
Towards General-Purpose
Neural Network Computing
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Eldridge, Schuyler, Amos Waterland, Margo Seltzer, Jonathan
Appavoo, and Ajay Joshi. 2015. "Towards general-purpose neural
network computing." In Proceedings of the 2015 International
Conference on Parallel Architecture and Compilation (PACT),
San Francisco, CA, October 18-21, 2015: 99-112. doi:10.1109/
PACT.2015.21

Published Version doi:10.1109/PACT.2015.21

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30779603

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154874266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Towards%20General-Purpose%20Neural%20Network%20Computing&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=dab578758d649bd176c22342e7610534&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30779603
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Towards General-Purpose Neural Network Computing

Schuyler Eldridge,∗ Jonathan Appavoo,† and Ajay Joshi∗
∗Department of Electrical and Computer Engineering

†Department of Computer Science
Boston University

Boston, MA
{schuye, jappavoo, joshi}@bu.edu

Amos Waterland and Margo Seltzer
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA

apw@seas.harvard.edu
margo@eecs.harvard.edu

Abstract—Machine learning is becoming pervasive; decades
of research in neural network computation is now being
leveraged to learn patterns in data and perform computations
that are difficult to express using standard programming ap-
proaches. Recent work has demonstrated that custom hardware
accelerators for neural network processing can outperform
software implementations in both performance and power con-
sumption. However, there is neither an agreed-upon interface to
neural network accelerators nor a consensus on neural network
hardware implementations. We present a generic set of soft-
ware/hardware extensions, X-FILES, that allow for the general-
purpose integration of feedforward and feedback neural net-
work computation in applications. The interface is independent
of the network type, configuration, and implementation. Using
these proposed extensions, we demonstrate and evaluate an
example dynamically allocated, multi-context neural network
accelerator architecture, DANA. We show that the combination
of X-FILES and our hardware prototype, DANA, enables
generic support and increased throughput for neural-network-
based computation in multi-threaded scenarios.

I. INTRODUCTION

Neural Networks (NN) and machine learning techniques
are effective computing methods for some the most challeng-
ing sets of applications including character recognition [1],
stock market prediction [2], dynamic branch prediction [3],
automation of compiler optimization [4], and image process-
ing [5]. Success has prompted a wide array of NN research
including:

1) Specialized hardware architectures that improve the
performance and energy efficiency of machine learning
techniques [5]–[17]

2) Schemes for extending the exploitation of NN process-
ing to applications that are not explicitly programmed
to use them, e.g., approximate computing [18]–[23] or
auto-parallelization [24]

These diverse implementations and usage cases drive fas-
cinating innovation. As diversity increases, however, a gap
is developing between these innovations and the state of
today’s hardware and software.1 As such it is worth con-

1While we tend to shy away from off-putting hubristic analogies, we
believe the current NN hardware landscape bears similar opportunities to
the state of floating point before William Kahan and the IEEE 754 effort—
accepted as beneficial, but fragmented.

sidering how generalized NN processing can be explicitly
integrated into today’s hardware and software environment.

Explicit integration of NN computing starts with a pre-
cisely specified hardware-software interface. Such an in-
terface allows NN hardware diversity to expand while, at
the same time, encouraging a diverse set of software use
cases to be explored. From a hardware perspective, one
would like to see the continued exploration of the full
spectrum of NN accelerator technologies from dedicated NN
digital logic units [5]–[13], [18]–[23] to biologically inspired
analog/sub-threshold implementations [14]–[17]. Similarly,
from a software perspective, one wants to encourage both
explicit and implicit usage models to grow. In the former,
explicit case, one wants to encourage applications and li-
braries to easily utilize NN facilities in a fine-grained fashion
with portability across hardware technologies. In the later,
implicit case, compilers and runtime systems should, also
portably, exploit available hardware facilities to transparently
use NN processing as needed, e.g., stitching in NNs in
place of function calls to enact approximations [18]–[20] or
exploiting NNs at runtime to model an application’s behavior
and enable parallel speculations [24].

To date, hardware NN technologies have developed pre-
dominately in the context of a static and dedicated applica-
tion use scenario—for the most part a single NN is being
used by a single application to do a single computation
at a time. In contrast, multiprocessing and fine-grained
threading characterize today’s general purpose computing
landscape. While the hardware/software interface need not
be predicated on a multi-context, concurrent accelerator,
such an interface would be of limited future utility if not
properly designed to support such accelerators.

Towards these goals of both generality and simultaneous
multiprocessing, we provide a clean slate approach to NN
computation broken into two distinct contributions—a set
of software/hardware extensions and a new NN accelerator
architecture:
The X-FILES Hardware/Software Extensions: We

define software/hardware Extensions for the Integration
of Machine Learning in Everyday Systems, or X-
FILES, that provide a standard approach to describe

Operating System

X-FILES

Multi-context NN Accelerator, e.g., DANA

Process
2

Process
1

Process
3

Process
N

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

Figure 1. A multiprocessing system has processes composed of threads
managed by an operating system. We propose a set of hardware/software
extensions, the X-FILES, that enable the multi-context management of
requests by processes to execute NNs in their respective address spaces
on an underlying NN accelerator.

NN computation and interface software with underlying
NN acceleration hardware.2 The X-FILES treat the
unit of NN computation as a transaction, i.e., a request
by a process to compute the output of a network for an
input. The X-FILES software stack—user applications
and user libraries with backing supervisor/operating
system (OS) code—communicate user transactions to
an X-FILES hardware arbiter that offloads units of
NN computations to an underlying NN accelerator.
Using the X-FILES, 1) each application can construct
and use multiple NNs, 2) each NN can have arbitrary
all-to-all connectivity in its structure, including unique
input and output dimensions, and 3) an application
can issue many concurrent requests for processing
using its NNs. To concretize and realistically constrain
the X-FILES extensions we develop and present the
X-FILES as using the RoCC accelerator interface of a
RISC-V microprocessor [25]–[28].

The DANA Accelerator Architecture: We propose a new
Dynamically Allocated Neural Network Accelerator
architecture, DANA, as an example X-FILES acceler-
ator backend. Differing from existing accelerators [5]–
[23], DANA targets concurrent execution of similar or
dissimilar NN computations. To achieve this, DANA
and the X-FILES arbiter work together to schedule
and overlap NN computation on available DANA
resources—a collection of processing elements, cached
NN configurations, and intermediate storage. DANA’s
multiprocessing capabilities support NN computation
from multiple threads/cores resulting in higher accel-
erator throughput.

2We apologize for any confusion related to the choice of 1990s television-
inspired acronyms. There is no affiliation with “files” or “filesystems.” Also,
the acronym is plural and can be replaced grammatically with “extensions.”

Figure 1 illustrates our overall model and how the X-
FILES and DANA fit together. Processes, isolated in mem-
ory and composed of one or more threads, share underlying
computer hardware by means of an OS. Each thread uses one
or more NNs in its overarching application or to enable an al-
ternative computing paradigm, e.g., NN-backed approximate
computing [18]–[23] or microprocessor state prediction [24].
The X-FILES software extensions provide both a user-level
API for NN computation and necessary OS data structures
and management functions to allow safe sharing of NN
configurations. The X-FILES hardware arbiter provides an
interface for user and system software extensions to manage
and execute NN computations on a backend NN accelerator.

