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We study a quasi-2D classical Landau-Ginzburg-Wilson e↵ective field theory in the presence of
quenched disorder in which incommensurate charge-density wave and superconducting orders are
intertwined. The disorder precludes long-range charge-density wave order, but not superconducting
or nematic order. We select three representative sets of input parameters and compute the corre-
sponding charge-density wave structure factors using both large-N techniques and classical Monte
Carlo simulations. Where nematicity and superconductivity coexist at low temperature, the peak
height of the charge-density wave structure factor decreases monotonically as a function of increas-
ing temperature, unlike what is seen in X-ray experiments on YBa

2

Cu
3

O
6+x

. Conversely, where the
thermal evolution of the charge-density wave structure factor qualitatively agrees with experiments,
the nematic correlation length, computed to one-loop order, is shorter than the charge-density wave
correlation length.

I. INTRODUCTION

The cuprate superconductors manifest remarkably
rich phase diagrams, but with many features common
to di↵erent materials within the family1–3. In ad-
dition to the well known antiferromagnetic insulating
and superconducting (SC) phases, recent experiments
have revealed that short-range-correlated incommensu-
rate charge-density wave (CDW) order, long known to
play a prominent role in the physics of a limited sub-
set of cuprates4–7, occurs in one way or another, in all
or most cuprates8–25. The thermal evolution of the X-
ray structure factor13–15,17,18,20–22 in these newly stud-
ied cases typically exhibits a gentle “concave-upward”
onset rather than the sharp onset that is expected at
the point of a thermodynamic phase transition. Mean-
while, transport26–28, neutron scattering29, STM1,30–32,
and NMR24 measurements have revealed anisotropies
that are suggestive of the existence of long-range ne-
maticity (broken C4 rotation symmetry) in an overlap-
ping regime of the phase diagram.

The present theoretical study is carried out with ob-
servations in the model cuprate YBCO in mind, specif-
ically for a range of temperatures, T , low compared
to the “pseudo-gap” crossover, T ⇤, and for a range of
doping concentrations in the neighborhood of x = 1/8
where CDW fluctuations are experimentally detectable.
In YBa2Cu3O6.67 (corresponding to x ⇡ 0.12), the obser-
vations of Ref. 14 then restrict us to T . 150 K. We do
not comment here on the higher T regime where there are
thermodynamic or spectroscopic indications of a pseudo-
gap. We will use a fluctuating order model to study the
T dependence of the intertwined CDW and SC orders,
and their relationship to nematicity.

Previous theoretical works33–40 introduced classical
Landau-Ginzburg models to study the competition
among di↵erent order parameters in cuprates. In par-
ticular, Ref. 35 focused on the angular fluctuations of a

multi-component order parameter, consisting of SC and
CDW correlations in two spatial dimensions without dis-
order. Ref. 36 investigated the e↵ects of quenched dis-
order and dimensionality on CDW and nematic orders
in the pseudogap regime. Here, we consider a generic
Landau-Ginzburg theory with a multi-component order
parameter (consisting of one SC complex field  and two
CDW complex fields �x,y) and quenched disorder in a
quasi-2D system. We show that the T -dependence of the
CDW structure factor depends strongly on the strength
of the disorder, the dimensionality of the system, and
also on other input parameters of the model. We also
calculate other quantities such as the nematic correlation
length and the integrated intensities of SC and CDW or-
ders.

While our work was being completed, we learnt of the
similar analysis of Caplan et al.

41. They tune the com-
petition between CDW and SC by an applied magnetic
field, and obtain trends consistent with our results in
Sec. IV A below.

The format of this paper is as follows. In Sec. II, we
introduce a classical Landau-Ginzburg model for a lay-
ered system with SC and CDW orders and random-field
type disorder. Sec. III illustrates the methods we use to
solve this model, including the replica trick and a large-
N expansion, which are applied to obtain a saddle-point
(mean-field) solution of the model, as well as classical
Monte Carlo techniques. In Sec. IV, we report results for
the T -dependence of the CDW structure factor in various
regions of the phase diagram, and we discuss the e↵ects of
both disorder and dimensionality. We present in Sec. V
detailed mean-field phase diagrams as functions of vari-
ous input parameters and temperature, and, in Sec. VI,
we show calculations of the nematic correlation length
to one-loop order in the non-nematic phase. Finally, in
Sec. VII, we discuss the implications of our results as well
as connections to cuprate experiments.
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II. THE MODEL

We consider a layered system with tetragonal symme-
try. The charge density at position r in layer m can be
expressed as

⇢(r, m) = ⇢̄ +
⇥

�x(r, m)eiQ
x

·r + �y(r, m)eiQ
y

·r + c.c.
⇤

+ . . . , (2.1)

where ⇢̄ is the uniform charge density, Q

x

and Q

y

are
incommensurate in-plane wave vectors, and �x and �y

are classical CDW order parameters with slow spatial
variation. The model we study is an e↵ective field theory
of � ⌘ (�x,�y) and an SC order parameter  in the
presence of random-field disorder h. The corresponding
Hamiltonian is

H = �
X

hr,r0i,m

h

J�†
m(r)�m(r0) + K †

m(r) m(r0) + c.c.
i

�
X

r,m

J 0
h

�†
m(r)⌧�m(r + x̂) � �†

m(r)⌧�m(r + ŷ) + c.c.
i

�
X

r,m

⇥

Jz�
†
m(r)�m+1(r) + Vz 

†
m(r) m+1(r) + c.c.

