

Tracing Earth's O2 evolution using Zn/Fe ratios in marine carbonates

The Harvard community has made this article openly available. <u>Please share</u> how this access benefits you. Your story matters

Citation	Liu, XM., L.C. Kah, A.H. Knoll, H. Cui, A.J. Kaufman, A. Shahar, and R.M. Hazen. 2015. Tracing Earth's O2 Evolution Using Zn/Fe Ratios in Marine Carbonates. Geochem. Persp. Let. 2, no. 1: 24–34. doi:10.7185/geochemlet.1603.
Published Version	doi:10.7185/geochemlet.1603
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:30367429
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP

Tracing Earth's O₂ evolution using Zn/Fe ratios in marine carbonates

Xiao-Ming Liu^{1,2*}, Linda C. Kah³, Andrew H. Knoll⁴, Huan Cui⁵,

Alan J. Kaufman⁵, Anat Shahar², and Robert M. Hazen²

- 1. Department of Geological Sciences, University of North Carolina, Chapel Hill, North Carolina, 27599 USA
- 2. Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA
- 3. Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- 5. Department of Geology, University of Maryland, College Park, Maryland 20742, USA

* Corresponding author:

Department of Geological Sciences University of North Carolina Chapel Hill, North Carolina, 27599 USA

> Tel: (919) 926-0675 Email: <u>xiaomliu@unc.edu</u>

Word count for the text is 3100; 3 Figures

1 Abstract

2 Through Earth history, atmospheric oxygen has increased from initial values near zero to its 3 present day level of about 21% by volume; concomitantly, changes in ocean redox conditions 4 have fundamentally altered global biogeochemical cycles. While there is a reasonable 5 understanding of where oxygen history begins and ends, the quantitative timetable of 6 oxygenation that links the endpoints has proven contentious. Equilibrium between marine 7 surface environments and the overlying atmosphere suggests that carbonate-based redox 8 proxies could refine paleoredox records in time and space. Here we explore the use of Zn/Fe 9 ratios to infer the evolution of atmospheric O₂ through time, based on marine carbonate 10 rocks that are well characterized in terms of depositional age, environmental setting, and 11 diagenetic history. While Fe and Zn in the shallow ocean is mainly sourced from 12 hydrothermal inputs, their redox sensitivities differ significantly, so that geological intervals 13 with higher O₂ would be characterized by stepped increases in Zn/Fe as preserved in shallow 14 marine carbonates. Therefore, Zn/Fe analyses of ancient carbonates allow us to constrain past atmospheric pO₂ levels, providing a secular record of atmospheric O₂ over the past 3.5 15 16 billion years. In particular, we corroborate an earlier proposal that for much of the 17 Proterozoic Eon, O₂ levels were as low as 0.1-1% of present atmospheric level. We conclude 18 that Zn/Fe in shallow marine carbonate rocks has potential to provide a quantitative tracer for 19 the long-term redox evolution of the oceans and the rise of atmospheric O_2 .

20

21

23 Introduction

24	Earth's O ₂ -rich atmosphere, unique among known planets, has played an essential
25	role in evolving feedbacks between life and environment. Atmospheric O_2 was extremely
26	low in the Archean Eon (>2.5 billion years ago), and while multiple lines of evidence suggest
27	that Earth's oxygenation was protracted (Kah and Bartley, 2011; Kah et al., 2004; Lyons et
28	al., 2014; Planavsky et al., 2014), pO ₂ may have risen abruptly at two different points in
29	time: first during the "Great Oxygenation Event" (GOE) at ~2.4 billion years (Ga) (Canfield,
30	2005; Farquhar et al., 2011; Guo et al., 2009; Holland, 2006), when atmospheric O_2 rose
31	from <0.001% to an intermediate value commonly estimated as 1 to 10% of the current level
32	(Farquhar et al., 2000; Pavlov and Kasting, 2002), and again during a "Neoproterozoic
33	Oxygenation Event" (NOE) at ~800 to 542 million years ago (Canfield and Teske, 1996;
34	Fike et al., 2006; Frei et al., 2009; Och and Shields-Zhou, 2012). The latter transition may
35	well have continued into the Phanerozoic Eon, eventually resulting in near-present O_2
36	(Berner, 2006; Dahl et al., 2010; Sperling et al., 2015).
37	Redox-sensitive major and trace elements in iron formations and black shales
38	deposited beneath euxinic waters have been developed as proxies to reconstruct
39	paleoenvironmental history in deep time (Konhauser et al., 2009; Sahoo et al., 2012; Scott et
40	al., 2008). The paucity of these facies in many Proterozoic successions, however, limits the
41	continuity of current reconstructions of Earth's oxygenation. Here we provide evidence for
42	the hypothesis that carbonate-based redox proxies can provide an independent estimate of
43	past pO_2 , expanding the paleo-redox record in time and space (Hardisty et al., 2014).
44	Limestone and penecontemporaneous dolomites that retain depositional signatures well
45	(Wilson et al., 2010) are abundant in the geologic record, typically recording shallow marine

46 environments that would have been in open communication with the overlying atmosphere.

47 Paleoenvironmental research on carbonate rocks commonly focuses on individual

48 stratigraphic successions; here we adopt a complementary strategy, analyzing a large suite of

49 Phanerozoic, Proterozoic, and Archean samples that enables us to make statistical statements

50 (Sperling et al., 2015) about Zn/Fe in the global surface ocean through geologic time. More

51 importantly, we develop a new tool to provide quantitative constraints on atmospheric pO_2

52 through Earth history.

In the modern ocean, zinc input from hydrothermal ridge systems (~4.4 \times 10⁹ 53 mol/year) is an order of magnitude greater than riverine fluxes (~ 3.4×10^8 mol/year) 54 55 (Robbins et al., 2013). As an essential nutrient in many phytoplankton enzymes, especially 56 those of eukaryotes (Williams and da Silva, 1996), zinc plays an important role in marine 57 primary production, and for this reason, Zn is depleted in surface waters relative to the deep 58 sea (Morel and Price, 2003). Zn concentrations in euxinic black shale and iron formations 59 (Robbins et al., 2013; Scott et al., 2013), however, suggest that the bioavailability of Zn has not changed dramatically through Earth history. The Fe budget is similar to that of Zn, 60 61 wherein hydrothermal input dominates over riverine fluxes by a factor of ~ 9 (Wheat et al., 62 2002)(Wheat et al., 2002)(et al., 2002). Under sulphidic conditions, dissolved Zn^{2+} and Fe^{2+} behave similarly and are 63 64 rapidly precipitated as sulphides (Morse and Luther III, 1999). In addition, because both Fe 65 and Zn behave as incompatible elements during mantle partial melting, Zn/Fe has been 66 developed as a tracer of mantle redox, revealing that the oxygen fugacity of the upper mantle 67 has remained relatively constant through Earth history (Lee et al., 2010). In the following 68 discussion, we assume that Zn/Fe in hydrothermal inputs into the ocean have not changed significantly through time. We recognize, however, that a number of factors could limit thisassumption, and consider these below.

Zn/Fe in the sedimentary record thus has the potential to document Earth surface redox evolution if we consider the following assumptions: 1) Zn and Fe budgets in oceans are dominated by hydrothermal inputs and are therefore not significantly influenced by secular evolution of continental inputs; 2) Fe^{2+} and Zn^{2+} have similar solubility in oceans; 3) the partition coefficient of Zn/Fe ratios into carbonates have remained the same through time; and 4) when Fe^{2+} is oxidized to Fe^{3+} , it precipitates from seawater and thus is not incorporated into carbonate; zinc, however, remains divalent as Zn^{2+} .

78 Methods

and REE concentrations were determined with a Thermo 79 Major, trace, Scientific[®] iCAP-Q ICP-MS (Inductively Coupled Plasma – Mass Spectrometry) at the 80 81 Carnegie Institution of Washington. Approximately 5 to 10 mg of micro-drilled sample 82 powders were weighed and dissolved in 2 ml distilled 0.4 M HNO₃ and reacted for 12 hours. 83 The resulting solutions were centrifuged for 5 minutes at ~6000 rps and 1 ml of the 84 supernatant was pipetted and diluted with distilled 4 ml 0.4 M HNO₃ for elemental analysis. 85 Calibration curves were created using multi-elemental standards with different dilution made 86 from pure element solutions (Alfa Aesar®). Both standard and sample solutions were doped 87 with 4 ppb In to correct for instrumental drift. Precision of the analyses was determined by 88 repeated analyses of an in-house carbonate standard, and was typically better than 5% (2σ) 89 for major elements, and better than 10% (2σ) for most trace elements including rare earth

90 elements (REEs). Accuracy of the analyses was determined by replicates of an international
91 coral standard (JCp-1), as shown in Fig. S1.