II. X-FILES: SOFTWARE/HARDWARE EXTENSIONS
FOR NN COMPUTATION

Fundamentally, the X-FILES software/hardware exten-
sions manage NN configurations and transactions in disjoint
address spaces as defined below:
Neural Network Configuration – a concise hardware and

software-friendly binary description of an NN’s struc-
ture. Each configuration is uniquely identified with an
OS-managed NN Identifier (NNID).

Neural Network Transaction – the basic unit of NN com-
putation. A transaction encapsulates a request by a
user process to use a specific NNID, the initial com-
munication of inputs, execution on an NN accelerator,
and final communication of outputs. A transaction may
optionally involve learning. Each NN Transaction is
identified by a Transaction Identifier (TID) assigned
by hardware.

Address Space – the set of NN configurations and other
data structures shared between a group of processes.
Each Address Space is identified by an OS-assigned
Address Space Identifier (ASID).

The X-FILES are, therefore, software/hardware extensions
that manage TIDs belonging to ASIDs that define sets of
allowable NNIDs. This management comes in the form of
user and supervisor software that directly communicates
with a hardware arbiter. The arbiter maintains the state of
all executing TIDs. A backend accelerator (of which we
provide DANA as one possibility in Section III) then works
with the arbiter to execute transactions. Figure 2 shows this
division in the context of a multicore system.

The communication of information about NNIDs, TIDs,
and ASIDs between X-FILES software running on one
or more connected cores and the hardware arbiter occurs
through two possible transfer modes:
Register Transfer – special instructions that send core reg-

ister data to the accelerator
Memory Transfer – asynchronous transfers through point-

ers to preestablished data structures
Based on the amount of data that must be transferred,

software selects the more efficient mode. For example,

ASID-NNID
Table
Walker

ASID-NNID Table Pointer

Transaction
Queue

Core 1

L1 Data $

L2 $

X-FILES Arbiter

ASID

ASID

ASID Register File

PE-1

PE-NEntry-N

Entry-1

PE Table

Entry-2
Memory
Memory

Entry-1

NN Config Cache

ControlTransaction Table

ASID TID NNID State

DANA

Num ASIDs

Core 2

L1 Data $

Core N

L1 Data $

Figure 2. X-FILES hardware arbiter with DANA as a backend accelerator. Registers set by a supervisor (e.g., ASIDs) are dark red.

Generic
AcceleratorCore

Request
Instruction
[Rs1]
[Rs2]

Rd Response
Data

Busy
Supervisor
CoreInterrupt
AcceleratorInterrupt

RoCC
Interface

CacheIO
PageTableWalkerIO

TileLinkIO

Figure 3. The RoCC accelerator interface [25]–[28]

6:3

unused isLast

2

isNew

1

readOrWrite

0

Figure 4. Function field bits that encode the instructions in Table I

we expect an approximate computing application with two
inputs and one output to use register transfer. Conversely, we
anticipate an image processing application with streaming,
one-time-use data to use asynchronous memory transfers.
We leave this choice of transfer mode, however, to the
developer. The short nature of supervisor requests, outlined
in more detail in a following subsection, are best suited to
register transfers.

We further subdivide memory transfers into those involv-
ing virtual or physical addresses. While this would normally
be a hard, design-time decision (as is common with similar
accelerator interfaces [29], [30]) we prefer to not restrict
the generality of the X-FILES during definition. Instead,
and as with register/memory mode, we take the view that
these transfer modes should be exposed to agents (like the
hardware designer, library writer, compiler, or OS) that can
make the most informed decision regarding interface choice.
Consequently, the option to choose between virtual and
physical addressing at compile or runtime enables us to
choose the mode that is supported by the accelerator and
suits the characteristics of the application.

As there already exist a number of transport layer inter-
faces for dedicated computational accelerators we standard-
ize on one of these instead of defining our own. We select

Table I
ASSEMBLY INSTRUCTIONS TRANSMITTED OVER THE ROCC INTERFACE

Instruction
isLast isNew readOrWrite User Supervisor

0 1 1 New Transaction —
0 0 1 Data Write Set ANTP
1 0 1 Last Data Write —
0 0 0 Data Read Set ASID

the RoCC interface used by the RISC-V Rocket core [25]–
[28], and shown in Figure 3, due to its ready integration with
an open source ISA and hardware designs. Note, that while
we use a standardized interface to a RISC-V microprocessor,
the X-FILES are independent of transport layer and ISA.

The RoCC interface defines a set of communication lines
for transmitting/receiving register data, a full ISA instruc-
tion, status/exception bits, and direct communication with
the memory hierarchy. Using standard RISC-V extensions
for RoCC [27], we can then use dedicated instructions
to send data to/from the X-FILES arbiter. We currently
use four instructions, shown in Table I. Three bits of the
instruction “function” field, shown in Figure 4, define the
type of communication—readOrWrite denotes whether
this is a read or a write, isNew indicates that this is a new
transaction request, and isLast specifies that this is the
end of a data stream.

The X-FILES register mode uses these instructions di-
rectly. In memory mode, the arbiter accesses memory on
dedicated lines with virtual or physical addresses previously
communicated using register mode. In the virtual case, ad-
dress translation occurs either locally on the arbiter (through
an arbiter TLB and page table walker) or remotely using the
core’s memory management unit (MMU).

A. X-FILES User Software

The primary user software functions, shown in the top
portion of Table II, enable user processes to access NN
computation resources:

• newWriteRequest – initiate a new NN transaction
for a specific NNID. The user process receives a TID

Table II
X-FILES SOFTWARE LIBRARY FUNCTIONS FOR COMMUNICATION WITH THE X-FILES ARBITER AND MANAGING THE ASID–NNID TABLE

Function User/Supervisor Description

tid = newWriteRequest(nnid, type) user Initiate a new transaction of specific type, returning a TID
writeData(tid, *inputs, *expectedOutput) user For register mode, write input data and, optionally, training data
readDataPoll(tid, *output) user For register mode, try to read output data until successful
tidKill(tid) user Kills an executing transaction
oldTid = setAsid(asid) supervisor Change the ASID returning the old TID to the OS for storage
setAntp(antp, numAsids) supervisor Set the ASID–NNID Table Pointer and the number of ASIDs
asidNnidTableCreate(**table) supervisor ASID–NNID Table constructor
asidNnidTableDestroy(**table) supervisor ASID–NNID Table destructor
nnid = addNnid(**table, *nnConfiguration) supervisor Adds an NN Configuration to an existing ASID–NNID Table
removeNnid(**table, nnid) supervisor Remove a specific NNID from an exsiting ASID–NNID Table

which it can then use to reference this transaction.
• writeData – referencing a TID, transmit inputs and

expected outputs (in the case of a transaction involving
learning) to NN hardware. In memory transfer mode,
this function can be circumvented with direct writes to
an IO ring buffer.

