns this statistic (Marzban, 2004).  The usefulness of the V statistic is that it can be 

interpreted loosely as a scale-neutral effect size.  Unlike the usual effect size d (Cohen, 1988), 

this formulation is impliable under scale transformations.  To return to the analogy, these 

statistics help to remove the pogo sticks from the children to facilitate comparison of their 

heights. 

 State testing programs do not report scale-invariant statistics such as P(X2>X1) or V.  

However, PP Plots can be estimated by reported data.  If the score scales of a test are linked from 

2003 to 2005, and cut scores remain the same, any pair of reported PAC statistics defines a point 

on a PP Plot.  As an example, if a state reports that 55% of students are proficient in 2003 and 

60% of students are proficient in 2005, then, by definition, 40% of students in 2005 are below 

the 45th percentile of the 2003 distribution.  To put this another way, 40% of time 2 students are 

below a particular score, and 45% of time 1 students are below that same score.  The point (0.4, 

0.45) can be plotted on the PP plot, and these points may be used to estimate scale-invariant 

statistics. 

 NAEP reports estimates of two hundred 2003-to-2005 state score trends, representing 50 

states x 2 Subjects (Reading and Mathematics) x 2 Grades (4 and 8).  Of two hundred possible 

comparable State trends, 82 viable State trends were obtained.  The reasons for State trend 

exclusion are described in Table 1.  Some of the most obvious reasons for exclusion are changes 

in testing programs, score scales, or cut scores between 2003 and 2005.  If the definition of 

proficiency has changed, interpretations of the change in the percent of proficient students as a 

trend are flawed.  Another common reason for State trend exclusion is that states may not test in 

grade 4 or grade 8 in both years.  Though many of these states test and report results for adjacent 
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grades, e.g., grades 3, 5 or 7, including these results into a State vs. NAEP comparison makes the 

implicit assumption that trend results from adjacent grades should be similar.  This analysis does 

not make that assumption.  Every attempt was made to be conservative about the selection of 

State score trends.  While these precautions result in a smaller sample size, the results show that 

statistically significant and substantively meaningful conclusions can still be drawn.  Data were 

obtained from state testing websites and reports, and efforts were made to verify the data with 

state testing representatives from all 50 states. 

----------------------------------- 

Insert Table 1 About  Here 

----------------------------------- 

 Table 2 shows the number of PP pairs that were used to estimate scale-invariant State 

trends.  The number of pairs is equal to the number of cut scores for which states reported 

statistics.  This is also equal to the number of proficiency categories minus one.  Some states 

report proportions in only two categories (one cutpoint delineating proficient and not proficient) 

or in only three categories (two cutpoints delineating basic, proficient and advanced).  These 

states were not included in the analysis, as information about the score distributions remains 

impoverished at this level.  For states with only one PP pair, for example, there is only as much 

information as in the commonplace and short-sighted PAC-based trends.  If assumptions are 

made about the form of the test score distribution, scale-invariant effect sizes may be readily 

calculated, but, as Figure 1 helps to show, the shapes of large-scale test score distributions are 

surprisingly unpredictable over time. 

 For states with three or more PP pairs, an interpolation procedure was used within the 

unit square to approximate the PP curve.  The theoretical points (0,0) and (1,1) were added to the 
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state-reported PP points, representing the assumption that there exists an extremely low and an 

extremely high score that bound the scores of both distributions.  These PP points were plotted, 

and a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolating function was 

used to estimate the area under the curve by numerical integration.  PCHIP was implemented by 

the MATLAB program.  Simulation studies support the use of this estimation procedure for a 

range of respectively normal curves where three or more PP pairs are available.  In addition, 

visual inspections of all plots were conducted.  As a point of fact, all trend estimates from PP 

pairs make a kind of parametric assumption in the interpolation method for the PP curve.  It is 

only from the complete distributions that a truly “scale-invariant” measure may be calculated 

(Macmillan and Creelman, 1996).  Nonetheless, every additional PP pair included in the analysis 

acts to substantially improve the depiction of the full distributions and thus, too, the depiction of 

the score trend of interest. 