92 **Results and discussion**

93 Here, we report Zn/Fe molar ratios in marine carbonate rock through Earth history 94 (Fig. 1) and provide a quantification of atmospheric O_2 evolution since the Mesoarchean Era. 95 Samples (n = 1700) come from our analyses (n = 300), as well as a literature compilation 96 (see Table S1). In all carbonate samples, the potential for diagenetic alteration is of concern. 97 To evaluate the degree of sample alteration, we selected specimens with known 98 sedimentological and stratigraphic context and investigated their petrography and elemental 99 and isotope geochemistry. Samples used in this study were primarily composed of fine-100 grained limestone and penecontemporaenous, fabric-retentive dolostone, including both 101 micrites and stromatolites. We micro-sampled carbonate specimens from polished billets to 102 avoid weathering alteration, secondary veins/precipitation, and areas with visible non-103 carbonate phases. In addition to geological and petrographic criteria, we further selected samples based on primary isotopic and trace element patterns (see SI 2). 104

Even if we carefully select the most primary samples, we cannot ignore diagenetic influences on the elemental composition of sampled carbonates, as this can contribute to local variation of Zn/Fe (Fig. 1). Both Zn and Fe partition coefficient (K_d) from fluid to carbonates increase with increasing diagenesis as shown by earlier work of Brand and Veizer (1980). Also, K_d (Fe) increases faster compared to K_d (Zn), from 1 to 20 and from 5.2 to 5.5 for Fe and Zn, respectively. According to this work, diagenesis will cause decrease in Zn/Fe ratios by incorporating more Fe than Zn in carbonates. We acknowledge that all of the

112 carbonates examined here have undergone some degree of burial diagenesis, and this will be 113 reflected in the variance of Zn/Fe within individual time intervals. Also, local primary 114 production differences may contribute to Zn/Fe variability of different formations from the 115 same interval. In the modern oxidized shallow ocean, particulate Fe sourced from eroding 116 continents remains biogeochemically labile and may be cycled back to a dissolved phase 117 during diagenesis in reducing continental margin sediments (Raiswell et al., 2006). Therefore, 118 there is also a potentially large and variable source of reactive Fe to shallow marine settings 119 that is decoupled from the Zn flux, which likely cause Zn/Fe ratios to be lower and therefore 120 could contribute to the variations observed in Zn/Fe data. In addition, theoretical calculations 121 suggest that kinetic effects on trace element partitioning in carbonate may contribute to 122 Zn/Fe variability in samples from the same locality (DePaolo, 2011; Watson, 2004). 123 Importantly, however, these influences should not result in systematic variations that would 124 contribute to observed first-order secular changes. We plot all carbonate samples based on 125 their lithology in Fig. S2; this shows that there is no systematic difference between limestone 126 and dolomite samples through time -- not unexpected, as many Proterozoic dolomites formed 127 penecontemporaneously and preserve geochemical signatures as well as coeval limestones 128 that underwent neomorphism during burial.

We observe a distinct trend of increasing Zn/Fe through time (Fig. 1), especially around the GOE and NOE. Our Paleoproterozoic data are also consistent with earlier suggestions that pO_2 may have risen substantially during the GOE and then declined again to persistent Proterozoic values (Lyons et al., 2014). Employing three statistically complementary approaches (see details in SI 3), carbonate Zn/Fe could follow "step" or "smooth" fits through Earth's history (Figs. S3, 4, & 5), where we prefer the "step" approach with lognormal distributions (see Fig. 2 and SI 3). Using lognormal distributions to estimate Zn/Fe through time, we can provide quantitative constraints on Earth's atmospheric O_2 evolution, as follows.

138 From the chemical reaction of Fe oxidization from
$$Fe^{2+}$$
 to Fe^{3+} :

139
$$4Fe^{2+} (aq) + O_2 (aq) + 10H_2O (aq) = 4Fe(OH)_3 (s) + 8H^+ (aq),$$

140
$$K = \frac{a_{(H^+)}^8}{a_{(H_2O)}^{10} \times a_{(Fe^{2+})}^4 \times a_{(O_2)}}$$
[1],

141 where K is the equilibrium constant and α is activity. In this equation, we assume that when Fe²⁺ oxidizes to Fe³⁺ and is precipitated from the aqueous system as iron hydroxide, only 142 Fe²⁺ gets incorporated into carbonates. We are aware that secular variations in seawater 143 144 sulfate might modulate hydrothermal iron fluxes through time via the formation of iron 145 sulfides (Kump and Seyfried, 2005), we do not know the extent to which Zn abundances 146 might similarly be buffered and so do consider this in our first-order model. Assuming O₂ equilibrium between atmosphere and surface ocean on hundred million year time scales, we 147 can write the equation using atmospheric oxygen fugacity, $f_{(0_2)}$, as 148

149
$$\log K = 4\log \frac{1}{a_{(Fe^{2+})}} - \log f_{(O_2)} + \log \frac{a_{(H^+)}^8}{a_{(H_2O)}^{10}}$$
[2],

150 if we assume the Zn concentrations in seawater and partitioning of Zn/Fe from seawater to 151 carbonate minerals are constant over Earth history. Therefore, we can write the equation 152 normalized to Zn^{2+} as

153
$$logK = 4loga^{P}_{(Zn^{2+}/Fe^{2+})} - log f^{P}_{(O_{2})} + log \frac{a^{8}_{(H^{+})}}{a^{10}_{(H_{2}O)}}$$

154
$$\log K = 4\log a^{M}_{(Zn^{2+}/Fe^{2+})} - \log f^{M}_{(O_2)} + \log \frac{a^{8}_{(H^+)}}{a^{10}_{(H_2O)}}$$
[3],

155 in which superscripts P and M indicate the past and modern parameters. Assuming pH and K 156 are constant (see SI 4), we can simplify the relationship between Fe/Zn ratios and $f_{(O_2)}$, as 157 $f_{(O_2)}^P = r^4 \cdot f_{(O_2)}^M$ [4], where $f_{(O_2)}^P$ is the oxygen fugacity in the past (any time in Earth's 158 history), $f_{(O_2)}^M$ is the oxygen fugacity in modern time, and

159
$$r = \frac{\left(\frac{Zn^{2+}/Fe^{2+}\right)^{P}}{(Zn^{2+}/Fe^{2+})^{M}}$$
 [5],

160 provides Zn/Fe ratios in past carbonate normalized to modern values. If we assume that 161 atmospheric O_2 is in equilibrium with the shallow marine environment, and that we know the current atmospheric $P_{(0_2)}$ (0.21) and the modern seawater Zn/Fe ratios as reflected in Zn/Fe 162 ratios of marine carbonates, we can use Zn/Fe to calculate $f_{(O_2)}$ at any given time of Earth 163 history (Fig. 3). This $f_{(O_2)}$ curve provides a more continuous coverage of atmospheric O₂ 164 165 levels compared to compilations derived from multiple geochemical tracers, such as mass-166 independent S isotopes and paleosol records (Catling and Claire, 2005; Rye and Holland, 167 1998).

The $log f_{(O_2)}$ curve in Fig. 3 reproduces what we think we know about oxygen history: estimated pO₂ is extremely low in the Archean and reaches modern levels only in the mid-Paleozoic Era. Moreover, the estimates match our current understanding (Lyons et al., 2014) of a general two-step increase of atmospheric O₂ around the GOE and the NOE. Importantly, our study provides an estimate of the upper and lower bounds on pO₂ in the mid-Proterozoic atmosphere, with a preferred value between 0.1 and 1% PAL. This value is substantially lower than traditional estimates based on paleosol work (Canfield, 1998; Rye and Holland,

175 1998), but consistent with recent estimates based on an independent tracer, a kinetic model 176 for Cr-Mn oxidation and Cr isotopes in ironstones (Planavsky et al., 2014). We conducted 177 sensitivity tests of temperature and pH variations on our pO₂ estimates and found that the 178 influence of temperature is negligible. pH, however, could potentially lower pO₂ estimates, 179 especially for earlier samples when pCO_2 was high (see SI 4 for details); thus, our estimates 180 of Proterozoic pO_2 should be considered conservative and may overestimate past oxygen 181 levels. There are hints of biologically interesting structure in the Neoproterozoic and 182 Cambrian records, but at present our sample numbers and bin sizes are too small to address 183 this in detail. As more carbonate data become available for key transitional time periods such 184 as those around GOE and NOE, potentially complex secular patterns of redox change may 185 become clearer. Further investigations on well-constrained modern and Phanerozoic marine 186 carbonates are currently underway to evaluate with more quantitative rigor the potential 187 effects of diagenesis, mineralogy, and ocean depth gradients distributions on the proxy 188 proposed here.

189 Conclusion

In summary, we have demonstrated the potential for using divalent cations in carbonates as sensitive proxies for the evolution of Earth's near surface environment. Because many marine carbonate rocks were deposited in shallow marine environments, in direct contact with the atmosphere, elemental ratios are likely to reflect equilibrium atmospheric conditions extending back to the Archean Eon and including time intervals poorly represented by other lithologies. Although further work will be needed to fully validate this promising paleo-redox proxy, carbonate-based redox proxies show great

- 197 potential to expand the paleoredox record and to provide self-consistent and quantitative
- 198 constraints on atmospheric O_2 through Earth's history.

199 Figure Captions

200

Figure 1. Zn/Fe molar ratios versus time for individual carbonate analyses. The figure
contains ~1700 measurements of Zn/Fe data, including literature data (blue), and our 300
new analyses (orange).