• readDataPoll – repeatedly try to read output data
for a TID until successful. As with writeData, this
function is optional in memory transfer mode.

Thereby, a complete NN transaction from the perspective
of a user process consists of a sequence of these three in-
structions. We additionally define the tidKill instruction
that allows a process to kill a TID in its address space.

B. X-FILES Supervisor Software

Supervisor software—libraries incorporated in a modi-
fied OS kernel—enables safe, multi-context access to NN
acceleration hardware and NN configurations. The RoCC
interface uses a supervisor bit that is set when a privileged
process is running. The value of this bit causes the X-FILES
arbiter to interpret the instructions in Table I differently,
specifically to modify supervisor registers on the arbiter.

Memory protection of process’ data and NN configu-
rations occurs through the intentional OS partitioning of
processes wishing to access NN accelerator resources into
address spaces. Processes allowed to access each other’s data
and NN configurations (e.g., a parent and child) live in the
same address space and, consequently, have the same ASID.
Each interface from a core to the X-FILES arbiter has a
separate ASID register (see Figure 2). The OS sets each
of these registers with the setAsid function based on the
underlying address space of the process executing on each
core. The X-FILES arbiter then stamps any subsequent user
requests from cores with their respective ASIDs. Hardware
uses these ASIDs and TIDs (where TIDs are generated by
the arbiter) to fully disambiguate transactions.

To ensure memory protection of NN configurations we
employ a data structure called an ASID–NNID Table shown
in Figure 5. The OS creates, destroys, and manages (adds
or removes NN configurations) the ASID–NNID Table with
the supervisor functions in Table II. Upon creation of or a

*NN Configuration

*NN Configuration

*NN Configuration

Header

Neurons

Weights

ASID-NNID Table Ptr
*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

*ASID-NNID *IO QueueNum NNIDs

Status/Header *Input *Output

Ring Buffers

Num ASIDs

Figure 5. ASID–NNID Table used for NNID memory protection. An
ASID–NNID Table Pointer, stored in the X-FILES arbiter and set by the
OS, points to one specific ASID–NNID Table. This ASID–NNID Table
contains one entry per ASID that points to an NNID dereference table
(where NNIDs can be translated to NN Configuration addresses) and an IO
Queue (containing some status bits and pointers to IO ring buffers). The
X-FILES arbiter also stores the number of ASIDs allowing it to detect an
invalid ASID outside the bounds of the table. The OS assigns ASIDs and
NNIDs sequentially enabling their use for ASID–NNID Table indexing.

change to the ASID–NNID Table, the OS uses setAntp to
change the ASID–NNID Table Pointer (ANTP), an arbiter
register that points to the memory location of the ASID–
NNID Table. After receiving a valid ANTP, the arbiter uses
this to find an NN configuration in memory. The setAntp
function also sets a register indicating the number of valid
ASIDs. Due to the sequentially assigned nature of ASIDs,
the arbiter can use the number of valid ASIDs to prevent
reading beyond the end of the ANTP.

The ASID–NNID Table consists of groups of pointers to
NN configurations indexed by ASID and NNID. This rigid
structure enables the OS to place hard restrictions on which
NNIDs are accessible by each ASID. Each ASID entry also
contains a pointer to a set of IO ring buffers. In memory
transfer mode, these ring buffers are used to asynchronously
transfer data between a core and the arbiter.

C. X-FILES Hardware Arbiter

The X-FILES arbiter (Figure 2) provides an interface
between user processes wanting to execute NN transactions
and the actual accelerator hardware. When a new transaction
arrives, the arbiter enters this in a Transaction Queue—a

FIFO structure of not-yet-executing transactions. In the event
of the Transaction Queue being full, the arbiter asserts the
RoCC interface busy bit indicating that it cannot accept new
transactions. The arbiter’s Transaction Table pulls transac-
tions from the queue and acts as a record of the state of all
transactions executing on the backend NN accelerator. Due
to the tight integration of the Transaction Table with the
underlying accelerator we discuss this in more detail within
the context of DANA in Section III-C.

When the backend accelerator, DANA or similar, indi-
cates that it has free resources to execute transactions, the
X-FILES arbiter selects a transaction, communicates the
transaction state to the accelerator, and updates the trans-
action state. When the accelerator needs access to memory
resources (primarily to load a specific NN configuration),
the X-FILES arbiter uses an ASID–NNID Table Walker to
ensure memory protection. Inevitable exceptional cases in
the arbiter or NN accelerator are communicated through
the RoCC interrupt interface back to a core where they are
resolved by the OS.

III. DANA: AN ACCELERATOR FOR THE X-FILES

The X-FILES hardware/software extensions form only
part of a complete system for general-purpose NN
computing—the X-FILES need a backend accelerator to
execute NN transactions. Since existing NN accelerator
architectures [5]–[23] focus on single-processing of transac-
tions, we developed a new architecture better aligned with
the X-FILES’ multiprocessing capabilities. We view this
simultaneous multiprocessing quality as a necessary require-
ment of future accelerator architectures for two reasons:

1) Application-specific NN computing techniques will re-
quire an increasing number of simultaneous NN trans-
actions, e.g., an NN image processing backend with
a separate NN per user [5] or microprocessor state
prediction using ASC [24]

2) Several concurrent applications will integrate NN com-
putation or adopt NN-backed techniques to improve
energy efficiency, e.g., approximate computing [18]–
[23]

To meet these requirements, we propose DANA, a
Dynamically Allocated Neural Network Accelerator. DANA
reads the Transaction Table of the X-FILES arbiter and
dynamically assigns logical neurons to fixed Processing
Elements (PEs). As the design space of accelerators that
interface with the X-FILES is exceedingly large, we make
some initial assumptions about DANA:

• DANA uses a binary NN configuration format similar
to that used by FANN [31].

• DANA’s underlying computational units support only
one type of NN flavor, multilayer perceptrons (MLPs),
with 32-bit fixed point arithmetic and all-to-all NN
topologies.

Register File

X-FILES
Arbiter

PE-1

PE-2

PE-N

Entry-2

Entry-N

Entry-1

PE Table

NN Transaction-1 IO Memory

NN Transaction-2 IO Memory

Entry-2

Cache Memory-1

Cache Memory-2

Entry-1

NN Configuration Cache

Control

DANA

Transaction
Table

Figure 6. Architecture of DANA. Control logic dynamically allocates
processing elements to neurons of executing NN transactions read from
the X-FILES arbiter. Inputs and outputs are stored in per-transaction
memories, NN configurations are stored in a local cache, and intermediate
computations are stored in a Register File.

• DANA supports only feedforward NN computation.
By extending the NN configuration structure and the range
of operations supported by the PEs, additional NN flavors
can be supported, e.g., Convolutional Neural Networks.
DANA’s control logic can be extended to update its local
NN configuration and thereby enable hardware incremental
or batch learning directly in hardware.