----------------------------------- 

Insert Table 2 About  Here 

----------------------------------- 

 Scale-invariant NAEP trends are estimated through a two-stage interpolation procedure.  

NAEP reports three PAC statistics and five percentile statistics for each score distribution, 

providing a total of eight points for each CDF.  Percentiles are unlikely to align along any given 

cut score, so PP pairs cannot be obtained from percentiles.  Instead, points between the two 

CDFs are interpolated to obtain a large number of PP pairs for matched cut scores.  These PP 

pairs are located on a PP plot, and interpolation and integration proceeds as before for the PP 

curve. 
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 Effect size-based trend statistics are generally attenuated by measurement error, but 

NAEP reports statistics that are corrected for this effect.  In contrast, State effect sizes are biased 

towards zero due to measurement error.  If State V statistics are treated like traditional effect 

sizes, they can be corrected by disattenuating them in inverse proportion to the square root of the 

reliability of the test (Hedges & Olkin, 1985).  As reliabilities for State assessments are not 

always reported, the uncorrected State statistics are used.  As the results will show, if the 

reliabilities of State tests are taken into account, disattenuation will increase the degree of 

average State-NAEP trend discrepancy. 

  

Scale-Invariant Comparisons of State and NAEP Trends 

 Figure 4 shows the 82 comparable State and NAEP trends using the V statistic, which 

affords an interpretation as a scale-invariant effect size.  The V statistic is the chosen metric for 

reporting because the proportion metric of the P(X2>X1) statistic is not well suited for 

aggregation.  The null hypothesis of a matched-sample t-test for the equality of the mean V 

statistics can be rejected; t(81)=6.06; p<0.001.  The average State trend can be said to be 

significantly more positive than the average NAEP trend.  The centroid is shown in the first 

quadrant, below the y=x diagonal, as a large gray dot.  The average NAEP trend for these 82 

state-subject-grade combinations is +0.031 standard deviation units, and the average State trend 

is +0.115 standard deviation units.  Paired trend statistics are shown broken down by quadrant 

and diagonal.   More than 3 out of 4, or 62 of 82 trend pairs (76%) are below the diagonal; these 

are state-subject-grade combinations where State trends are more positive than NAEP trends.  

There are 4 instances (5%) where the NAEP trend is positive and the State trend is negative, and 

there are 21 instances (26%) where the State trend is positive and the NAEP trend is negative.  
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Slightly fewer than 1 out of 3 instances (30%) show a difference in sign.  None of these 

comparisons takes the measurement error of state tests into account.  Disattenuation will spread 

the points horizontally away from the y-axis in approximate inverse proportion to the square root 

of the reliability of the state tests.  Repeating the t-test assuming imperfect state test reliabilities 

would augment the overall finding of significantly different trends. 

----------------------------------- 

Insert Figure 4 About  Here 

----------------------------------- 

 Figures 5a-d show the same 82 data points broken down by subject and grade.  Figure 5a 

in the upper left shows that average NAEP and State trends are significantly different for grade 4 

Reading; t(18)=2.99; p<0.01.  Figure 5b in the lower left shows that average NAEP and State 

trends are significantly different in grade 8 Reading; t(20)=3.97; p<0.01.  Figure 5c in the upper 

right shows that NAEP and State trends are not significantly different in grade 4 Math; 

t(18)=1.41; p≈0.177.  Figure 5d in the lower right shows that average NAEP and State trends are 

significantly different in grade 8 Math; t(22)=3.83; p<0.01.  Grade 4 Math is the only case where 

NAEP and State average trends are not significantly different.   

 Both NAEP and State results show that average Math trends are more positive than 

average Reading trends.  However, average NAEP trends are near zero in all cases with the 

exception of Grade 4 Math, whereas State trends are all positive.  These results are consistent 

with the hypothesis that increased attention to State test content leads to improved performance 

on State tests but not on NAEP; Grade 4 Math is the exception.   