204

Figure 2. Zn/Fe molar ratio versus time for carbonates, averaged by formation. Formation averages (orange diamonds) were calculated based on simple arithmetic mean of samples within the same formation. Median (orange) and mean from lognormal distribution (blue) lines were calculated based on all samples from the designated time intervals. Estimated Zn/Fe ratio curve through Earth's history. Uncertainties (light blue fields) are estimated based on one standard deviation from the lognormal distribution.

Figure 3. Estimated atmospheric $f_{(O_2)}$ through Earth's history. The orange line indicates the best estimate (mean values from lognormal distribution) from carbonate Zn/Fe ratios from this study (yellow fields show the upper and lower range of estimated O₂, which is calculated based on one sigma of lognormal distributions). The blue field indicates semi-quantitative interpretation from current understanding of the atmospheric O₂ curve (modified from Lyons et al. (2014)).

222 Figure 2.

224 Figure 3.

References

226	Berner, R.A., 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O ₂
227	and CO_2 . Geochimica et Cosmochimica Acta, 70(23): 5653-5664.
228	Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system;
229	1, Trace elements. Journal of Sedimentary Research, 50(4): 1219-1236.
230	Canfield, D.E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396(6710):
231	450-453.
232	Canfield, D.E., 2005. The early history of atmospheric oxygen: Homage to Robert A.
233	Garrels. Annual Review of Earth and Planetary Sciences, 33: 1-36.
234	Canfield, D.E., Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen
235	concentration inferred from phylogenetic and sulphur-isotope studies. Nature,
236	382(6587): 127-132.
237	Catling, D.C., Claire, M.W., 2005. How Earth's atmosphere evolved to an oxic state: A
238	status report. Earth and Planetary Science Letters, 237(1–2): 1-20.
239	Dahl, T.W. et al., 2010. Devonian rise in atmospheric oxygen correlated to the radiations
240	of terrestrial plants and large predatory fish. Proceedings of the National
241	Academy of Sciences of the United States of America, 107(42): 17911-17915.
242	DePaolo, D.J., 2011. Surface kinetic model for isotopic and trace element fractionation
243	during precipitation of calcite from aqueous solutions. Geochimica et
244	Cosmochimica Acta, 75(4): 1039-1056.
245	Farquhar, J., Bao, H.M., Thiemens, M., 2000. Atmospheric influence of Earth's earliest
246	sulfur cycle. Science, 289(5480): 756-758.
247	Farquhar, J., Zerkle, A., Bekker, A., 2011. Geological constraints on the origin of oxygenic
248	photosynthesis. Photosynthesis Research, 107(1): 11-36.
249	Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the Ediacaran
250	Ocean. Nature, 444(7120): 744-747.
251	Frei, R., Gaucher, C., Poulton, S.W., Canfield, D.E., 2009. Fluctuations in Precambrian
252	atmospheric oxygenation recorded by chromium isotopes. Nature, 461(7261):
253	250-U125.
254	Guo, Q.J. et al., 2009. Reconstructing Earth's surface oxidation across the Archean-
255	Proterozoic transition. Geology, 37(5): 399-402.
256	Hardisty, D.S. et al., 2014. An iodine record of Paleoproterozoic surface ocean
257	oxygenation. Geology.
258	Holland, H.D., 2006. The oxygenation of the atmosphere and oceans. Philosophical
259	Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915.
260	Kah, L.C., Bartley, J.K., 2011. Protracted oxygenation of the Proterozoic biosphere.
261	International Geology Review, 53(11-12): 1424-1442.
262	Kah, L.C., Lyons, T.W., Frank, T.D., 2004. Low marine sulphate and protracted
263	oxygenation of the proterozoic biosphere. Nature, 431(7010): 834-838.
264	Konhauser, K.O. et al., 2009. Oceanic nickel depletion and a methanogen famine before
265	the Great Oxidation Event. Nature, 458(7239): 750-753.
266	Lee, C.T.A. et al., 2010. The redox state of arc mantle using Zn/Fe systematics. Nature,
267	468(7324): 681-685.
268	Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The rise of oxygen in Earth's early
269	ocean and atmosphere. Nature, 506(7488): 307-315.

270	Morel, F.M.M., Price, N.M., 2003. The Biogeochemical Cycles of Trace Metals in the
271	Oceans. Science, 300(5621): 944-947.
272	Morse, J.W., Luther III, G.W., 1999. Chemical influences on trace metal-sulfide
273	interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19–20):
274	3373-3378.
275	Och, L.M., Shields-Zhou, G.A., 2012. The Neoproterozoic oxygenation event:
276	Environmental perturbations and biogeochemical cycling. Earth-Science
277	Reviews, 110(1–4): 26-57.
278	Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes in
279	Archean sediments: Strong evidence for an anoxic Archean atmosphere.
280	Astrobiology, 2(1): 27-41.
281	Planavsky, N.J. et al., 2014. Low Mid-Proterozoic atmospheric oxygen levels and the
282	delayed rise of animals. Science, 346(6209): 635-638.
283	Raiswell, R. et al., 2006. Contributions from glacially derived sediment to the global iron
284	(oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica et
285	Cosmochimica Acta, 70(11): 2765-2780.
286	Robbins, L.J. et al., 2013. Authigenic iron oxide proxies for marine zinc over geological
287	time and implications for eukaryotic metallome evolution. Geobiology, 11(4):
288	295-306.
289	Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: A
290	critical review. American Journal of Science, 298(8): 621-672.
291	Sahoo, S.K. et al., 2012. Ocean oxygenation in the wake of the Marinoan glaciation.
292	Nature, 489(7417): 546-549.
293	Scott, C. et al., 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,
294	452(7186): 456-U5.
295	Scott, C. et al., 2013. Bioavailability of zinc in marine systems through time. Nature
296	Geoscience, 6(2): 125-128.
297	Sperling, E.A. et al., 2015. The global record of iron geochemical data from Proterozoic
298	through Paleozoic basins. Nature in revision.
299	Watson, E.B., 2004. A conceptual model for near-surface kinetic controls on the trace-
300	element and stable isotope composition of abiogenic calcite crystals. Geochimica
301	et Cosmochimica Acta, 68(7): 1473-1488.
302	Wheat, C.G., Mottl, M.J., Rudnicki, M., 2002. Trace element and REE composition of a
303	low-temperature ridge-flank hydrothermal spring. Geochimica et Cosmochimica
304	Acta, 66(21): 3693-3705.
305	Williams, R.J.P., da Silva, J.J.R.F., 1996. The natural selection of the chemical elements.
306	Great Britian, Bath Press Ltd.
307	Wilson, J.P. et al., 2010. Geobiology of the late Paleoproterozoic Duck Creek Formation,
308	Western Australia. Precambrian Research, 179(1-4): 135-149.
309	
210	

312 Acknowledgements

313	We are grateful to T. Mock for assistance with the Q-ICP-MS analyses, and M. Horan
314	for help in the clean lab. We thank Mahrnaz Siahy and Axel Hofmann for providing the
315	Pongola samples. We are grateful to M. Van Kranendonk for sampling help in Western
316	Australia and M. Evans, J. Hao, T. Lyons, D. Sverjensky and J. Veizer for discussions. We
317	thank anonymous reviewers and executive editor Eric Oelkers for their constructive
318	comments. The Alfred P. Sloan Foundation, the Deep Carbon Observatory, the National
319	Science Foundation, the NASA Astrobiology Institute, and the Carnegie Institution of
320	Washington provided financial support to RMH and X-ML. AHK thanks the NASA
321	Astrobiology Institute.
322	
323	Author Contributions
324	X-ML and RMH designed the project with inputs from all authors. X-ML performed the
325	chemical analyses. X-ML wrote the manuscript with inputs from all authors. LK, AHK, HC,
326	AJK, and RMH provided samples.
327	
328	Competing financial interests

329 The authors declare no competing financial interests.

135 Figure Captions

136

Figure 1. Zn/Fe molar ratios versus time for individual carbonate analyses. The figure
contains ~1700 measurements of Zn/Fe data, including literature data (blue), and our 320
new analyses (orange).

140

Figure 2. Zn/Fe molar ratio versus time for carbonates averaged by formation. Formation averages (orange diamonds) were calculated based on simple arithmetic mean of samples within the same formation. Median (orange) and mean from lognormal distribution (blue) lines were calculated based on all samples from the designated time periods. Estimated Zn/Fe ratio curve through Earth's history. Uncertainties (yellow fields) are estimated based on one standard deviation from the lognormal distribution.

147

Figure 3. Estimated atmospheric $f_{(0_2)}$ through Earth's history. The orange line indicates the best estimate (mean values from lognormal distribution) from carbonate Zn/Fe ratios from this study (yellow fields show the upper and lower range of estimated O₂, which is calculated based on one sigma of lognormal distributions). The blue field indicates semi-quantitative interpretation from current understanding of the atmospheric O₂ curve (modified from Lyons et al. (2014)).

159 Figure 2.

161 Figure 3.

Supplementary Information

SI 1. Tables

Table S1. Zn/Fe ratios with sample name and age information from this study.