DANA’s current version consists of five distinct architec-
tural components shown in Figure 6:

• A Transaction Table, located inside the X-FILES ar-
biter (Figure 2), that maintains the state of all currently
executing NN transactions (Section III-C)

• A Configuration Cache that stores recently used NN
Configurations to exploit temporal reuse of specific
NNs (Section III-D)

• A Register File storing intermediate outputs (Sec-
tion III-E)

• A number of Processing Elements (PEs) that perform
the operation of one neuron (Section III-F)

• Control Logic that maps logical neurons of transac-
tions to physical PEs and facilitates communication be-
tween the X-FILES arbiter and DANA (Section III-G)

A. Example Transaction Execution on DANA

To demonstrate the basic operation of DANA, consider
an X-FILES arbiter with one valid NN transaction. This NN
transaction is characterized by its ASID, TID, and NNID.

Initially, this transaction is in an unknown state with
regards to whether its corresponding configuration (speci-
fying the layer, neuron, and weight information) is loaded
in DANA’s Configuration Cache. Control logic queries the
Configuration Cache to see if the required configuration
is available. On a miss, the cache reserves an entry in
the Configuration Cache Table—a unit that stores the state
of Configuration Cache entries—and requests the missing
NN Configuration from the X-FILES arbiter. The X-FILES

arbiter then uses the ASID–NNID Table Walker to load
this configuration through a core’s memory hierarchy. Upon
receiving this NN Configuration information, the Configu-
ration Cache stores it in a local memory. The cache sends
a ready response to the X-FILES arbiter updating this
transactions’ state to valid, i.e., “ready to be executed.” This
ready response also contains auxiliary information about
global NN configuration, i.e., the total number of layers and
neurons, the number of fractional bits used in the fixed point
representation, and the cache memory location of (a pointer
to) the first NN weight.

DANA then begins processing the first hidden layer of
this NN transaction. DANA queries the Configuration Cache
for layer-specific information and updates the Transaction
Table. Control logic reserves registers in the register file to
store the intermediate outputs of this layer (one for each
neuron in the layer). Control logic then assigns the first
neuron in the NN to an unallocated PE. PE assignment
involves setting various flags and fields for that PE as well
as communicating the locations of its inputs and where the
PE should send its outputs. This information is stored in a
PE Table with one entry for each PE. Each cycle, the control
logic selects the next neuron in the hidden layer and assigns
it to a free PE so long as free PEs exist. In our current
DANA implementation, one PE is assigned per cycle due
to limited bandwidth between control logic and PEs. With
additional control logic and PE reservation stations, multiple
PE assignments can occur per cycle.

After allocation, PEs operate independently of DANA’s
control logic. The PE Table keeps a record of where each
PEs inputs are sourced, where its outputs will be sent, and
what address it should request from the Configuration Cache
for its weights. PE inputs and outputs can be read from
or written to private IO memory (for inputs and outputs
of the NN transaction) or to registers in the Register File
(for intermediate hidden layer outputs). In case multiple PEs
need to read inputs/weights or are ready to output data, they
use round robin arbitration to decide which PE gets priority.
Currently, only one PE has priority, however, this can be ex-
tended to two simultaneous accesses by utilizing both ports
of dual-ported storage elements. Additional improvements
can come from adding multiple memory banks, overclocking
the memory, or grouping like accesses from PEs. After
receiving inputs and weights, a PE begins executing. After
a multi-cycle processing operation, the PE sends its output
to the register file or to output IO memory. This process
continues until all logical neurons of a transaction have
been mapped to PEs. The Transaction Table then marks the
transaction as done and its outputs can be returned to the
initiating process.

B. Block and Element Organization

DANA operates on wide groups of data, called blocks,
composed of multiple 32-bit data elements, as shown in

element 3 element 2 element 1 element 0

Block Width

Figure 7. Organization of a block with four elements.

Figure 7. The choice of block width affects all modules that
exchange data. For example, when a PE requests new inputs,
that PE is actually requesting a block from IO memory or
the Register File. We made this design decision to reduce
requests by PEs for input and weight data and is reflected
by increased performance for larger block sizes.

C. Transaction Table

The Transaction Table stores information about all in-
flight NN Transactions. Each entry in the Transaction Ta-
ble is broken down into Transaction Status Bits, global
Transaction Information (e.g., TID, total number of layers),
and Transaction Progress (e.g., the current layer being
processed) as shown in Figure 8.

There are a total of seven Transaction Status Bits. The
nnValid, nnReserved, and nnDone bits respectively
signify whether or not an entry is valid, reserved and
waiting for inputs, or if the NN transaction for this entry
has completed execution. The regFileNeedsRegs bit
asserts when this entry needs to reserve register blocks in the
Register File where intermediate layer outputs will be stored.
Reserved blocks form a non-contiguous linked list, hence,
the regFileNeedsNext bits assert when this transaction
entry needs to know the next reserved register block in the
list. The cacheValid and cacheWait bits are used to
determine when the state of the Configuration Cache is valid
and if the control logic is waiting on the cache to load a
configuration from memory.

Transaction Information fields identify the ASID, TID,
the NNID, and configuration parameters for the whole NN,
i.e., the fixed point precision binary point and the total
number of layers and neurons. The Transaction Progress
fields define which layer and overall neuron are currently
being processed. Additionally, these fields store the current
neuron within the layer and the total number of neurons in
the current layer. Together, the in-layer current neuron field
and total neurons field determine when an NN transaction
layer is done and when new layer information from the
Configuration Cache is needed. Progress fields also store
a pointer to the configuration of the current neuron in the
Configuration Cache. This pointer is passed to a PE during
allocation. Finally, input and output register block indices
are maintained.

Each entry in the Transaction Table has private IO mem-
ory for inputs and outputs. PEs assigned to process the
neurons in the first hidden layer of an NN read their inputs
from IO memory. PEs assigned to process the neurons in
the last layer of an NN output data to IO memory.

Transaction Information

Transaction Status Bits

Modified by Transaction Table

nnValid nnReserved nnDone regFileNeedsRegs regFileNeedsNext cacheValid cacheWait

Modified by CacheModified by Register File

Transaction Progress currNeuronInLayer numNeuronsInCurr neuronPointer regInput regOutputcurrNeuroncurrLayer

Configuration Cache Entry

Register File Entry inUse isLast

PE Table Entry

tid nnid binaryPoint numLayers numNeuronsasid

1 1 1 1 1 1 1

16 16 12 lg(rfSize) lg(rfSize)1610

1 1 lg(ttSize)

valid notify notifyIdx inUseCountnnid
16 lg(ttSize)

1 1

numWaiting
16

numReserved numValid
lg(ePerBlock) lg(ePerBlock)

nextPtr
lg(rfSize)

5 1 lg(numRegs)1lg(numRegs)34 16

16 16 3 10 1616

activationFunction inputIdxinLastoutputIdxbinaryPointstate weightIdxinLoc outLoc
1

Figure 8. Organization of a Transaction Table entry consisting of Transaction Status Bits, Transaction Information, and Transaction Progress. Also shown
are a Configuration Cache entry, a Register File entry, and a Processing Element table entry.

binaryPoint
totalEdges
totalNeurons
totalLayers
weightsPtr

Info

neuron0-weight0
neuron0-weight1
neuron0-weight2
neuron0-weight3 Weights

neuron1-weight0...

neuron0-weight0Ptr
neuron0-numberOfWeights
neuron0-activationFunction
neuron0-steepness
neuron0-bias

Neurons

Layer0-neuron0Ptr
neuronsInLayer
neuronsInNextLayer

layer1-neuron0Ptr
neuronsInLayer
neuronsInNextLayer

Layers

neuron1-weight0Ptr...