----------------------------------- 

Insert Figures 5a-d About  Here 
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----------------------------------- 

 One of the key advantages of the scale-invariant framework is that the magnitudes of 

trends can be meaningfully compared even when their signs are the same.  As an example, 

Idaho’s Mathematics trends shown in Figures 5c and 5d are positive for both NAEP and State 

tests, but the scale-invariant effect sizes allow for the observation that the State test score trend is 

substantially more positive than the NAEP trend.  Analogous comparisons of PAC-based trends 

are misleading to the extent that the magnitude of the trend depends critically on the location of 

the cut score on the distributions.  In Figures 4 and 5, the pogo sticks have been removed. 

 

Substantive Issues Arising in State-NAEP Comparisons 

 The release of the 2005 NAEP results in October of 2005 inspired a number of 

newspaper articles and reports about State-NAEP discrepancies.  State-NAEP comparisons have 

a long history, and they usually find that State gains are greater than NAEP gains (e.g. Linn, 

Graue, & Sanders, 1990; Koretz & Barron, 1998; Klein, Hamilton, McCaffrey, & Stecher, 2000; 

Koretz & Hamilton, 2006).  However, the scope of recent national educational policies have 

increased the stakes on State-NAEP comparisons.  A substantial amount of recent attention to 

State-NAEP comparisons concerns discrepancies in the percent of proficient students reported by 

NAEP and State tests (Linn, Baker, & Betebenner, 2002; Hoover, 2003), but those discrepancies 

are readily (if not trivially) explained by differences in the results of judgmental standard setting 

procedures (Linn, 2003; Hambleton, & Pitoniak, 2006).  In contrast, trend discrepancies are 

harder to describe but vastly more relevant to judging the success of educational policies, and the 

reporting and framing of trend discrepancies is worth discussing here in the context of these 

scale-invariant results. 



 15

 As examples, three reports by the Thomas B. Fordham Foundation (2005), the Education 

Trust (Hall & Kennedy, 2006) and Education Week (2006) compared the changes in the percent 

of Proficient students as reported by NAEP and State tests.  The weaknesses of PAC-based 

trends are clearly shown by Holland (2002) and Figure 1, but given the broad interpretability and 

use of PAC-based trends, their use in these reports is predictable.  Technical issues aside, these 

reports occasionally differ in their choice of State trend to report or whether to report a State 

trend at all.  These differences reflect different substantive beliefs about the interpretability of 

State trends and the comparability of State trends to NAEP. 

 The Education Week article reports trends for State tests when trend lines and cut scores 

change, though it adds a footnote to inform readers that results may not be comparable.  Both 

Education Week and the Fordham Foundation use 2004-2005 trends if no 2003 test results are 

available.  All three reports use adjacent grades when grade 4 or 8 comparisons are not available.  

The first Education Week strategy, footnote aside, results in a number that can at best be ignored 

and at worst misinterpreted and misused.  Reporting a two-year trend instead of a three-year 

trend or a grade 3 trend instead of a grade 4 trend implies that trends should be commensurate 

over years and adjacent grades.  This paper does not make those assumptions. 

 By the inclusion and juxtaposition of certain State trends with NAEP trends, this paper 

does facilitate some of the same questionable comparisons as previous reports.  These 

assumptions include the idea that trends from different seasons should be comparable to Spring 

trends, as some states (e.g., Indiana, Michigan and Wisconsin) do not test in the Spring.  It is 

clear that the performance of a state that tests in the Fall should be lower than it would if it tested 

in the Spring, but the juxtaposition of Fall State with Spring NAEP results implies that gains in 

the Fall may be expected to be similar to gains in the Spring.  This is a tenuous assumption, as 
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Fall gains may arguably depend more on teacher-student interactions from previous grade levels, 

and trends at different or even adjacent grade levels may not be expected to be similar. 

 Another clearly short-sighted assumption these comparisons encourage is that English 

and Language Arts (ELA) test score trends are comparable to Reading test score trends, as 

Reading is usually considered a subset of ELA.  For states that report ELA results instead of 

reporting Reading results (e.g., California, Louisiana, Massachusetts, and South Carolina), 

content discrepancies are certainly a plausible explanation for State-NAEP discrepancies. 