~	<i>a</i>	Age	Zn/Fe	
Geologic Unit	Sample #	(Ma)	*10*	Reference
Strelley Pool Fm, Warrawoona Group, Pilbara,	DUO	2400	0.0	
Western Australia	BH2	3400	0.9	Hazen collection
Strelley Pool Fm, warrawoona Group, Pilbara,	D112	2400	176	User collection
Stralley Deal Em Warrawaana Group Dilhara	рцэ	5400	17.0	Hazen conection
Western Australia	BH7	3400	53	Hazan collection
Coloita filling in Mt. Ada basalt		3400	J.J 1 5	Hazan collection
Carche Inning in Mt. Add basalt	Dillo Pol	2050	1.5	Roukes and Lowe 1080
Pongola Em. South Africa		2930	10.1	Boukes and Lowe 1989
Pongola Em. South Africa	Po2	2930	45.9	Boukes and Lowe 1989
Pongola Em. South Africa	P03	2930	4.J 6.4	Boukes and Lowe 1989
Pongola Em. South Africa	P 04	2930	5.0	Boukes and Lowe 1989
Pongola Em. South Africa	Po6	2930	J.9 7 Q	Boukes and Lowe 1989
Pongola Em. South Africa	P00 Po7	2930	7.0 5.9	Boukes and Lowe 1989
Pongola Em. South Africa	Po8	2930	J.0	Boukes and Lowe 1989
Pongola Fm, South Africa	Po0	2930	4.0	Boukes and Lowe 1989
Pongola Fm, South Africa	Po10	2930	J.0 1 Q	Boukes and Lowe 1989
Tumbiana Em. Fortesua Group, Western	FOID	2930	4.0	Beukes and Lowe 1989
Australia	BH10	2700	65	Hazen collection
Tumbiana Em Fortesue Group Western	DIIIO	2700	0.5	Hazen concetion
Australia	BH12	2700	24.6	Hazen collection
Tumbiana Fm. Fortesue Group, Western	2	2,00		
Australia	BH13	2700	8.9	Hazen collection
Tumbiana Fm, Fortesue Group, Western				
Australia	BH14	2700	8.0	Hazen collection
Tumbiana Fm, Fortesue Group, Western				
Australia	BH15	2700	2.8	Hazen collection
Tumbiana Fm, Fortesue Group, Western				
Australia	BH16	2700	3.4	Hazen collection
Kazput Fm, Turee Creek, Australia	AN94	2350	7.6	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN95	2350	8.4	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN96	2350	9.9	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN97	2350	7.7	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN98	2350	8.2	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN99	2350	5.2	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN100	2350	7.8	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN101	2350	10.4	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN102	2350	11.5	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN103	2350	13.1	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN104	2350	23.0	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	AN105	2350	23.5	Knoll et al. unpublished
Kazput Fm, Turee Creek, Australia	BH19	2350	8.5	Hazen collection
Duck Creek, Australia	AN80	1835	53.0	Wilson et al. 2010
Duck Creek, Australia	AN82	1835	8.0	Wilson et al. 2010
Duck Creek, Australia	AN83	1835	36.6	Wilson et al. 2010

Duck Creek, Australia	AN84	1835	53.0	Wilson et al. 2010
Duck Creek, Australia	AN85	1835	26.5	Wilson et al. 2010
Duck Creek, Australia	AN86	1835	16.2	Wilson et al. 2010
Duck Creek, Australia	AN87	1835	27.6	Wilson et al. 2010
Duck Creek, Australia	AN88	1835	6.2	Wilson et al. 2010
Vempalle Fm, Cuddapah Basin, India	V-SC/1	1750	8.5	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-SC/2	1750	4.8	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-SC/3	1750	5.3	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-SC/5	1750	10.6	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-SC/6-1	1750	6.8	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-P2/1	1750	5.5	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-P8/1	1750	12.2	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-P10/1	1750	7.5	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-P11/1	1750	6.9	Chakrabarti et al. 2013
Vempalle Fm, Cuddapah Basin, India	V-P12/1	1750	6.1	Chakrabarti et al. 2013
Kyrpy Group, East European Platform, Southern				
Urals, Russia	C133-3252.3	1350	17.8	Kah et al. 2007
Kyrpy Group, East European Platform, Southern				
Urals, Russia	C133-3253.3	1350	12.8	Kah et al. 2007
Kyrpy Group, East European Platform, Southern				
Urals, Russia	C133-3038	1350	9.5	Kah et al. 2007
Kyrpy Group, East European Platform, Southern				
Urals, Russia	C133-2767.5	1350	27.7	Kah et al. 2007
Kyrpy Group, East European Platform, Southern				
Urals, Russia	C133-3114.5	1350	20.1	Kah et al. 2007
Kyrpy Group, East European Platform, Southern		1050		
Urals, Russia	C203-3852A	1350	24.4	Kah et al. 2007
Kyrpy Group, East European Platform, Southern	G202 2450 0	1050	10.0	X 1 1 2007
Urals, Russia	C203-2459.8	1350	10.0	Kah et al. 2007
Kyrpy Group, East European Platform, Southern	C202 2450 C 1	1250	10.1	Kab et al. 2007
Urais, Russia	C203-2459.6-1	1350	18.1	Kan et al. 2007
Lizels Pussio	C203 2353	1350	20.0	Kab at al. 2007
Sulky Em Dismal Lakas Canada	DI 1 364 1	1300	20.9	Kall et al. 2007 Kab at al. 2006
Sulky Em Dismal Lakes, Canada	DL1-304-1	1300	28.0	Kah et al. 2006
Sulky Em Dismal Lakes, Canada	DL1-300-1	1300	28.0	Kah et al. 2006
Sulky Fm, Dismai Lakes, Canada	DL1-332	1200	22.4	Kall et al. 2006
Sulky Em Dismal Lakes, Canada	SL10-1-1 SL 17 10 1	1200	2.7	Kall et al. 2000
Auguan Em. Southern Urals, Dussia	$M1(\sqrt{7})$ 20	1150	4.5	Rall et al. 2000 Portloy et al. 2007
Avzyan Fill, Southern Urals, Russia	M1(AZ)-39 M1(AZ)/47	1150	217	Bartley et al. 2007
Avzyali Fili, Southern Urals, Russia	$\frac{MI}{AZ} = 47$	1150	00	Bartley et al. 2007
Avzyan Fin, Southern Urals, Russia	KV(AZ)-13 DV(AZ)-22	1150	0.0	Bartley et al. 2007
Avzyan Fin, Southern Urals, Russia	KV(AZ)-33	1150	15.8	Bartley et al. 2007
Avzyali Fili, Southern Urals, Russia	KI(AZ)-49.3	1150	17.0	Dartley et al. 2007
Avzyan Fm, Southern Urals, Russia	KI(AZ)-131.0	1150	3.0 7.0	Bartley et al. 2007
Avzyan Fm, Southern Urals, Russia	KI(AZ)-230-1	1150	7.0	Bartley et al. 2007
Avzyan Fm, Southern Urais, Russia	KI(AZ)-3/3.5	1150	8.0	Bartley et al. 2007
El Mreiti, Atar Group, West Africa	F4-10-1	1100	42.0	Gilleaudeau and Kan 2013
El Mreiti, Atar Group, West Africa	F4-19-1	1100	1/./	Gilleaudeau and Kah 2013
El Muriti Atar Group, West Africa	г4-50-1 Б4-52-1	1100	13.9	Gillere de la Kan 2013
El Miretti, Atar Group, West Africa	г4-55-1 Г4-00-1	1100	10.4	Gilleaudeau and Kan 2013
El Mireiti, Atar Group, West Africa	F4-90-1	1100	1/.8	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-95-1	1100	11.9	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-98-1	1100	17.7	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-99-1	1100	39.6	Gilleaudeau and Kah 2013