Figure 9. The condensed FANN configuration format consists of four sections: Info, containing global NN information, Layers, containing layer information
and a pointer to the first neuron configuration for that layer, Neurons, containing neuron-specific information, and Weights, containing all weights for a
neuron. All sections and all weights for a given neuron are aligned on block boundaries.

D. Configuration Cache

The Configuration Cache stores recently used NN con-
figurations in dedicated per-entry memory. We store NN
configurations locally to exploit temporal locality of NN
configurations in existing application workloads, e.g., ap-
proximate computing [18]–[23] or ASC [24]. Each configu-
ration, shown in Figure 9, is a reduced binary representation
of the FANN configuration data structure consisting of four
sections: Global Info, Layer Info, Neuron Info, and Weight
Info. The global Info section contains data applicable to the
whole NN and populates the Transaction Information part
of a Transaction Table entry. The Layers section, containing
layer specific information and a pointer to the first neuron in
the layer, is loaded into the Transaction Table as each layer
is processed. The Neurons section defines neuron-specific
parameters—the number of weights, a pointer to the first
weight for this neuron, as well as computation parameters
(the activation function, steepness, and bias)—accessed by
the PEs. The Weights section contains a list of all NN
weights and is read by PEs.

An NN configuration is stored using the same parameter-
ized element–block structure described in Section III-B. We
align the Info block, first Layer block, first Neuron block,
and the start of each weight block on a block boundary to
prevent unaligned access overheads. Our alignment approach
does incur storage overheads due to empty space arising
from forced block alignment.

Each Configuration Cache entry contains state informa-
tion, shown in Figure 8, and a private storage area for the
NN Configuration. State information includes a valid bit,

an NNID field, notification information fields (notify and
notifyIdx) and an inUseCount field. On a Configu-
ration Cache miss, a memory or core access is generated
with the help of the X-FILES arbiter. We maintain an
InUseCount field that tracks the number of transactions
using a specific cache entry. Only unused cache entries can
be evicted from the cache on a Configuration Cache miss.
When a request for a specific NNID arrives, a cache miss
causes the notify bit to be set and notifyIdx field to
record the index of the Transaction Table entry requesting
that NNID. Once the cache has successfully loaded the
requested configuration, it generates a response to DANA’s
control logic indicating its validity.

While our current version requires that NN configurations
fit in one Configuration Cache memory, we plan to support
larger NN configurations in a future extension. Specifically,
the Configuration Cache will work with the X-FILES arbiter
to load a new set of weights from memory whenever needed.

E. Register File

DANA uses a Register File to store intermediate outputs.
Each entry in the register file contains one block of register
elements and some metadata. Register blocks are reserved by
DANA’s control logic before an NN layer begins execution
to ensure that each allocated PE has a dedicated location
to write its output. Control logic will consequently not start
processing an NN layer until there are enough free register
blocks. To accommodate the case when there are more
outputs in a layer than registers in a block, the Register File
implements a forward linked list. Each Register File entry

contains an isLast bit that indicates if it is the last in a
list as well as a nextPtr field that holds the index of the
next register block in a list. PEs understand this and will
load, as needed, all blocks in a list.

We implement the Register File using a dual-ported
memory array. Surrounding combinational logic enables a
two-cycle element write (with input data forwarding for the
consecutive write case) and one-cycle block read. Register
block reads and writes are initiated by PEs independently of
the control logic. The Register File returns register blocks
and metadata to requesting PEs. The PEs use this metadata
to know if this is the last block they need to process, which
block they should request next, and what entry is last in a
partially filled block. Each Register File entry (see Figure 8)
maintains the number of expected reads (numWaiting) for
a particular block. By enforcing our all-to-all connectivity
restriction, we know that this value should initially be set to
the number of neurons in the next layer. As the Register File
receives PE read requests, this count is decremented. Once
the read count for a block reaches zero, the Register File
invalidates that entry and DANA’s control logic is free to
reuse it for other intermediate data storage. In case multiple
PEs want to access the register file at the same time, round-
robin arbitration is used to choose a PE.

F. Processing Elements (PEs)

Each PE performs one MLP neuron computation—the
application of an activation function (AF) to an input–weight
inner product:

output = AF

 ∑
All Inputs i

Inputi ×Weighti

DANA’s control logic handles PE selection and assign-

ment. During assignment, DANA’s control logic provides
the selected PE with configuration information, i.e., the
number of fixed point fractional bits, the number of input–
weight pairs the PE needs to process, and the locations
of its inputs, outputs, and weights. After assignment, PEs
operate autonomously. PEs request inputs from the Register
File or IO memory and weights/neuron-specific information
(i.e., activation function, sigmoid steepness, and bias) from
the Configuration Cache. If multiple PEs need input and
weight data, one is chosen using round robin arbitration. A
PE computes a partial input–weight inner product whenever
it has a valid block of inputs and weights.

As each multiplication doubles the original bit width,
products are truncated to the original fixed point precision
by arithmetically right shifting by the value of the binary
point. Note that this does introduce a bias towards negative
infinity due to the asymmetry of truncation rounding in
two’s complement. To avoid unnecessary logical complexity
from arbitrary shifts, the allowed number of fixed point
bits is currently limited to 7–13. We determined these

binary point values using the FANN library, which selects
a maximum binary point value that will not generate fixed
point accumulator overflow for the NN configurations used
in our evaluation (see Table III).

A PE generates requests for more input–weight pairs
as needed. When finished, the inner product is passed
to a PE-local activation function unit that performs a 7-
part piecewise linear approximation of a sigmoid (output
values are [0, 1]) or a symmetric sigmoid (output values
are [−1, 1]). Piecewise linear parameters are stored in PE-
local look-up-tables (LUTs). Consequently, new activation
functions can be supported with additional LUT entries. The
steepness of the activation function (set when the NN is
allocated) is limited to powers of 2 between 1/16 and 8.
When computation finishes and the output has been sent to
its destination, the PE transitions to an unallocated state and
can be reallocated by DANA’s control logic.

G. Control Logic

DANA’s control logic handles all tasks related to process-
ing entries in the Transaction Table. This includes choos-
ing which Transaction Table entry to process, generating
requests to setup the Configuration Cache, reserving blocks
in the Register File, and assigning neurons to PEs. Every
clock cycle, the control logic selects a transaction from
the Transaction Table using round robin arbitration. Control
logic then performs one of the following actions in order of
decreasing precedence:

1) Cache Response – If the control logic has received
a response from the Configuration Cache the control
logic updates the associated Transaction Table entry.

2) Register File Response – If the Register File responds
with an index to a reserved register, the control logic
updates the associated transaction.