⇤

+
X

r,m

U

N

h

|�m(r)|2 + | m(r)|2 � 3N
i2

+
X

r,m

⇢

g|�m(r)|2 +
g0

N
|�m(r)|4 � �

N

h

�†
m(r)⌧�m(r)

i2
�

+
X

r,m

⇥

h†
m(r)�m(r) + c.c.

⇤

, (2.2)

where the lattice constant is set equal to 1, both r and r

0

are xy-plane coordinates, x̂, ŷ are xy-plane unit vectors,
m labels the layer along z direction, N is the number of
real components of each order parameter, and

⌧ ⌘
✓

IN⇥N

�IN⇥N

◆

. (2.3)

All of the following Monte Carlo results set N = 2 (as in
Refs. 35 and 37). Furthermore, our large-N and Monte
Carlo calculations take J = K and Jz = Vz. (See
Sec. VII A for discussion of Jz 6= Vz.) Because we are
interested in quasi-2D systems, we always consider the
case where 1 � Jz/J � 0.

Thermodynamic stability requires U > 0. To simplify
the analysis, we consider the limit U ! +1, which is
equivalent to imposing the constraint

|�x|2 + |�y|2 + | |2 = 3N. (2.4)

The Hamiltonian (2.2) then becomes a non-linear sigma
model. Note, however, that calculations can be carried
out similarly for finite U .

The constraint in Eq. (2.4) leads to an equivalency be-
tween Eq. (2.2) and the Hamiltonian studied by Monte
Carlo methods in Refs. 35 and 37. Appendix A pro-
vides information about how to relate parameter values

used in the present and previously studied models. Note,
however, that these previous works did not consider the
e↵ects of random-field disorder h and interlayer couplings
Jz and Vz. Such e↵ects will be studied in detail in the
present manuscript. (Note also that these previous stud-
ies also excluded from the Hamiltonian the term propor-
tional to J 0, but the e↵ects of this term were discussed
in detail in Ref. 36.)

The sign of � distinguishes between stripe (unidirec-
tional CDW) and checkerboard phases. In our calcula-
tion we always take � > 0 (favoring stripes). The dis-
order potential h is taken to be a Gaussian random field
with

h↵i(r, m) = 0, (2.5)

and

h↵i(r, m)h�j(r0, m0) = 2�2�↵��ij�mm0�(r � r

0), (2.6)

where ↵, � = x, y and i, j = 1, . . . , N . Notice that any
linear couplings between h and the SC order parameter
are forbidden by gauge invariance.

III. METHODS

A. Saddle-point solution in the large-N limit

We apply the replica trick42 and integrate out h,
then decouple the quartic terms using two Hubbard-
Stratonovich (HS) auxiliary fields. The resulting Hamil-
tonian is

Hreplica = �
X

hr,r0i
m,a

h

J�†
a,m(r)�a,m(r0) + K †

a,m(r) a,m(r0) + c.c.
i

�
X

r,m,a

(

J 0
h

�†
a,m(r)⌧�a,m(r + x̂) � �†

a,m(r)⌧�a,m(r + ŷ)
i

+ Jz�
†
a,m(r)�a,m+1(r)

+ Vz 
†
a,m(r) a,m+1(r) + c.c.

)

+ i
X

r,m,a

µa(r)
h

|�a,m(r)|2 + | a,m(r)|2 � 3N
i2

� (g + 4g0)
X

r,m,a

| a,m(r)|2

+ i
X

r,m,a

h

⌘a,m(r)| a,m(r)|2 +
⌘2

a,m(r)N

4g0

i

+
X

r,m,a

h

Na,m(r)�†
a,m(r)⌧�a,m(r) +

N 2
a,m(r)N

4�

i

� 2�2

T

X

r,m
a1,a2

�†
a1,m(r)�a2,m(r), (3.1)
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where a, a1, a2 are replica indices; the HS fields N and
⌘ correspond to the quartic terms proportional to g0 and
� in Eq. (2.2); the Lagrange multiplier µ enforces the
constraint in Eq. (2.4). The expectation values (aver-
aged both thermally and over disorder realizations) of
CDW and SC order parameters are obtained via diago-
nalization of Eq. (3.1) in both Fourier and replica spaces.
Assuming there is no replica symmetry breaking42, we
obtain

h�†
x(r)�x(r)i ⌘ N

Z

d3
k

(2⇡)3

✓

T

AN
+

2�2

A2
N

◆

, (3.2)

h�†
y(r)�y(r)i ⌘ N

Z

d3
k

(2⇡)3

✓

T

BN
+

2�2

B2
N

◆

, (3.3)

h †(r) (r)i ⌘ N

Z

d3
k

(2⇡)3
T

C
, (3.4)

where

AN , BN ⌘ �2J(cos kx + cos ky) ⌥ 2J 0(cos kx � cos ky)