	E4 100 1	1100	20.0	
El Mreiti, Atar Group, West Africa	F4-102-1	1100	20.0	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-104-1	1100	8.6	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-106-1	1100	11.4	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-107-1	1100	13.0	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-108-1	1100	6.8	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-109-1	1100	6.1	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-113-1	1100	13.1	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-114-1	1100	7.2	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-115-1	1100	7.8	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-116-1	1100	7.8	Gilleaudeau and Kah 2013
El Mreiti, Atar Group, West Africa	F4-117-1	1100	7.9	Gilleaudeau and Kah 2013
Atar Group, West Africa	ATS-31	1100	14.8	Kah et al. 2012
Atar Group, West Africa	ATS-53	1100	92.9	Kah et al. 2012
Atar Group, West Africa	ATS-61	1100	16.5	Kah et al. 2012
Atar Group, West Africa	ATS-5-1	1100	13.8	Kah et al. 2012
Atar Group, West Africa	ATS-119	1100	11.6	Kah et al. 2012
Atar Group, West Africa	ATS-154	1100	12.8	Kah et al. 2012
Atar Group, West Africa	ATD-17	1100	18.4	Kah et al. 2012
Atar Group, West Africa	ATD-61	1100	18.2	Kah et al. 2012
Atar Group, West Africa	ATL-51-1	1100	9.3	Kah et al. 2012
Atar Group, West Africa	ATL-58	1100	66.2	Kah et al. 2012
Atar Group, West Africa	ATL-68	1100	4.9	Kah et al. 2012
Atar Group, West Africa	ATL-105	1100	19.3	Kah et al. 2012
Atar Group, West Africa	ATL-110-1	1100	6.3	Kah et al. 2012
Atar Group, West Africa	ATD-27.5	1100	12.3	Kah et al. 2012
Atar Group, West Africa	ATD-45	1100	18.4	Kah et al. 2012
Atar Group, West Africa	R1-Δ-1	1100	16.4	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-7	1100	25.5	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-13	1100	14.9	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-25	1100	12.7	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-29	1100	12.0	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-30	1100	10.3	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-31	1100	5.8	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-38	1100	12.2	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-39	1100	6.5	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-41	1100	9.6	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-42	1100	6.7	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-48	1100	8.1	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-54-1	1100	9.6	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-55	1100	7.1	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-58	1100	7.6	Manning-Berg and Kah in prep
Atar Group. West Africa	R1-Δ-60	1100	4.7	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-61	1100	4.6	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-65	1100	9.9	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-68-1	1100	18.3	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-A-72	1100	6.6	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-76	1100	12.4	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Λ-79-1	1100	8.3	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-A-81-1	1100	5.2	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-A-85	1100	6.0	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-A-89	1100	16.8	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-A-90	1100	44	Manning-Berg and Kah in prep
Atar Group West Africa	R1-A-97	1100	31	Manning-Berg and Kah in prep
Atar Group, West Africa	R1_A_98	1100	9.1	Manning-Berg and Kah in prep
mu oroup, noscrinica	IX1-Д-70	1100	1.4	manning berg and Kan in prep

Atar Group, West Africa	R1-Δ-100	1100	3.6	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-103	1100	3.1	Manning-Berg and Kah in prep
Atar Group, West Africa	R1-Δ-106	1100	2.2	Manning-Berg and Kah in prep
Chattisgarh Supergroup, India	SRJ-2I	1000	25.9	Bickford et al. 2011
Chattisgarh Supergroup, India	SRJ-3I	1000	22.8	Bickford et al. 2011
Chattisgarh Supergroup, India	SRJ-4I	1000	13.0	Bickford et al. 2011
Chattisgarh Supergroup, India	SRJ-6I	1000	20.6	Bickford et al. 2011
Chattisgarh Supergroup, India	SRJ-8I	1000	37.8	Bickford et al. 2011
Chattisgarh Supergroup, India	SRJ-9I	1000	85.2	Bickford et al. 2011
Chattisgarh Supergroup, India	TML-3I	1000	7.7	Bickford et al. 2011
Chattisgarh Supergroup, India	TML-6I	1000	17.8	Bickford et al. 2011
Chattisgarh Supergroup, India	TML-7I	1000	14.9	Bickford et al. 2011
Sukhaya Tunguska Formation, Russia	AN59	950	29.5	Sergeev et al. 1997
Sukhaya Tunguska Formation, Russia	AN60	950	46.1	Sergeev et al. 1997
Sukhava Tunguska Formation, Russia	AN61	950	25.7	Sergeev et al. 1997
Sukhava Tunguska Formation. Russia	AN62	950	76.4	Sergeev et al. 1997
Sukhava Tunguska Formation. Russia	AN63	950	110.5	Sergeev et al. 1997
Sukhava Tunguska Formation. Russia	AN64	950	17.0	Sergeev et al. 1997
Sukhaya Tunguska Formation, Russia	AN66	950	28.1	Sergeev et al. 1997
Sukhaya Tunguska Formation, Russia	AN67	950	20.0	Sergeev et al. 1997
Sukhaya Tunguska Formation, Russia	AN68	950	20.2	Sergeev et al. 1997
Akademikerbeen Group Spitsbergen	AN1	775	29.2	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN2	775	40.3	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN3	775	17.3	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN4	775	62	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN5	775	63.2	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	ANG	775	65.0	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN7	775	27.6	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN8	775	74.3	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	ANG	775	95.4	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN10	775	59 /	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN12	775	71.5	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN12 AN13	775	15.8	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN13 AN14	775	19.0 /9/	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN14 AN16	775	15.1	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN18	775	17.6	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN10	775	0 /	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN20	775	34.4	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN21	775	276.2	Knoll and Swett 1990
Akademikerbeen Group, Spitsbergen	AN21 AN22	775	270.2	Knoll and Swett 1990
Limestone-Dolomite Series East Greenland	AN24	775	126.1	Knoll et al. 1986
Limestone-Dolomite Series, East Greenland	AN25	775	50.3	Knoll et al. 1986
Limestone-Dolomite Series, East Greenland	AN26	775	15 7	Knoll et al. 1986
Limestone Dolomite Series, East Greenland	AN20 AN28	775	4J.7 5 3	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN20	775	5.5	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN20	775	207.6	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN21	775	210.7	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN31 AN22	775	20 2	Knoll et al. 1980
Limestone-Dolomite Series, East Greenland	AIN52	775	20.5 22.2	Knoll et al. 1986
Limestone-Dolomite Series, East Greenland	AN33	775	33.3 15.5	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN25	113 775	13.3	Knoll et al. 1980
Limestone Dolomite Series, East Greenland	AN33 AN24	113 775	0.3 102.0	Knoll et al. 1980
Linestone-Dolonite Series, East Greenland	AIN30	115 775	102.9	Knoll et al. 1980
Linestone Dolomite Series, East Greenland	AN3/	115	07.0	Knoll et al. 1980 $K_{mall} = t_{mall} = 1.006$
Linestone-Dolomite Series, East Greenland	AIN38	115	41.4	Knoll et al. 1986

Shaler Group, Arctic Canada	AN41	775	5.6	Jones et al. 2010
Shaler Group, Arctic Canada	AN42	775	17.3	Jones et al. 2010
Shaler Group, Arctic Canada	AN43	775	45.7	Jones et al. 2010
Shaler Group, Arctic Canada	AN44	775	7.0	Jones et al. 2010
Shaler Group, Arctic Canada	AN45	775	154.8	Jones et al. 2010
Shaler Group, Arctic Canada	AN46	775	6.2	Jones et al. 2010
Shaler Group, Arctic Canada	AN47	775	40.3	Jones et al. 2010
Shaler Group, Arctic Canada	AN48	775	14.8	Jones et al. 2010
Shaler Group, Arctic Canada	AN49	775	116.9	Iones et al. 2010
Shaler Group, Arctic Canada	AN50	775	84	Jones et al. 2010
Shaler Group, Arctic Canada	AN51	775	10.9	Jones et al. 2010
Shaler Group, Arctic Canada	AN52	775	57.5	Jones et al. 2010
Shaler Group, Arctic Canada	AN52 AN53	775	69	Jones et al. 2010
Shaler Group, Arctic Canada	AN54	775	6.0	Jones et al. 2010
Shaler Group, Arctic Canada	AN55	775	12.8	Jones et al. 2010
Shaler Group, Arctic Canada	AN56	775	12.0	Jones et al. 2010
Lagoa Do Jacoro Formation, Prazil	AN30 KM7 14.0.0	650	17.0	Jones et al. 2010 Misi A et al. 2007
Lagoa Do Jacare Formation, Brazil	KW17-14.0.0	650	21.0	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KW17-14-01.0	650	21.9	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-02.0	650	49.0	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-03.0	650	17.6	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-04.0	650	12.5	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-05.0	650	22.0	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-06.0	650	38.9	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-07.0	650	54.1	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-08.0	650	32.8	Misi, A. et al., 2007
Lagoa Do Jacare Formation, Brazil	KM7-14-09.0	650	23.8	Misi, A. et al., 2007
Huttenburg Fm, Namibia	S86A-971.2	650	105.2	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-976.0	650	77.5	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-977.0	650	120.9	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-980.8	650	53.5	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-985.1	650	147.1	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-987.8	650	28.4	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-988.2	650	41.8	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1033.8	650	424.1	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1060.2	650	156.2	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1077.1	650	57.4	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1144.8	650	52.8	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1145.1	650	47.7	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1148.4	650	55.6	Kaufman et al., 2009
Huttenburg Fm, Namibia	S86A-1213.2	650	51.1	Kaufman et al., 2009
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-7	600	61.0	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-21	600	62.5	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-26	600	30.7	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-34	600	37.5	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-38	600	19.8	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiqa-38b	600	40.1	Miller et al. 2008
Dhaiga Fm, NW Arabian shield, Saudi Arabia	Dhaiga-39	600	38.7	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiga-46	600	24.9	Miller et al. 2008
Dhaiqa Fm, NW Arabian shield, Saudi Arabia	Dhaiga-49	600	59.0	Miller et al. 2008
Dhaiga Fm, NW Arabian shield, Saudi Arabia	Dhaiga-51	600	19.8	Miller et al 2008
Dhaiga Fm, NW Arabian shield, Saudi Arabia	Dhaiga-54	600	24.9	Miller et al. 2008
Dhaiga Fm, NW Arabian shield, Saudi Arabia	M1-with fossil	600	62.2	Miller et al. 2008
Dhaiga Fm, NW Arabian shield Saudi Arabia	N-2-3	600	113.4	Miller et al. 2008
Dhaiga Fm, NW Arabian shield, Saudi Arabia	N-2-11	600	73.1	Miller et al. 2008
	·· - ··	000	, 5.1	1,11101 Ct ul. 2000