3) Cache Check – If this is a new transaction, the control
logic doesn’t know if its NN configuration is in the
Configuration Cache. The control logic queries the
Configuration Cache to find out if it has the specific
NN configuration.

4) Cache Query – If the selected transaction needs new
layer information, the control logic queries the Config-
uration Cache.

5) Register File Request – If a layer needs registers to
be reserved, the control logic sends a request to the
Register File.

6) PE Allocation – The control logic allocates a free PE
to the next logical neuron of a chosen transaction.

DANA’s control logic repeats these operations so long as
there are valid entries in the Transaction Table.

IV. EVALUATION OF THE DANA ARCHITECTURE

We designed a parameterized, SystemVerilog version of
the dominant computational portions of X-FILES/DANA
hardware, specifically, a Transaction Table and DANA. We

Table III
NN CONFIGURATIONS FROM BENCHMARK APPLICATIONS USED TO EVALUATE A SUBSET OF POSSIBLE DANA ARCHITECTURES.

Area Application Configuration Size Description

ASC [24]

3sum 85× 16× 85 large Test if a multiset satisfies 3-subset-sum property
collatz 40× 16× 40 large Search for counterexamples to the Collatz conjecture
ll 144× 16× 144 large Compute energies of linked list of Ising spin systems
rsa 30× 30× 30 large Brute-force prime factorization

Approximate
Computing
[18]–[20]

blackscholes 6× 8× 8× 1 small Financial option pricing
fft 1× 4× 4× 2 small Fast Fourier Transform
inversek2j 2× 8× 2 small Inverse kinematics
jmeint 18× 16× 2 medium Triangle intersection detection
jpeg 64× 16× 64 large JPEG image compression
kmeans 6× 16× 16× 1 medium k-means clustering
sobel 9× 8× 1 small 3× 3 Sobel filter

Physics [32] edip 192× 16× 1 large EDIP approximation of DFT potential energy

excluded other X-FILES hardware components from this
evaluation due to their pass-through nature (Transaction
Queue and ASID–NNID Table Walker) or their small ar-
chitectural footprint (supervisor registers). We determined
this system’s power consumption and maximum operating
frequency with a 40nm GlobalFoundries process and Syn-
opsys standard cells using Cadence SOC Encounter. We
considered all memory blocks (IO Storage, Cache Storage,
and the Register File) as black box SRAMs and computed
their power with Cacti [33]. We evaluated the performance of
DANA using Modelsim, with clock periods corresponding
to the placed-and-routed design, when executing NN con-
figurations taken from application workloads found in the
literature (see Table III). We also provide a short comparison
with a pure-software implementation of large NNs running
on a simulated processor. We primarily focus on the evalua-
tion of the simultaneous multiprocessing components of our
architectural contributions (X-FILES arbiter and DANA) to
highlight how this architecture aligns with our envisioned
trend towards many processes wanting to access NN accel-
erator resources. Additionally, by designing an architecture
with multiprocessing in mind, we can improve the overall
throughput of the accelerator.

For our design space exploration, we varied the number of
PEs for block sizes of four and eight while measuring power
and performance. Each power data point was computed
using a separate run of our ASIC toolflow with different
DANA parameters. Other architectural parameters were held
constant at two Transaction Table entries, four Configuration
Cache entries, 32KB of cache storage per entry, and 64
total register elements. Table III shows a list of the NN
configurations, taken from recent MLP configurations used
in approximate computing [18]–[20], microprocessor state
prediction [24], and science [32] applications. Figure 10
shows the average power consumption for each point in the
DANA design space. The associated performance, quantified
as transaction processing time, is also shown.

Overall, the cache was the dominant contributor to the
total power for the design space that we investigated.
Power consumption grows approximately linearly as we
increase the number of PEs. This linearity, while somewhat
unexpected, can be explained due to the architecture. All
PEs share a dedicated communication bus where only one
PE can generate requests for data to other modules per
cycle. Consequently, adding PEs increases the total PE logic
linearly, but does not affect any other modules. The power
consumed by the Control Logic, Transaction Table, and
Register File is less than 10% of the total power due to
the small size of their storage arrays and the limited logic
footprint of these elements. When moving from four to eight
elements per block we see a mean speedup of 28% with an
included mean increase in clock period of 2%.

To demonstrate that DANA can efficiently process dis-
parate workloads and that the multiprocessing nature of
DANA is sound, we explore the throughput of DANA under
different application workloads. We define throughput as
the average number of NN edges (input–weight products)
computed per cycle for the duration of an application’s
runtime excluding IO and cache loading overheads. We only
count edges towards throughput as these are the only math-
ematically required operations (less activation functions) of
NN computation. We purposefully exclude architecturally-
dependent operations (e.g. PE queries of the Configuration
Cache) to provide a hard comparison against an ideal NN
accelerator not limited by architectural constraints.

Figure 11 shows the throughput when executing single-
application workloads from the NNs in Table III. The the-
oretical maximum throughput is approximately equal to the
number of PEs after considering processing overheads and
the cost of computing an activation function. Throughput ex-
pectedly varies with application and design space variations.
A dominant factor is the amount of independent work that
each PE can execute and how frequently it needs new data.
Independent work can be viewed as the number of incident

2 4 6 8 10
0

100

200

300

400

Number of Processing Elements

Po
w

er
(m

W
)

4 Elements per Block

2 4 6 8 10
0

100

200

300

400

Number of Processing Elements

Po
w

er
(m

W
)

8 Elements per Block

103

104

105

Pr
oc

es
si

ng
Ti

m
e

(n
s)

103

104

105

Pr
oc

es
si

ng
Ti

m
e

(n
s)

Processing Elements Cache Register File Transaction Table Control Logic

inversek2j fft sobel blackscholes jmeint kmeans collatz rsa jpeg edip 3sum ll

Figure 10. Average power per module (bar plot) and processing time (line plot) of different NN configurations, listed in Table III, when running exclusively
(i.e., one NN at a time) on DANA architectures with 1–11 processing elements and four or eight elements per block.

2 4 6 8 10
0

2

4

6

Number of Processing Elements

E
dg

es
pe

r
C

yc
le

4 Elements per Block

2 4 6 8 10
0

2

4

6

Number of Processing Elements

E
dg

es
pe

r
C

yc
le

8 Elements per Block

inversek2j fft sobel blackscholes jmeint kmeans collatz rsa jpeg edip 3sum ll

Figure 11. DANA’s throughput, measured in edges per cycle, when executing one instance of an NN transaction.

edges to each logical neuron and is a characteristic of NN
topology. For example, the wide difference in throughput
between edip and inversek2j is due to the amount of
work that each neuron must perform. Only considering the
hidden layer, each neuron in edip computes 192 input–
weight products while each inversek2j neuron only
performs two. The underlying topology of inversek2j
causes setup overhead—allocating a PE, having the PE
request neuron information from the Configuration Cache—
to be of similar duration to the actual computation and hence,
drive down throughput.