� 2Jz cos kz ± N + µ, (3.5)

C ⌘ �2K(cos kx + cos ky) � 2Vz cos kz

� g � 4g0 + ⌘ + µ. (3.6)

The saddle-point equations that are to be solved self-
consistently are

(3�m̃2)N = h�†
x(r)�x(r)i+h�†

y(r)�y(r)i+h †(r) (r)i,
(3.7)

� NN

2�
= h�†

x(r)�x(r)i � h�†
y(r)�y(r)i, (3.8)

✓

⌘

2g0 � m̃2

◆

N = h †(r) (r)i, (3.9)

where m̃ is magnitude of the SC condensate in SC phase,
and we have redefined ⌘ and µ to absorb a factor of i.
We numerically solve the above equations by computing
the integrals with the given lattice regularization.

B. Monte Carlo

Classical Monte Carlo methods are capable of measur-
ing standard equilibrium thermodynamic estimators of
our model, such as energy, magnetization, CDW and SC
structure factors, and various correlation lengths. Our
simulations are performed on finite-size lattices and in-
volve a combination of local43–45 and non-local45,46 im-
portance sampling techniques, as described in detail in
Ref. 37. Non-local sampling is especially important at
low temperatures, where both e�ciency and ergodicity
issues can become significant. Note that our non-local
sampling involves a modified Wol↵ cluster update that is
only possible when J = K, J 0 = 0 and Jz = Vz in our
model. In all of the following plots, the large-N mean-
field calculations set J 0 = 0.01J , while the Monte Carlo

calculations set J 0 = 0 in order to enable cluster sampling
and thus avoid non-ergodic behaviour. Careful studies
reveal that this slight di↵erence in parameters does not
have a significant e↵ect on the structure factors shown in
our plots.

In the presence of random-field disorder (� 6= 0),
Monte Carlo calculations of the CDW structure factor
S�

x

(k = 0) (which will be defined in Section IV) re-
quire averaging over many independent realizations of
disorder, {h↵i}. Our numerical studies reveal that, as �
is increased, the distribution of S�

x

over various Real-
izations of Disorder (ROD) becomes increasingly asym-
metric. As a result, the average value, [hS�

x

i]ROD, of
this distribution becomes di↵erent from its typical value,
exp [ln hS�

x

i]ROD, where h. . .i and [. . .]ROD denote ther-
mal and disorder averages, respectively. However, in
order to allow comparison with large-N results, all of
the following Monte Carlo results correspond to average
values of the disorder distributions. The qualitative be-
haviour of the structure factors is similar if one instead
examines the typical values.

Note that, in cases where no disorder is present (� =
0), the error bars in our Monte Carlo results correspond
to thermal averaging. In the presence of disorder, er-
ror bars instead correspond to the standard deviation of
the mean over independent ROD. Our results average
over between 102 and 103 ROD. We find that both when
we increase � and when we study temperatures near the
structure factor peak, more ROD are required in order
to obtain high-quality numerical results.

Unless otherwise stated, Monte Carlo simulations are
performed on lattices of size 32⇥32⇥8, which is generally
su�cient to converge data to within a few percent (at
worst) of its infinite-size limit.

IV. CDW STRUCTURE FACTOR

Our starting point is the T = 0 zero-disorder phase
diagram shown in Fig. 1. Three phases emerge from
a bi-critical point: a SC, a stripe, and a coexisting SC
and stripe phase. For finite T , finite disorder and non-
zero interlayer coupling, the bi-critical point and phase
boundaries shift; see Section V for a detailed discussion
of the evolution of the phase diagram. Using both large-
N saddle-point methods and Monte Carlo simulations,
we compute the CDW structure factor

S�
x

(k = 0) =
1

N
h�†

x(k)�x(k)i
�

�

�

�

k=0

(4.1)

as a function of T using three sets of input parameters,
as indicated by the stars in Fig. 1. S�

x

(k = 0) and
S�

y

(k = 0) represent X-ray scattering intensities due to
CDW at wave vectors Q

x

and Q

y

respectively. In all of
the following plots of S�

x

(k = 0) vs. T , Monte Carlo and
large-N saddle-point results agree qualitatively, but show
significant quantitative di↵erences, especially for temper-
atures close to those at which the CDW peak height is



4

�0

g

g0

Stripe

(Nematic if � 6= 0)

1

2

3

SC + Stripe

(SC + Nematic

if � 6= 0)

SC

FIG. 1: Zero-temperature, zero-disorder phase diagram. The
stars mark the three sets of input parameters used in our cal-
culations. The dashed and solid lines mark first- and second-
order transitions, respectively. A bi-critical point is located
at g0 = �, g = 0. The stripe (SC+stripe) phase becomes a
nematic (SC+nematic) phase in the presence of disorder.

maximal. These di↵erences can be reduced if 1/N cor-
rections are included (see Appendix B for details).