 Even when State tests are named, like NAEP tests, “Reading” and “Mathematics,” 

content discrepancies are plausible explanations for State-NAEP discrepancies.  Ho (2005) 

categorized State test items using the NAEP framework to evaluate whether content could 

account for trend discrepancies.  Wei, Lukoff, Shen, Ho and Haertel (2006) conducted a similar 

analysis on California State tests.  Neither found that test content could fully account for trend 

discrepancies.  Notably, they both describe the difficulties in coding State test items using the 

NAEP framework.  This may be taken as a testament to the difficulty of cross-classifying items 

into test frameworks that are were not originally intended to generate the items.  Given a 

perspective that NAEP and State tests are designed to assess proficiency along different content 

dimensions, State-NAEP discrepancies are not cause for controversy but a baseline expectation. 

 Other discrepancy hypotheses exist.  Koretz, McCaffrey and Hamilton (2001) present a 

framework for considering the validity of gains under high-stakes conditions.  Trends for a high-

stakes, or “focal” test, may differ from trends on a low-stakes test like NAEP (an “audit” test) for 

a number of reasons, including different “elements of performance” sampled by both tests, 

different examinee sampling frames, or differing changes in student motivation.  Koretz (2005) 

and Ho and Haertel (2006) have expanded this framework to include still other hypotheses for 
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trend discrepancies.  In this context, each data point in Figure 4 represents the seed for a much 

larger study that addresses each of these hypotheses in turn.  Just as the height of two children 

may be expected to differ, so too may the results of two very different tests.  These differences 

should be thoughtfully modeled, not cast in terms of a question for which there is only one 

answer. 

Conclusions 

 Trend comparisons require both technical care and substantive consideration.  As useful 

as PAC statistics have been in communicating test results to the public, their properties as trend 

statistics render them ill-suited for trend comparison.  It seems perfectly reasonable to maintain 

PAC statistics as a primary means of NCLB reporting while conducting more serious trend 

analyses using statistics with better properties.  While averages and average-based statistics 

should be the default consideration, the P(X2>X1) and V statistics are also strong candidates for 

trend reporting, especially when dual and different score scales come into play as they do in the 

arena of State-NAEP trend comparisons. 

 As NAEP adjusts to its confirmatory role, there must be an active effort to temper 

expectations that NAEP and State results should be identical.  Braun and Mislevy (2005) 

usefully describe the many intuitions about testing that drive stakeholder expectations of results, 

including “A test measures what it says at the top of the page,” and “A test is a test is a test” (p. 

492).    As they note, these intuitions may serve stakeholders well for many interpretations and 

uses of test scores.  In high-stakes comparisons of score trends, however, there must be greater 

attention paid to the vast differences that may exist between the content and format of the two 

tests, what they are designed to measure, how they are administered, how students engage the 

test, and how the test results are meant to be used. 
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Figure 1.  The Pliability of PAC-Based Trends (Dotted) Under Selections of Cut Score 
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Figure 3.  A Probability-Probability (PP) Plot Generated from the CDFs from Figure 1.  The 
Diagonal (Dotted Line) is Shown for Reference. 
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 Table 1: Reasons for State Trend Exclusion by Subject and Grade 
 