Increasing the block width can help amortize communi-
cation costs (as input or weight data requests will happen
less frequently) as evidenced by the increasing perfor-
mance and throughput of eight elements per block vs four.
However, block width does not help small networks like
inversek2j. Increasing the available bandwidth between
the PEs and the Register File/IO Storage and/or the Configu-
ration Cache does not help if it does not fetch more work for
a PE. Our current implementation only supports a single PE
data access per cycle, but this is not a fundamental limit
as all memories are dual-ported. Increasing the effective

2 4 6 8 10
0

2

4

6

Number of Processing Elements

E
dg

es
pe

r
C

yc
le

4 Elements per Block

2 4 6 8 10
0

2

4

6

Number of Processing Elements

E
dg

es
pe

r
C

yc
le

8 Elements per Block

fft-fft kmeans-fft kmeans-kmeans edip-fft edip-kmeans edip-edip

Figure 12. DANA’s throughput, measured in edges per cycle, when executing two workloads.

bandwidth beyond two accesses requires data replication,
memory overclocking, or grouping like PE requests together.

While we see dramatically different throughput for dif-
ferent applications, we postulate that the inefficiencies of
an NN like inversek2j can be amortized if running a
transaction with more computational work per neuron. To
test this, we evaluated DANA when running simultaneous
NN processing workloads for representative large (edip),
medium (kmeans), and small (fft) NNs. Results are
shown in the Figure 12. Running disparate workloads results
in a small loss in maximum individual throughput, e.g.,
running edip with fft yields a lower throughput than
just running edip alone. However, and critically, running
two instances of the same transaction results in throughput
speedups as high as 30% (for two edip transactions) and
6% on average. These results are shown in Figure 13.

In certain cases we do see a noticeable throughput de-
crease, specifically for the case of a DANA instance with
eight PEs running edip-kmeans with four elements per
block or edip-edip with eight elements per block. In both
of these tests, the first edip transaction starts slightly ahead
of the other transaction. The control logic’s round robin
arbitration allocates the output neuron of the first edip
transaction before all neurons in that transaction’s hidden
layer have finished. The long running nature of an edip
hidden neuron causes this output PE to sit idle while its
inputs from the hidden layer are computed. This throughput
slowdown is exacerbated by the fact that both edip and
kmeans have hidden layer sizes that are multiples of the
number of PEs causing them to run efficiently back to back.
Restricting PE allocation to only occur after all neurons in
the previous layer have finished remedies this problem.

Overall, these results indicate that exposing more than

Table IV
ENERGY, DELAY, AND EDP REDUCTIONS WHEN EXECUTING NNS ON

DANA COMPARED TO A PURELY SOFTWARE IMPLEMENTATION.

NN Energy Delay EDP

3sum 7× 95× 664×
collatz 8× 106× 826×
ll 6× 88× 569×
rsa 6× 88× 566×

one transaction to DANA allows better utilization of com-
putational resources. Conversely, an NN accelerator without
multithreading support must execute separate NN transac-
tions sequentially and cannot assign unused computational
resources to other transactions.

Finally, we evaluated the power–performance of our
DANA architecture compared to the FANN library running
on a single core (one Intel SCC core) using the gem5
simulator [34]. The only software optimization used is
FANN’s built in software pipelining. These results are shown
in Table IV. We estimate DANA–memory latency as 100ns
plus the time it takes DANA to read data blocks from a
clock crossing FIFO at its own clock rate. As expected,
our dedicated hardware implementation uses an order of
magnitude less energy and is two orders of magnitude
faster than a software implementation running on a general-
purpose processor.

In summary, these improvements indicate the soundness
of the DANA architecture and its ability to enable NN trans-
action multiprocessing. DANA’s throughput can be further
improved by increasing internal communication bandwidth,
allowing multiple PEs to be allocated per cycle, and improv-
ing PE allocation logic.

1 2 3 4 5 6 7 8 9 10 11
−20%

−10%

0%

10%

20%

30%

Number of Processing Elements

T
hr

ou
gh

pu
t

Sp
ee

du
p

4 Elements per Block

1 2 3 4 5 6 7 8 9 10 11
−20%

−10%

0%

10%

20%

30%

Number of Processing Elements

T
hr

ou
gh

pu
t

Sp
ee

du
p

8 Elements per Block

fft-fft kmeans-fft kmeans-kmeans edip-fft edip-kmeans edip-edip

Figure 13. DANA’s percentage throughput speedup when running two simultaneous transactions vs. the same transactions serially.

V. RELATED WORK

A. Accelerator Interfaces and Management

The work proposed in this paper does not define a
transport layer (like RoCC [25]–[27] or AXI [35]), but a
set of extensions that live on top of the transport layer. In
this respect, the X-FILES are related to similar extensions
or frameworks like HiPPAI [29] and ARC [30]. However,
the needs of HiPPAI and ARC are distinctly different from
the X-FILES. HiPPAI is strictly focused on reducing the
overheads associated with using hardware accelerators while

ARC is concerned with the management of a sea of similar
or dissimilar accelerators in a multicore system. In our
model, we deal with an accelerator which, due to the tempo-
ral locality of NN configuration information, has some ben-
efit being shared simultaneously between multiple threads
or cores as opposed to being shared in time. Furthermore,
the underlying accelerator architecture (as we demonstrate
with DANA) can benefit from running in a simultaneous
multiprocessing mode that increases the throughput of the
underlying resource. Similar to VEAL [36], we provide a
way of abstracting away the underlying hardware resources

from the world of a software developer. However, we provide
a complete description of access models involving register
and memory transfers to better enable the library writer or
hardware designer to choose the best interface mode on a
per-application basis.

B. Neural Network Accelerators

Much work has already been completed on the design
of dedicated hardware for acceleration of MLPs [18]–
[23] or other types of NNs, be they Convolutional Neural
Networks [5]–[9], Deep Belief Networks [10]–[12], Hier-
archical Model and X [13], or more biologically accurate
models [14]–[17]. We, however, propose what we believe
is the first instance of an NN accelerator architecture that
supports the simultaneous execution of multiple NNs. While
evaluated only on MLP workloads, the generic nature of
the architecture (that it processes arbitrary graphs described
by an NN configuration) makes it highly extensible to
other NN flavors like Convolutional Neural Networks and
Deep Belief Networks. We view DANA, and the clear
definition of the X-FILES, as an additional step towards
wide adoption of NN-like and machine learning computation
in everyday workloads through tight integration with modern
microprocessor architectures.

VI. CONCLUSION

We propose the X-FILES, a set of hardware/software
extensions for general machine learning computation, and
DANA, a new NN accelerator architecture that supports
simultaneous multiprocessing of NN transactions. The X-
FILES provide a generic way to describe and communicate
NN transactions to a shared NN accelerator resource. By
nature, the X-FILES expose multiple possible transactions
to a backend accelerator. Our new accelerator architecture,
DANA, takes advantage of this to simultaneously process
multiple NN transactions and improve its overall throughput.
While DANA was only evaluated on MLPs, the X-FILES
are independent of NN flavor and DANA can be modified
to support multiple NN types through planned extensions
for Convolutional Neural Networks, Deep Belief Networks,
and other NN types. Additionally, extensions to DANA
to provide core-assisted or hardware learning are antici-
pated. Furthermore, other uniprocessing or multiprocessing
accelerators aligning with our NN transaction model can
be interfaced and used with the X-FILES. We view this
work as an additional step, furthering that of others, towards
generalizing the way in which NN computation is described,
viewed, and managed by software, operating systems, and
underlying NN accelerator architectures.