Dhaiqa Fm, NW Arabian shield, Saudi Arabia	N-2-16	600	68.9	Miller et al. 2008
Yangjiaping, Doushantuo Fm, South China	YD-01	551	12.9	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-02	551	47.1	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-03	551	11.7	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-04	551	25.1	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-05	551	71.0	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-06	551	13.9	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-07	551	28.4	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-08	551	6.6	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-09	551	6.2	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-10	551	26.9	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-11	551	50.4	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-12	551	25.1	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-13	551	23.7	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-14	551	55.0	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-15	551	115.4	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-16	551	221.5	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-17	551	253.8	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-18	551	195.9	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-19	551	101.2	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-20	551	14.5	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-21	551	10.9	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-22	551	29.1	Cui et al. 2015
Yangjiaping, Doushantuo Fm, South China	YD-23	551	40.1	Cui et al. 2015
Orthoceras limestone, Ohio	BH21	465	27.5	Hazen collection
Bryozoan limestone, Ohio	BH24	465	7.2	Hazen collection
Branch Hill limestone, Ohio	BH25	465	10.9	Hazen collection
Jersey Shore Station, Pennsylvania	BH26	465	7.0	Hazen collection
Madison County, Kentucky	BH31	465	14.3	Hazen collection
Ripley, Ohio	BH36	465	8.3	Hazen collection
Washington, Kentucky	BH37	465	11.4	Hazen collection
Bryozoan limestone, Ohio	BH33	465	3.5	Hazen collection
Coburn Fm, Pennsylvania	BH41	465	10.9	Hazen collection
La Silla Fm, Argentina	AF-23	464	22.9	Thompson and Kah 2012
La Silla Fm, Argentina	AF-30	464	12.4	Thompson and Kah 2012
La Silla Fm, Argentina	SJF08-14	464	16.1	Thompson and Kah 2012
La Silla Fm, Argentina	LFG-27	464	40.5	Thompson and Kah 2012
La Silla Fm, Argentina	LFG-55	464	17.6	Thompson and Kah 2012
La Silla Fm, Argentina	LS-01	464	29.7	Thompson and Kah 2012
La Silla Fm, Argentina	SJC-116	464	42.1	Thompson and Kah 2012
West Newfoundland	TH-1	464	15.3	Thompson and Kah 2012
West Newfoundland	TH-18	464	41.7	Thompson and Kah 2012
Ludlow Fm, Silurian	BH28	432	30.3	Hazen collection
Clay's Ferry Fm, Kentucky	BH49	457	7.1	Hazen collection
Limestone Quarry, Dickensonville, Virginia	BH29	406	7.7	Hazen collection
John Boyd Thatchen State Park, New York	BH30	406	12.8	Hazen collection
Cincinnati, Ohio	BH32	451	6.5	Hazen collection
Richmond, Indiana	BH27	451	7.3	Hazen collection
Blue Stone limestone Quarry, New York	BH34	406	19.0	Hazen collection
Isle La Motte, Vermont	BH38	406	21.6	Hazen collection
Isle La Motte, Vermont	BH39	406	12.2	Hazen collection
Isle La Motte, Vermont	BH40	406	22.9	Hazen collection
Tenby, Wales	BH43	329	69.0	Hazen collection
Plainville Quarry, Ohio	BH44	388	17.4	Hazen collection

Everett Quarry, Missouri	BH45	311	15.4	Hazen collection
Cheddar Gorge, England	BH46	329	65.5	Hazen collection
Mammoth Cave National Park, Kentucky	BH47	341	190.6	Hazen collection
Sheep Mountain	BH51	341	53.6	Hazen collection
Limestone Quarry, Ohio	BH52	388	4.2	Hazen collection
Hamilton Group, New York	BH22	388	3.6	Hazen collection
Madision limestone, Garrett Co., Maryland	BH23	341	31.7	Hazen collection
Coral limestone, Michigan	BH53	389	21.0	Hazen collection
Lydstep Haven coral, Wales	BH35	329	70.4	Hazen collection
Shark Bay, Australia	BH20	0	28.4	Hazen collection

SI 2. Data filtering

Diagenetic alteration can be problematic when interpreting the chemical composition carbonate rocks; therefore, we carefully screened carbonate specimens for a range of diagenetic effects and hydrothermal alteration by combining geologic, petrographic, and element and isotope geochemical analyses. For the published literature, we compiled data only for samples that are considered to reflect primary depositional environments. For our own analyses, we selected samples from within known sedimentological and stratigraphic context, most of which are from previously investigated rock units. Petrographic analysis was used to selected sample areas preserving original sedimentary fabrics, which suggest the least interaction with diagenetic fluids, and samples were microdrilled from these localities. To identify possible affects of diagenesis, we screened the samples based on the classic geochemical tracers of late diagenesis, including major and minor elements (e.g., Fe, Mn, Sr) as well as C and O isotopic signatures. We did not fix the selection criteria; rather, we adopted the selection criteria used by individual researchers for the different localities and published in their original descriptions. Readers can refer to the original papers that describe the samples in the reference lists below (SI 6. References). In addition, we studied REE patterns and Eu anomalies to avoid samples with significant hydrothermal alternation (e.g., Frimmel, 2009). Both Zn and Fe partition coefficient (K_d) from fluid to carbonates increase with increasing diagenesis as shown by earlier work of Brand and Veizer (1980). Also, K_d (Fe) increases faster compared to K_d (Zn), from 1 to 20 and from 5.2 to 5.5 for Fe and Zn, respectively. So, diagenesis will cause decrease in Zn/Fe ratios by incorporating more Fe than Zn in carbonates. Even though, every carbonates we studied today have been through diagenesis. That is why we are adopting a statistic treatment of our global data.

SI 3. Statistical analysis of data

Temporal data sets are subject to biases associated with sampling: recent geological eras are commonly represented by more samples, and some formations are represented by multiple analyses. Since we do not know exactly how the effect of diagenesis, local primary production, mineralogy and kinetic effect influence on the Zn/Fe values, we therefore adopted three discrete approaches to statistically evaluate Zn/Fe data through time aiming to investigate the population behavior. First, we divided the entire sample population into eight bins of different duration to make sure each bin has statistically meaningful sample numbers (where n > 50, expect for one, bin with n = 38). The bins were chosen to reflect current hypotheses for pO_2 evolution through time; specifically, we chose a bin boundary at 800 Ma to reflect the recent hypothesis of Planavsky et al. (2014) concerning mid-Neoproterozoic oxygenation, and we broke out Cryogenian, Ediacaran and Lower Paleozoic bins in an attempt to illuminate existing hypothesis concerning Ediacaran-Cambrian oxygen increase. Each bin contains samples from at least two different geological formations. The choice of the bin breaking points is based on convenience and what is already know about pO_2 evolution through Earth history. For example, the first bin is from 3.5 - 2.5 Ga, which is the Pre-GOE time, where we expect low pO_2 and we observe low Zn/Fe and little variation of Zn/Fe. We divide the following bin into 2.5-2.0 Ga and 2.0-1.5 Ga, to have statistical meaning number of samples in each bin. Then we have three different formation from ~800 Ma with high Zn/Fe compared to Pre-1.0Ga samples and therefore we make a bin from 1.5-0.8 Ga. For the following time periods, we divide bins into several geological meaningful groups, as 800-635 Ma (Cryogenian), 635-541 Ma (Ediacaran), 541-300 Ma (earlier

Paleozoic), and 300-0 Ma (later Paleozoic, Mesozoic and Cenozoic) to make self-consistent and statistically meaningful sample subsets.

We then performed a box-whisker plot for all data (Fig. S3), where median, 50%, and outliers (outside of 3 sigma of the population) of Zn/Fe values were calculated for each bin, which are shown with red lines (orange lines in Fig. 2), blue boxes, and red crosses, respectively in Fig. S3. In a second approach, we divided data into the same ten bins as in the previous approach, but we plotted histograms for each bin (Fig. S4). Data in nearly all of the bins follows a lognormal distribution, which permits calculation of means and standard deviations for each of the 10 bins (shown with blue lines in Fig. 2). In a third approach, we calculated average composition for each geological formation, which reduces the influence from sampling bias. For example, some localities/formations are represented by 20 samples, whereas others incorporate 10 or fewer. The formation averages are shown in Fig. 2 and a fit calculated displayed polynomial is and in Fig. **S**5.