A. Region 1

1. Zero disorder (� = 0) and various interlayer

couplings, Jz. The input parameters of Eq. (2.2) are
taken to be

K = J, J 0 = 0.01J (J 0 = 0 in Monte Carlo),

Vz = Jz, g = 0.35J, g0 = �0.033J, � = 0.033J. (4.2)

This reproduces (approximately) the fitting parameters
used in Ref. 35:

� = 1, w = �0.2, g̃ = 0.35, g̃0 = 0. (4.3)

(See Appendix A for definitions of �, w, g̃ and g̃0.)
As shown in Fig. 2, the peak value of the CDW

structure factor grows with decreasing temperature
down to a non-zero Tmax, at which point the CDW
structure factor attains its maximum value. Below
Tmax, S�

x

(k = 0) decreases until it reaches zero at
T = 0. As the system becomes more 3D-like, the
prominence of the maximum is enhanced, and the SC
transition temperature Tsc approaches Tmax (see inset
of Fig. 2). Large-N calculations find that Tsc exceeds
Tmax when Jz > 5J (not shown). Monte Carlo simula-
tions for Jz = 0, 0.01 and 0.1 are performed on lattices
of sizes 64⇥64, 32⇥32⇥8, and 24⇥24⇥14, respectively.

2. Disorder is present (� > 0) with fixed interlayer

coupling. We fix Jz = 0.01J , increase the value of g to
g = 0.7 in order to ensure that the ground state is SC,
and otherwise keep the input parameters the same as
in Eq. (4.2). As shown in Fig. 3, the CDW structure

0 1 2 3 4 5

T/J

0

2

4

6

8

S
�

x

(k
=

0)

J
z

/J = 0.1

J
z

/J = 0.01

J
z

/J = 0

J
z

/J = 0.1

J
z

/J = 0.01

J
z

/J = 0 0 0.05 0.1

J
z

/J

1.8

2.2

2.6

T
/J

Tmax

Tsc, MC

Tsc, MF

FIG. 2: Peak intensity of the CDW structure factor, S
�

x

(k =
0), as a function of T with � = 0, increasing J

z

, and the
parameters given in Eq. (4.2) in Region 1. Solid lines with-
out indicated data points are the large-N saddle-point results,
while the corresponding curves from Monte Carlo exhibit the
points with error bars. Short vertical lines mark the loca-
tions of SC transition temperatures, T

sc

. For J
z

= 0, one
can still calculate the SC transition temperature from the
Monte Carlo data, but there is no transition at mean-field
level. In this case, the short vertical line corresponding to
the large-N data instead marks the temperature at which the
SC mass term becomes exponentially small. In the inset, we
demonstrate that T

sc

approaches T
max

from below as J
z

is
increased. Monte Carlo (MC) results for T

sc

are consistently
higher than the corresponding large-N mean-field (MF) re-
sults, while both MC and MF give the same estimates for
T

max

within error.

factor as a function of temperature still has a concave-
upward shape, but for � > 0 it develops a non-zero value
at T = 0, which can be understood as a consequence of
the disorder-pinning e↵ect of CDW fluctuations. As �
increases, Tsc and Tmax get closer to each other, but Tsc

remains smaller than Tmax.

B. Region 2

Input parameters for Eq. (2.2) are taken to be

K = J, J 0 = 0.01J (J 0 = 0 in Monte Carlo),

Vz = Jz = 0.01J, g = 0.35J, g0 = 0.533J, � = 0.167J.
(4.4)

Although Region 2 and Region 1 both have SC as the
zero-disorder ground state, their CDW structure factors
behave very di↵erently under the e↵ect of disorder. As
shown in Fig. 4, the feature of maximum intensity at
Tmax is suppressed by disorder, in contrast with Fig. 3.
Moreover, the structure factor begins to increase again
as T approaches zero, unlike the situation in Region 1
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0 1 2 3 4

T/J

0

1

2

3

4

5
S

�
x

(k
=

0)
� = 1.3

� = 0.86

� = 0.37

� = 0

� = 0.86

� = 0.37

� = 0

FIG. 3: S
�

x

(k = 0) as a function of T in Region 1 , with
fixed J

z

6= 0 and increasing disorder, with parameters given
in Eq. (4.2) but with g = 0.7. We show both large-N (undeco-
rated lines) and Monte Carlo (points with error bars) results.
Short vertical lines indicate SC transition temperatures.

where the structure factor decreases monotonically as T
is decreased below Tmax. In both Regions 1 and 2 the
intensity at T = 0 is enhanced by disorder, which again
is a disorder-pinning e↵ect.