ACKNOWLEDGMENT

We would like to thank Christopher Batten and Scott
Beamer for their timely, valuable feedback. We would also

like to thank the anonymous reviewers for their helpful com-
ments. This work was supported by a NASA Space Technol-
ogy Research Fellowship, the National Science Foundation
with a Graduate Research Fellowship under Fellow ID
2012116808, a Google Faculty Research Award, and a CA-
REER award under ID CNS-1254029 and CNS-1439069.

REFERENCES

[1] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column
deep neural networks for image classification,” in Proceedings
of Computer Vision and Pattern Recognition (CVPR), 2012,
pp. 3642–3649.

[2] Y. Kara, M. A. Boyacioglu, and Ö. K. Baykan, “Predicting
direction of stock price index movement using artificial neural
networks and support vector machines: The sample of the
istanbul stock exchange,” Expert Systems with Applications,
vol. 38, no. 5, pp. 5311–5319, 2011.

[3] D. A. Jiménez and C. Lin, “Neural methods for dynamic
branch prediction,” ACM Transactions on Computer Systems
(TOCS), vol. 20, no. 4, pp. 369–397, November 2002.

[4] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F.
O’Boyle et al., “Using machine learning to focus iterative
optimization,” in Proceedings of the International Symposium
on Code Generation and Optimization (GCO), 2006, pp. 295–
305.

[5] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1915–1929, 2013.

[6] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional
neural networks,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2010, pp.
247–257.

[7] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello, “Hardware accelerated convolutional neural
networks for synthetic vision systems,” in Proceedings of the
International Symposium on Circuits and Systems (ISCAS),
May 2010, pp. 257–260.

[8] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun, “Neuflow: A runtime reconfigurable dataflow
processor for vision,” in Conference on Computer Vision and
Pattern Recognition Workshops, June 2011, pp. 109–116.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen et al.,
“Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2014, pp. 269–284.

[10] S. K. Kim, L. McAfee, P. McMahon, and K. Olukotun, “A
highly scalable restricted boltzmann machine fpga implemen-
tation,” in Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), 2009, pp.
367–372.

[11] D. L. Ly and P. Chow, “High-performance reconfigurable
hardware architecture for restricted boltzmann machines.”
IEEE Transactions on Neural Networks, vol. 21, no. 11, pp.
1780–1792, Nov 2010.

[12] L.-W. Kim, S. Asaad, and R. Linsker, “A fully pipelined
fpga architecture of a factored restricted boltzmann
machine artificial neural network,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 7,
no. 1, pp. 5:1–5:23, 2014.

[13] M. S. Park, C. Zhang, M. DeBole, and S. Kestur, “Accel-
erators for biologically-inspired attention and recognition,”
in Proceedings of the Design Automation Conference (DAC),
2013, p. 135.

[14] J. Fieres, J. Schemmel, and K. Meier, “Realizing biological
spiking network models in a configurable wafer-scale hard-
ware system,” in International Joint Conference on Neural
Networks. IEEE, 2008, pp. 969–976.

[15] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras
et al., “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in International Joint Confer-
ence on Neural Networks. IEEE, 2008, pp. 2849–2856.

[16] J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye
et al., “A 45nm cmos neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons,” in
CICC, sept. 2011, pp. 1 –4.

[17] S. Kestur, M. S. Park, J. Sabarad, D. Dantara, V. Narayanan,
Y. Chen et al., “Emulating mammalian vision on
reconfigurable hardware,” in Proceedings of the International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2012, pp. 141–148.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Neural acceleration for general-purpose approximate
programs,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2012, pp. 449–460.

[19] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites,
H. Esmaeilzadeh, A. Hassibi et al., “General-purpose code
acceleration with limited-precision analog computation,” in
Proceeding of the International Symposium on Computer
Architecuture (ISCA), 2014, pp. 505–516.

[20] T. Moreau, M. Wyse, J. Nelson, A. Sampson,
H. Esmaeilzadeh, L. Ceze et al., “Snnap: Approximate
computing on programmable socs via neural acceleration,” in
Proceedings of the IEEE Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 603–614.

[21] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang,
“Memristor-based approximated computation,” in Proceed-
ings of the International Symposium on Low-Power Electron-
ics and Design (ISLPED), 2013.

[22] X. Liu, M. Mao, H. Li, Y. Chen, H. Jiang, J. J. Yang
et al., “A heterogeneous computing system with memristor-
based neuromorphic accelerators,” in Proceedings of the High
Performance Extreme Computing Conference (HPEC), 2014.

[23] S. Eldridge, F. Raudies, D. Zou, and A. Joshi, “Neural
network-based accelerators for transcendental function
approximation,” in Proceedings of the Great Lakes
Symposium on VLSI (GLSVLSI), 2014, pp. 169–174.

[24] A. Waterland, E. Angelino, R. P. Adams, J. Appavoo, and
M. Seltzer, “Asc: Automatically scalable computation,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2014, pp. 575–590.

[25] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis et al., “Chisel: Constructing hardware in a
scala embedded language,” in Proceedings of the Design
Automation Conference (DAC), 2012, pp. 1216–1225.

[26] H. Vo, Y. Lee, A. Waterman, and K. Asanović, “A case
for os-friendly hardware accelerators,” in Workshop on
the Interaction Between Operating System and Computer
Architecture, 2013.

[27] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović,
“The risc-v instruction set manual, volume i: User-level isa,
version 2.0,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014.

[28] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and
K. Asanović, “The risc-v instruction set manual volume
ii: Privileged architecture version 1.7,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2015-49, May 2015.

[29] P. M. Stillwell, V. Chadha, O. Tickoo, S. Zhang, R. Illikkal,
R. Iyer et al., “Hippai: High performance portable acceler-
ator interface for socs,” in Proceedings of the International
Conference on High Performance Computing (HiPC), 2009,
pp. 109–118.

[30] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Rein-
man, “Architecture support for accelerator-rich cmps,” in
Proceedings of the Design Automation Conference (DAC),
2012, pp. 843–849.

[31] S. Nissen, “Implementation of a fast artificial neural network
library (fann),” Department of Computer Science University
of Copenhagen (DIKU), Tech. Rep., 2003, http://fann.sf.net.

[32] J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov,
and S. Yip, “Interatomic potential for silicon defects
and disordered phases,” Physical Review B, vol. 58, pp.
2539–2550, Aug 1998.

[33] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated
cache timing, power, and area model,” Technical Report
2001/2, Compaq Computer Corporation, Tech. Rep., 2001.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu et al., “The gem5 simulator,” SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[35] “Amba axi protocol specification,” ARM, June 2003.

[36] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized
execution accelerator for loops,” in Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA), 2008,
pp. 389–400.