Subject: Reading Mathematics 
State     Grade: Grade 4 Grade 8 Grade 4 Grade 8 
Alabama No '03 No '03 No '03 No '03 
Alaska New Cuts New Cuts New Cuts New Cuts 
Arizona New Cuts New Cuts New Cuts New Cuts 
Arkansas New Trend New Trend New Trend New Trend 
California       Two Tests 
Colorado     No '03   
Connecticut     
Delaware No Data   No Data   
Florida         
Georgia <3 Cutpoints <3 Cutpoints <3 Cutpoints <3 Cutpoints 
Hawaii No '03   No '03   
Idaho         
Illinois No Data   No Data   
Indiana No Fall '02 <3 Cutpoints No Fall '02 <3 Cutpoints 
Iowa <3 Cutpoints <3 Cutpoints <3 Cutpoints <3 Cutpoints 
Kansas No Data     No Data 
Kentucky   No Data No Data   
Louisiana         
Maine         
Maryland No '03 <3 Cutpoints No '03 <3 Cutpoints 
Massachusetts   No Data     
Michigan   No Winter Test     
Minnesota No Data No Data No Data No Data 
Mississippi         
Missouri No Data No Data     
Montana         
Nebraska No '03 No '03 No '03 No '03 
Nevada No Data No '03 No Data No '03 
New Hampshire No Data No Data No Data No Data 
New Jersey <3 Cutpoints No '03 <3 Cutpoints No '03 
New Mexico New Test New Test New Test New Test 
New York         
North Carolina         
North Dakota New Cuts New Cuts New Cuts New Cuts 
Ohio New Cuts New Cuts New Cuts New Cuts 
Oklahoma New Test   New Test   
Oregon No Data <3 Cutpoints No Data <3 Cutpoints 
Pennsylvania No Data   No Data   
Rhode Island Unreleased Unreleased Unreleased Unreleased 
South Carolina         
South Dakota New Cuts New Cuts New Cuts New Cuts 
Tennessee <3 Cutpoints <3 Cutpoints <3 Cutpoints <3 Cutpoints 
Texas         
Utah New Cuts New Cuts New Cuts New Cuts 
Vermont Unreleased Unreleased Unreleased Unreleased 
Virginia No Data <3 Cutpoints No Data <3 Cutpoints 
Washington   No Data   No Data 
West Virginia No 2003 No 2003 No 2003 No 2003 
Wisconsin         
Wyoming         
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Table 2:  Number of Cutpoints Used to Estimate State PP Curves by State, Subject and Grade. 
 

Subject: Reading Mathematics 
State     Grade: Grade 4 Grade 8 Grade 4 Grade 8 
Alabama - - - - 
Alaska - - - - 
Arizona - - - - 
Arkansas - - - - 
California 4 4 4 - 
Colorado 3 3 - 3 
Connecticut 4 4 4 4 
Delaware - 4 - 4 
Florida 4 4 4 4 
Georgia - - - - 
Hawaii - 3 - 3 
Idaho 3 3 3 3 
Illinois - 3 - 3 
Indiana - - - - 
Iowa - - - - 
Kansas - 4 4 - 
Kentucky 7 - - 7 
Louisiana 4 4 4 4 
Maine 3 3 3 3 
Maryland - - - - 
Massachusetts 3 - 3 3 
Michigan 3 - 3 3 
Minnesota - - - - 
Mississippi 3 3 3 3 
Missouri - - 4 4 
Montana 3 3 3 3 
Nebraska - - - - 
Nevada - - - - 
New Hampshire - - - - 
New Jersey - - - - 
New Mexico - - - - 
New York 3 3 3 3 
North Carolina 3 3 3 3 
North Dakota - - - - 
Ohio - - - - 
Oklahoma - 3 - 3 
Oregon - - - - 
Pennsylvania - 3 - 3 
Rhode Island - - - - 
South Carolina 3 3 3 3 
South Dakota - - - - 
Tennessee - - - - 
Texas 4 4 4 4 
Utah - - - - 
Vermont - - - - 
Virginia - - - - 
Washington 3 - 3 - 
West Virginia - - - - 
Wisconsin 3 3 3 3 
Wyoming 3 3 3 3 
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Figure 4: NAEP vs. State Score Trend Discrepancies; All 82 State-Subject-Grade Combinations. 
 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

20

62

4 47

10 21

State Trend (Scale-Invariant Effect Size)  

N
A

E
P

 T
re

n
d

 (
S

ca
le

-I
n

va
ri

an
t 

E
ff

ec
t 

S
iz

e)
 



 27

Figure 5a-d: Comparing NAEP vs. State Score Trend Discrepancies using V Statistics, a) 
Reading Grade 4, b) Reading Grade 8, c) Mathematics Grade 4, d) Mathematics Grade 8. 
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