C. Region 3

The input parameters of Eq. (2.2) are taken to be

K = J, J 0 = 0.01J (J 0 = 0 in Monte Carlo),

Jz = Vz = 0.01J, g = �2.8J, g0 = 0.667J, � = 0.167J.
(4.5)

In the absence of quenched randomness, there is a finite-
temperature transition in this region to a CDW (stripe)
phase, and SC and stripe order coexist at low T . In the
presence of quenched randomness, no long-range CDW
order occurs, but for weak enough randomness, there re-
main finite-T transitions below which nematic order and
SC develop sequentially.

As shown in Fig. 5, CDW correlations are greatly en-
hanced below the nematic transition in the preferred di-
rection, and these correlations grow monotonically to-
wards T = 0. In contrast, the SC transition, which oc-
curs at a lower temperature, has very little influence on
the behaviour of the CDW structure factor. While in
Figs. 2, 3 and 4 we found that the SC transition had a
dramatic e↵ect on CDW correlations, in this regime we
find instead that nematicity plays an overwhelming role
in determining the T -dependence of CDW correlations.
In other words, SC and nematic transitions tend to de-
crease and increase CDW correlations respectively, and
nematicity always wins when these two factors compete.

0 1 2 3 4 5 6

T/J

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
�

x

(k
=

0)

� = 1.22

� = 0.49

� = 0.06

� = 0.49

� = 0.06

FIG. 4: S
�

x

(k = 0) as a function of T in Region 2, using
large-N (undecorated lines) and Monte Carlo (points with
error bars) methods. Here we fix J

z

= 0.01J and increase the
disorder strength. Input parameters are given in Eq. (4.4).
Short vertical lines correspond to SC transition temperatures.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

T/J

0

20

40

60

80
S

�
x

(k
=

0)

� = 0.98

� = 1.96

� = 2.33

FIG. 5: S
�

x

(k = 0) as a function of T in Region 3, with
fixed J

z

= 0.01J , increasing disorder, and parameters given
in Eq. (4.5). Short vertical lines and dots mark SC and ne-
matic transition temperatures, respectively. T

sc

remains al-
most constant when disorder strength � is varied, while the
nematic transition temperature depends strongly on �. We
show only large-N results here, since Monte Carlo results are
di�cult to obtain with these input parameters in the presence
of such strong disorder.

We should emphasize that this is not a fine-tuning e↵ect;
as long as there is a nematic phase with a critical temper-
ature larger than the SC transition temperature, the lack
of a maximum in the thermal evolution of CDW struc-
ture factor is generally observed for a variety of input
parameters.
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V. PHASE DIAGRAMS

In this section we discuss in detail how the phase
diagram evolves with increasing temperature and disor-
der. All phase diagrams are determined by the large-N
saddle-point method.

A. Zero temperature

As mentioned in Fig. 1, for zero disorder there are
three phases in the g0 � g phase diagram and a bi-critical
point at (g0, g) = (�, 0). As shown in Fig 6, for small
but non-vanishing disorder, the stripe (SC+stripe) phase
is replaced by a nematic (SC+nematic) phase, and the
position of the bi-critical point shifts continuously. There
is a critical disorder strength �c beyond which there is
no nematic phase, and a first-order transition separates
the SC and isotropic phases. (See Appendix C 1 for a
discussion of how the phase boundaries are determined
in those plots.)

B. Finite temperature

Consider the regimes of Fig. 1 with g0 ⌧ � and
g0 � �. We plot in Figs. 7 and 8 the T � g phase
diagram for fixed g0 and increasing disorder in these two
regimes. Appendix C 2 gives detailed information about
how phase boundaries and multicritical points are deter-
mined in these plots.

For g0 ⌧ �, the first-order transition between nematic
and SC phases persists up to �c, at which point the bi-
critical point and the nematic phase disappear simulta-
neously. As disorder is further increased beyond �c, the
SC phase continues to exist, but this phase gets pushed
steadily towards larger g. Quenched disorder tends to pin
CDW locally, which indirectly suppresses the SC order.
However, this e↵ect is mitigated for larger g, at which
point CDW order is suppressed and SC is favoured.

For g0 � �, the phase diagram has a tetra-critical
point. At the critical disorder strength �c, this tetra-
critical point and the nematic phase simultaneously van-
ish, similar to the situation of g0 ⌧ �. Note that Fig. 7
and Fig. 8 have the same �c and Tmulticritical (see Ap-
pendix C 2 for details).