SI 4. Assumptions, deviation of equations and sensitivity tests

Fe oxidization chemical reaction can be written as:

$$4Fe^{2+}(aq) + O_2(aq) + 10H_2O(aq) = 4Fe(OH)_3(s) + 8H^+(aq)$$

$$K = \frac{a_{(H^+)}^8}{a_{(H_2O)}^{10} \times a_{(Fe^{2+})}^4 \times a_{(O_2)}}$$
[1],

where *K* is equilibrium constant and α is activity. In this equation, we assume that when Fe²⁺ oxidizes to Fe³⁺ and is precipitated from the aqueous system as iron hydroxide [Fe(OH)₃], thus only Fe²⁺ is incorporated into carbonates. Assuming equilibrium between atmosphere and surface ocean on hundredmillion year time scales (the smallest bin size is around 100 million years, Bin6: 635-541 Ma), we replace $\alpha(O_2)$ in equation [1] with oxygen fugacity in the atmosphere, $f_{(O_2)}$, as

$$K = \frac{a_{(H^+)}^8}{a_{(H_2O)}^{10} \times a_{(Fe^{2+})}^4 \times f_{(O_2)}}$$
[2].

Then we can reorganize equation [2] to

$$logK = 4log \frac{1}{a_{(Fe^{2+})}} - log f_{(0_2)} + log \frac{a_{(H^+)}^8}{a_{(H_2O)}^{10}}$$
[3],

if we assume the Zn concentrations in seawater and partitioning of Zn/Fe from seawater to carbonate minerals are constant over Earth's history. Therefore, we can write the equation normalized to Zn^{2+} as

$$logK = 4loga^{P}_{(Zn^{2+}/Fe^{2+})} - log f^{P}_{(O_{2})} + log \frac{a^{8}_{(H^{+})}}{a^{10}_{(H_{2}O)}}$$

$$logK = 4loga_{(Zn^{2+}/Fe^{2+})}^{M} - log f_{(O_2)}^{M} + log \frac{a_{(H^+)}^{8}}{a_{(H_2O)}^{10}}$$
[4],

in which superscripts P and M indicate the past and modern parameters. Assuming pH and K are constant, we can simplify the relationship between Fe/Zn ratios and $f_{(O_2)}$, as $f_{(O_2)}^P = r^4 \cdot f_{(O_2)}^M$ [6], where $f_{(O_2)}^P$ is the oxygen fugacity in the past (any time in Earth's history), $f_{(O_2)}^M$ is the oxygen fugacity in modern time, and

$$r = \frac{\left(\frac{Fe^{2+}/Zn^{2+}\right)^{M}}{(Fe^{2+}/Zn^{2+})^{P}} = \frac{\left(\frac{Zn^{2+}/Fe^{2+}\right)^{P}}{(Zn^{2+}/Fe^{2+})^{M}}$$
[6],

provides Zn/Fe ratios in past carbonate normalized to the modern values. If we assume that atmospheric O_2 is in equilibrium with the shallow marine environment, and that we know the current atmospheric $P_{(O_2)}$ (0.21) and the modern seawater Zn/Fe ratios as reflected in Zn/Fe ratios of marine carbonates, we can therefore calculate $f_{(O_2)}$ at any given time of Earth's history if we know the Zn/Fe ratio.

Discussion of assumptions

This approach requires several critical assumptions, one of which is that we assume the pH of the ocean has not changed significantly through Earth's history—an assumption supported by some studies (Grotzinger and Kasting, 1993; Sumner and Grotzinger, 2004). However, we do recognize the possible great influence of pH change on quantitative constraint of atmospheric O_2 . We also assume a constant Zn concentration in seawater through time. Although Zn concentrations, theoretically may have responded to changes in enzymatic use during biosphere evolution, there is no evidence for change in Zn bioavailability change through time (Robbins et al., 2013; Scott et al., 2013). However, Zn concentrations in seawater may drop during the Mid-Proterozoic due to some extent of euxinia (~1~10 % of modern seafloor area) (Reinhard et al., 2013). These two important factors (pH and Zn content) may contribute on various degrees to the accuracy of atmospheric O_2 estimation in our model. However, we do not have a quantitative understanding of either at present. Therefore, we develop a first order quantification of secular evolution of atmospheric O_2 with the assumptions that neither pH nor Zn content in seawater change significantly during the time intervals we investigated.

Sensitivity tests of the modeling

Here, we evaluate how temperature and pH changes influence the modeling results in seawater through Earth's history.

First, we perform a sensitivity test that assuming three different *temperatures*:

$$Fe^{2+} + CaCO_3 --> Ca^{2+} + FeCO_3$$
 [1]

$$Zn^{2+} + CaCO_3 --> Ca^{2+} + ZnCO_3$$
 [2]

By combining eqn (1) and (2), we have $FeCO_3 + Zn^{2+} - > ZnCO_3 + Fe^{2+}$, where equilibrium constant K can be written as $\log K = \log (a(ZnCO_3)/a(FeCO_3)) - \log (a(Zn^{2+})/a(Fe^{2+}))$, where a are activities for different components. We then calculate K values at different temperatures using SUPCRT92 (Johnson et al., 1992) and the results are shown in the following figure.

Generally, when T increases, log K (also K) decreases, but still not so much.

For example,

When T = 25 °C, log K = -0.496, K = 0.32;

When $T = 60 \ ^{\circ}C$, log K = -0.575, K = 0.27;

When $T = 100 \ ^{\circ}C$, log K = -0.65, K = 0.22.

If we take the most extreme example: Assuming modern T is 25° c and Archean T is 100° C. The fO₂ estimate in the Archean will increase by approximately 40%. Therefore, even if we assume the most extreme ocean temperature (100° C), the uncertainty caused by temperature change on fO_2 estimate is much smaller compared to uncertainties generated by Zn/Fe variations in carbonates (Figure 3), which is at least one order of magnitude.

Second, we carry out a sensitivity test on *pH* change:

$$logK = 4loga_{(Zn^{2+}/Fe^{2+})}^{P} - log f_{(O_2)}^{P} + log \frac{a_{(H^+)}^{8}}{a_{(H_2O)}^{10}}$$
$$logK = 4loga_{(Zn^{2+}/Fe^{2+})}^{M} - log f_{(O_2)}^{M} + log \frac{a_{(H^+)}^{8}}{a_{(H_2O)}^{10}}$$

The modern day seawater has a pH of ~ 8 (M in the equation). If we assume a lower pH in the past (P in the equation), we can rearrange the equations as

$$4\log a_{(Zn^{2+}/Fe^{2+})}^{P} - \log f_{(O_{2})}^{P} + \log \frac{a_{(H^{+})}^{8}}{a_{(H_{2}O)}^{10}}^{P} = 4\log a_{(Zn^{2+}/Fe^{2+})}^{M} - \log f_{(O_{2})}^{M} + \log \frac{a_{(H^{+})}^{8}}{a_{(H_{2}O)}^{10}}^{M}$$

$$\frac{a_{(Zn^{2+}/Fe^{2+})}^{P} + a_{(H^{+})}^{P}}{a_{(H_{2}O)}^{P} + \log \frac{a_{(H^{+})}^{8}}{a_{(H^{+})}^{10}}^{10}} = \frac{a_{(Zn^{2+}/Fe^{2+})}^{M} + a_{(H^{+})}^{M}}{a_{(H_{2}O)}^{M} + \log \frac{a_{(H^{+})}^{8}}{a_{(H_{2}O)}^{10}}^{10}}$$

Final, we get the new pH dependent relationship as

$$f_{(O_2)}^{P} = \frac{a_{(Zn^{2+}/Fe^{2+})}^{P}}{a_{(Zn^{2+}/Fe^{2+})}^{M}} \left(\frac{a_{(H^+)}^{P}}{a_{(H^+)}^{M}}\right)^{8} f_{(O_2)}^{M}$$

Therefore, if the pH is lower in the past, this will cause the O_2 estimate to be lower. This also means that the O_2 level we estimate is the maximum values assuming the pH was lower in the past. Also, if we change the pH from 8.1 to 7.6, estimated O_2 is four orders of magnitude lower because the O_2 estimate is sensitive pH change. Since we do not know how seawater pH change through time, and there is no evidence that it changes dramatically on the order of hundreds of million years, we keep the pH constant in our model. However, if we understand better how pH change through time, we can plug in pH in above equations and get a more accurate estimate of O_2 evolution through time.

Figure S1. Comparison of measured trace elements with those reported for Inoue et al. (2004) for the JcP-1 standard. The full analytical method is discussed in the method section fallowing the main text.

Figure S2. Zn/Fe ratios in marine carbonate, plotted with information on sample lithology.

Figure S3. Box-whisker distribution of all samples. The sample population is divided into eight bins (Bin1: 3.5 - 2.5 Ga, Bin2: 2.5 - 2.0 Ga, Bin3: 2.0 - 1.5 Ga, Bin4: 1.5 - 0.8Ga, Bin5: 800-635 Ma, Bin6: 635-541Ma, Bin7: 541-300Ma, Bin8: 300-0 Ma) of different duration to make sure each bin has statistically meaningful sample numbers (where n > 50, expect for one, bin with n = 38). Each bin contains samples from at least two different geological formations. We show a Box-whisker plot for each group. Median values are indicated by the red lines and each individual boxes include 50% samples and whiskers mark the 3 sigma boundaries of the group population. Red crosses fall out of whiskers and are considered outliers.

Figure S4. Histograms of Zn/Fe ratios with lognormal fitting in red. We group all data into eight different bins (age distribution of the bins is provided in Fig. S2) and plot the lognormal distribution for each group.