VI. NEMATIC CORRELATION LENGTH

As shown in Section IV C, when nematic order exists
at T = 0, the CDW structure factor S�

x

(k = 0) only
reaches a maximum value at T = 0. In other words, when
the nematic correlation length ⇠nem ! 1 we never ob-
serve Tmax > 0. Here we turn to a regime where Tmax > 0

�0

g

g0

S

C

+

N

e

m

a

t

i

c

Nematic

SC

0 < � < �c

�0

g

g0

Isotropic

SC

� � �c

FIG. 6: Phase diagram for the Hamiltonian in Eq. (2.2) at
T = 0 and � > 0 (see text for definition of �

c

), with J 0 =
J

z

= 0.01J . Dashed (sketched by hand) and solid lines mark
first- and second-order transitions respectively.

and no nematic phase occurs, and study the ⇠nem. Specif-
ically, we choose input parameters corresponding to Re-
gion 1 in Fig. 1. As illustrated in Fig. 9, ⇠nem ⌧ ⇠cdw for
weak disorder, where ⇠cdw is the CDW correlation length.
As the disorder strength increases, ⇠nem grows and even-
tually becomes comparable with ⇠cdw at low temperature.
However, ⇠nem still remains smaller than ⇠cdw. Details of
this calculation can be found in Appendix D.

VII. DISCUSSION

A. Relation to experiments

1. X-ray scattering. The idea of calculating CDW
structure factors from a non-linear sigma model and
comparing with X-ray data was initiated in Ref. 35,
where a model similar to Eq. (2.2) in a 2D, disorder-free
system was shown to give good quantitative agreement
with X-ray data. However, two discrepancies remained.
First of all, as T ! 0, the structure factor calculated
using this model vanished, unlike what is seen in X-ray
scattering experiments13–15,17,18,20–22. Secondly, Tc

was found to occur relatively far below the location
of the CDW structure factor’s maximum, whereas
X-ray experiments find that Tc � Tmax

13–15,17,20,22.
In our model, in the presence of quenched disorder
(� 6= 0), the CDW structure factor sustains a finite
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g
0
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T
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T
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g

FIG. 7: Evolution of the T � g phase diagram for fixed
g0 ⌧ �, as a function of �. Dashed (sketched by hand) and
solid lines mark first- and second-order transitions, respec-
tively. The bi-critical point moves toward large g as disorder
increases, whereas the zero-T nematic-SC transition point be-
haves non-monotonically.

value at T = 0 (due to a pinning e↵ect). In addition,
both the disorder and interlayer coupling present in our
model prove to be e↵ective for bringing Tc closer to Tmax.

2. Nematicity. Macroscopically, long nematic cor-
relations are observed experimentally in the pseudogap

Isotropic

Nematic

T

SC

Stripe

0

� = 0

Nematic

Isotropic

SC

Isotropic

Isotropic

� = �c

SC

SC

0 < � < �c

� > �c

SC+

Nematic

SC +

T

Isotropic

Stripe

Stripe

SC

g
0

� = 0

0 < � < �c

SC

Isotropic

Isotropic

� > �c

T

T

T

g

g

g

T

g

� = �c

Isotropic

T

g

T

g

SC

SC

g

FIG. 8: Evolution of the T � g phase diagram for fixed
g0 � �, as a function of �. Solid lines mark second-order
phase transitions. The location of the tetra-critical point be-
haves non-monotonically as � increases, first moving towards
smaller g until � = �

c

, and then moving towards larger g.

regime of several di↵erent cuprate materials1,24,26–30,32.
These correlations could result from a nematic phase with
infinite correlation length, or from a C4-symmetric phase
with strong nematic fluctuations and a finite correlation
length that is long compared to ⇠cdw. The parameter
regime that leads to the best agreement with X-ray data
(Region 1 in Fig. 1), however, does not host a nematic
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T/J
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0.4

0.8
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1.6
⇠

�
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�
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� = 0

� = 0.86
�
c
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� = 0

� = 0.86
�
c

= 1.3

FIG. 9: CDW and nematic correlation lengths with interlayer
coupling J

z

= 0.01 and parameters given in Eq. (4.2). These
calculations use the large-N saddle-point method. Dotted
lines mark the SC transition temperatures.

phase, nor does it have a considerably longer nematic cor-
relation length than ⇠cdw. Meanwhile, in the regime we
have studied where there is a low-T nematic phase (Re-
gion 3 in Fig. 1), the CDW structure factor constantly
increases as T decreases, with no sign of turning down
where the SC transition occurs. There are at least three
possible explanations for these discrepencies:
(i) In our model we have taken Jz = Vz for simplicity,
but in reality the SC order below Tsc is three-dimensional,
whereas the CDW order always remains essentially two-
dimensional (in low magnetic fields). It is possible that
for Vz � Jz, where the 3D coupling makes the onset of
SC order more robust and mean-field like, that a sharp
depression of the CDW order could occur even where
the nematic transition temperature is greater than the
superconducting Tc.
(ii) Another limitation of our model comes from the con-
straint imposed in Eq. (2.4). This constraint is justi-
fied at temperatures well below any mean-field ordering
temperature35. However, at higher temperatures, the
mean squared magnitudes of both the SC and the CDW
order surely diminish. Specifically, these local magni-
tudes refer to the k-integrated correlation functions,