Figure S5. Zn/Fe molar ratio versus time for carbonates averaged by formation. A polynomial fit through the formation average data.

SI 6. References

- Bartley, J.K., Kah, L.C., McWilliams, J.L., Stagner, A.F., 2007. Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt. Chemical Geology 237, 211-232.
- Beukes, N.J., Lowe, D.R., 1989. Environmental control on diverse stromatolite morphologies in the 3000 Myr Pongola Supergroup, South Africa. Sedimentology 36, 383-397.
- Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C., Schieber, J., 2011. Depositional History of the Chhattisgarh Basin, Central India: Constraints from New SHRIMP Zircon Ages. Journal of Geology 119, 33-50.
- Chakrabarti, G., Shome, D., Kumar, S., Stephens, G.M., III, Kah, L.C., 2014. Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, Cuddapah Basin, India. Journal of Asian Earth Sciences 91, 263-279.
- Cui, H., Kaufman, A.J., Xiao, S., Zhu, M., Zhou, C., Liu, X.-M., 2014. Redox architecture of an Ediacaran ocean margin: Integrated chemo-stratigraphic (δ¹³C–δ³⁴S–⁸⁷Sr/⁸⁶Sr–Ce/Ce*) correlation of the Doushantuo Formation. Chemical Geology in revision.
- Fio, K., Spangenberg, J.E., Vlahovic, I., Sremac, J., Velic, I., Mrinjek, E., 2010. Stable isotope and trace element stratigraphy across the Permian-Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia. Chemical Geology 278, 38-57.
- Gilleaudeau, G.J., Kah, L.C., 2013. Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world. Precambrian Research 228, 85-101.
- Grotzinger, J.P., Kasting, J.F., 1993. New constraints on precambrian ocean composition. Journal of Geology 101, 235-243.
- Inoue, M., Nohara, M., Okai, T., Suzuki, A., Kawahata, H., 2004. Concentrations of trace elements in carbonate reference materials coral JCp-1 and giant clam JCt-1 by Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research 28, 411-416.
- Jones, D.S., Maloof, A.C., Hurtgen, M.T., Rainbird, R.H., Schrag, D.P., 2010. Regional and global chemostratigraphic correlation of the early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambrian Research 181, 43-63.
- Kah, L.C., Bartley, J.K., Frank, T.D., Lyons, T.W., 2006. Reconstructing sea-level change from the internal architecture of stromatolite reefs: an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada. Canadian Journal of Earth Sciences 43, 653-669.
- Kah, L.C., Bartley, J.K., Teal, D.A., 2012. Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends. Precambrian Research 200, 82-103.
- Kah, L.C., Crawford, D.C., Bartley, J.K., Kozlov, V.I., Sergeeva, N.D., Puchkov, V.N., 2007. Cand Sr-isotope chemostratigraphy as a tool for verifying age of Riphean deposits in the Kama-Belaya aulacogen, the east European platform. Stratigraphy and Geological Correlation 15, 12-29.
- Kaufman, A.J., Sial, A.N., Frimmel, H.E., Misi, A., 2009. Neoproterozoic to Cambrian Palaeoclimatic Events in Southwestern Gondwana, in: Gaucher, C., Sial, A.N., Frimmel, H.E., Halverson, G., P. (Eds.), Developments in Precambrian Geology. Elsevier, pp. 369-388.
- Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, K., Lambert, I.B., 1986. Secular variation in carbon isotope ratios from upper proterozoic successions of svalbard and east greenland. Nature 321, 832-838.
- Knoll, A.H., Swett, K., 1990. Carbonate deposition during the late proterozoic era an example from Spitsbergen. American Journal of Science 290A, 104-132.

- Meyer, E.E., Quicksall, A.N., Landis, J.D., Link, P.K., Bostick, B.C., 2012. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition. Precambrian Research 192-95, 89-106.
- Miller, N., Johnson, P.R., Stern, R.J., 2008. Marine versus non-marine environments for the Jibalah Group, NW Arabian shield: A sedimentologic and geochemical survey and report of possible metazoa in the Dhaiqa formation. Arabian Journal for Science and Engineering 33, 55-77.
- Mirota, M.D., Veizer, J., 1994. Geochemistry of Precambrian carbonates. 6. Aphebian Albanel Formations, Quebec, Canada. Geochimica et Cosmochimica Acta 58, 1735-1745.
- Misi, A., Kaufman, A.J., Veizer, J., Powis, K., Azmy, K., Boggiani, P.C., Gaucher, C., Teixeira, J.B.G., Sanches, A.L., Iyer, S.S.S., 2007. Chemostratigraphic correlation of neoproterozoic successions in South America. Chemical Geology 237, 143-167.
- Morgan, R., Orberger, B., Rosiere, C.A., Wirth, R., Carvalho, C.d.M., Bellver-Baca, M.T., 2013. The origin of coexisting carbonates in banded iron formations: A micro-mineralogical study of the 2.4 Ga Itabira Group, Brazil. Precambrian Research 224, 491-511.
- Planavsky, N.J., Reinhard, C.T., Wang, X., Thomson, D., McGoldrick, P., Rainbird, R.H., Johnson, T., Fischer, W.W., Lyons, T.W., 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635-638.
- Reinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill, B.C., Lalonde, S.V., Bekker, A., Konhauser, K.O., Lyons, T.W., 2013. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl. Acad. Sci. U. S. A. 110, 5357-5362.
- Robbins, L.J., Lalonde, S.V., Saito, M.A., Planavsky, N.J., Mloszewska, A.M., Pecoits, E., Scott, C., Dupont, C.L., Kappler, A., Konhauser, K.O., 2013. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology 11, 295-306.
- Scott, C., Planavsky, N.J., Dupont, C.L., Kendall, B., Gill, B.C., Robbins, L.J., Husband, K.F., Arnold, G.L., Wing, B.A., Poulton, S.W., Bekker, A., Anbar, A.D., Konhauser, K.O., Lyons, T.W., 2013. Bioavailability of zinc in marine systems through time. Nature Geoscience 6, 125-128.
- Sergeev, V.N., Knoll, A.H., Petrov, P.Y., 1997. Paleobiology of the Mesoproterozoic-Neoproterozoic transition: The Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Precambrian Research 85, 201-239.
- Sumner, D.Y., Grotzinger, J.P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology 51, 1273-1299.
- Thompson, C.K., Kah, L.C., 2012. Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeography Palaeoclimatology Palaeoecology 313, 189-214.
- Veizer, J., Clayton, R.N., Hinton, R.W., 1992a. Geochemistry of Precambrian carbonates .4. Early Paleoproterozoic (2.25 +/- 0.25 ga) seawater. Geochimica et Cosmochimica Acta 56, 875-885.
- Veizer, J., Clayton, R.N., Hinton, R.W., Vonbrunn, V., Mason, T.R., Buck, S.G., Hoefs, J., 1990. Geochemistry of Precambrian carbonates. 3. Shelf seas and nonmarine environments of the Archean. Geochimica et Cosmochimica Acta 54, 2717-2729.
- Veizer, J., Hoefs, J., Lowe, D.R., Thurston, P.C., 1989a. Geochemistry of precambrian carbonates. 2. Archean greenstone belts and archean sea-water. Geochimica et Cosmochimica Acta 53, 859-871.
- Veizer, J., Hoefs, J., Ridler, R.H., Jensen, L.S., Lowe, D.R., 1989b. Geochemistry of Precambrian carbonates . 1. Archean hydrothermal systems. Geochimica et Cosmochimica Acta 53, 845-857.

- Veizer, J., Plumb, K.A., Clayton, R.N., Hinton, R.W., Grotzinger, J.P., 1992b. Geochemistry of Precambrian carbonates. 5. Late Paleoproterozoic seawater. Geochimica et Cosmochimica Acta 56, 2487-2501.
- Wilson, J.P., Fischer, W.W., Johnston, D.T., Knoll, A.H., Grotzinger, J.P., Walter, M.R., McNaughton, N.J., Simon, M., Abelson, J., Schrag, D.P., Summons, R., Allwood, A., Andres, M., Gammon, C., Garvin, J., Rashby, S., Schweizer, M., Watters, W.A., 2010. Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia. Precambrian Research 179, 135-149.
- Zhao, M.-Y., Zheng, Y.-F., 2014. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones. Geochimica Et Cosmochimica Acta 141, 508-531.
- Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements. Journal of Sedimentary Research, 50(4): 1219-1236.
- Frimmel, H.E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258(3-4): 338-353.
- Grotzinger, J.P., Kasting, J.F., 1993. New constraints on precambrian ocean composition. Journal of Geology, 101(2): 235-243.
- Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences, 18(7): 899-947.
- Reinhard, C.T. et al., 2013. Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the United States of America, 110(14): 5357-5362.
- Robbins, L.J. et al., 2013. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology, 11(4): 295-306.
- Scott, C. et al., 2013. Bioavailability of zinc in marine systems through time. Nature Geoscience, 6(2): 125-128.
- Sumner, D.Y., Grotzinger, J.P., 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51(6): 1273-1299.