Isc ⌘ 1

N

Z

d3
k

(2⇡)3
h †(k) (k)i, (7.1)

Icdw,x ⌘ 1

N

Z

d3
k

(2⇡)3
h�†

x(k)�x(k)i. (7.2)

and Eq. (2.4) implies that Isc + Icdw,x + Icdw,y = 3, inde-
pendent of T . These integrated intensities are plotted in
Fig. 10 as functions of temperature for input parameters
from Region 1 of Fig. 1. Here we see that, local supercon-
ducting and CDW orders happily coexist at temperatures
above their ordering temperatures. The competition be-

0 1 2 3 4

T/J

0

1

2

3

I

I
sc

:

I
cdw,x

:

� = 0

� = 1.3

� = 0

� = 0

� = 1.3

� = 0

FIG. 10: Integrated intensity from both large-N mean-field
(undecorated lines) and Monte Carlo (points with error bars)
calculations. Dotted lines correspond to SC transitions.

tween the two orders occurs predominantly as long-range
correlations arise, at which point the system is forced to
select one form of order or the other. In this sense, at
least in our model, the competition does not primarily
concern the amplitudes of the orders, which one might
want to associate intuitively with a “pairing scale” in
the case of superconductivity, but rather47 involves com-
petition at the level of the helicity moduli, i.e. the “su-
perfluid sti↵ness” in the case of superconductivity.
(iii) There is an implicit assumption in this discussion
that the nematicity detected in experiment can be at-
tributed to vestigial CDW order36. However, nematic-
ity may have other origins in the pseudogap regime of
cuprates, which is beyond the scope of our model. This
likely applies28 to the nematicity observed at somewhat
lower doping concentration in YBCO, i.e. for x < 0.09.

B. Conclusions

One aspect of our study with far-reaching implica-
tions is the remarkable degree to which the large-N
mean-field results qualitatively – and in some cases even
semi-quantitatively – reproduce the Monte Carlo data at
N = 2. This observation was already apparent in Ref. 35,
but has now been extended to a wider range of circum-
stances. In particular, we have shown that this approach
applies even in the presence of quenched disorder, where
results obtained using this self-consistent mean-field the-
ory combined with the replica trick reproduce the general
trends seen in the disorder-averaged data from Monte
Carlo simulations. Moving forward, this enables us to
confidently use these approximate analytic approaches in
other contexts. For example, we can now more fully ex-
plore other e↵ective field theories that could give rise to
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experimental features of the cuprates – and other highly
correlated materials with complex behavior – related to
fluctuating and intertwined orders.
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Appendix A: Parameter conversion

We provide here the conversion rules between our model (Eq. (2.2)) and the model used in Refs. 35 and 37. The
Hamiltonian used in these previous studies is

eH = �
X

hiji
xy

"

2
X

↵=1

ni↵nj↵ + �

6
X

↵=3

ni↵nj↵

#

�
X

hiji
z

"

eVz

2
X

↵=1

ni↵nj↵ + eJz

6
X

↵=3

ni↵nj↵

#

+
eg + 4(� � 1)

2

X

i

6
X

↵=3

n2
i↵ +

eg0

2

X

i

 

6
X

↵=3

n2
i↵

!2

+
w

2

X

i

⇥

(n2
i3 + n2

i4)
2 + (n2

i5 + n2
i6)

2
⇤

+
1

2

X

i

6
X

↵=3

ehi↵ni↵,

(A.1)

where n1+in2 represents the SC order parameter, and n3+in4 and n5+in6 represent the two CDW order parameters.
This model imposes the constraint

P6
↵=1 n2

i↵ = 1. Note that Refs. 35 and 37 do not include the e↵ects of interlayer

coupling and disorder, so that eVz = eJz = eh = 0 in these references. One can write the fields  , �x and �y from
Eq. (2.2) in discretized form in terms of the components ni↵ as

 i =
p

3N ⇥ (ni1, ni2, . . . , niN )T
,

�xi =
p

3N ⇥ (ni,N+1, ni,N+2, . . . , ni,2N )T
,

�yi =
p

3N ⇥ (ni,2N+1, ni,2N+2, . . . , ni,3N )T
,

hi =

p
3N

2
⇥
⇣

ehi,N+1,ehi,N+2, . . . ,ehi,3N

⌘T

, (A.2)

where N is the number of components of each order parameter; N = 2 in Refs. 35 and 37 as well as in the Monte
Carlo calculations within this paper. With the transformation defined in Eq. (A.2), it is then straightforward to show
that the conversion rules between the parameters in Eqs. (2.2) and (A.1) are

eT = T/6, � = J/K, eJz = Jz, eVz = Vz, eg = g � 4(J/K � 1), eg0 = 3(g0 +�), w = �6�, (A.3)

where T and eT are the temperatures corresponding to Eqs. (2.2) and (A.1), respectively.

Appendix B: E↵ect of 1/N correction

1/N corrections do not change high and low temperature behaviors of the CDW structure factor S�
x

(k = 0), but
these corrections do have a quantitative e↵ect on its maximum. In Fig. 11, we compare Monte Carlo results for
S�

x

(k = 0) to large-N results with and without 1/N correction for two di↵erent sets of parameters. In the first plot,
we find a large e↵ect of the 1/N corrections on the height of the peak: this is the region where the inverse propagator
of � is the smallest, and so small “self-energy” corrections can have a large e↵ect on the correlator. In the second
plot, we see that the 1/N correction greatly improves the agreement with Monte Carlo.
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FIG. 11: The e↵ect of 1/N corrections in comparion with Monte Carlo data for two di↵erent sets of parameters. Both
parameters sets have K = J , V

z

= J
z

= 0, J 0 = 0 and � = 0. The parameters for both plots correspond to Region 1 of Fig. 1.

Appendix C: Details of Section V

1. Zero temperature

For T = 0 and � = 0, the gradient terms in Eq. (2.2) vanish and we are left with a spatially homogeneous ground
state that satisfies

H

V
= g



|�x|2 + |�y|2
�

� �

N



|�x|2 � |�y|2
�2

+
g0

N



|�x|2 + |�y|2
�2

, (B.1)

where V is the volume of the system, and we have set J = K. The problem amounts to searching for minima of a
two-variable function

H(x, y) = g(x + y) � �

N
(x � y)2 +

g0

N
(x + y)2, (B.2)

with � > 0 and constraints

x � 0, y � 0, x + y  3N. (B.3)

The results are (as shown in Fig. 1):

• When g0 > �,

H(x, y)min =

8

<

:

H(0, 0) (SC) for g > 0
H(�gN/[2(g0 ��)], 0) (stripe+SC) for 6(�� g0) < g  0
H(3N, 0) (stripe) for g  6(�� g0).

(B.4)

• When g0  �,

H(x, y)min =

⇢

H(3N, 0) (stripe) for g < 3(�� g0)
H(0, 0) (SC) for g � 3(�� g0).

(B.5)

For T = 0, and � 6= 0 (Fig. 6) we must numerically solve Eqs. (3.7), (3.8) and (3.9) for the g0-dependence of g,
under the following conditions (where �4J � 2Jz � g � 4g0 + ⌘ + µ is the mass term of SC order parameter):

• Nematic to SC+nematic:
�4J � 2Jz � g � 4g0 + ⌘ + µ = 0, m̃2 = 0, T = 0; solve (3.7), (3.8) and (3.9).

• SC to SC+nematic:
�4J � 2Jz � g � 4g0 + ⌘ + µ = 0, N = 0, T = 0; solve (3.7), (3.9), and @(3.8)/@N .
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2. Finite temperature

The second-order phase transitions in Figs. 7 and 8 are obtained by numerically solving Eqs. (3.7), (3.8) and (3.9)
under corresponding conditions:

• Isotropic to SC:
�4J � 2Jz � g � 4g0 + ⌘ + µ = 0, N = 0, m̃2 = 0, solve (3.7) and (3.9).

• Isotropic to stripe (isotropic to nematic if � 6= 0):
N = 0, m̃2 = 0, solve (3.7), (3.9) and @(3.8)/@N .

• Stripe to SC+stripe (nematic to SC+nematic if � 6= 0):
�4J � 2Jz � g � 4g0 + ⌘ + µ = 0, m̃2 = 0, solve (3.7), (3.8) and (3.9).

• SC to SC+stripe (SC+nematic if � 6= 0):
�4J � 2Jz � g � 4g0 + ⌘ + µ = 0, N = 0, solve (3.7), (3.9) and @(3.8)/@N .

To find the multicritical points in Figs. 7 and 8, we must impose the conditions

� 4J � 2Jz � g � 4g0 + ⌘ + µ = 0, N = 0, m̃2 = 0, (C.6)

and solve (3.7), (3.9) and @(3.8)/@N .
The reason Tmulticritical is independent of g and g0 is that Eq. (3.9) is decoupled from Eqs. (3.7) and (3.8) at the

multicritical point. At � = �c the situation is similar: at T = 0 Eq. (3.9) becomes trivial and we only need to solve
Eqs. (3.7) and (3.8).

Appendix D: Nematic correlation function

We present some technical aspects of computing nematic correlation functions using the replica trick. Rewriting
the replicated Hubbard-Stratonovich Hamiltonian of Eq. (3.1) in k-space gives

Hreplica =

Z

dk

X

a,b

(

A(k)�†
a,x(k)�a,x(k) + B(k)�†

a,y(k)�a,y(k) +

✓

�2�2

T

◆

�†
a(k)�b(k)

+ Na(k)

Z

dp

h

�†
a,x(k + p)�a,x(p) � �†

a,y(k + p)�a,y(p)
i

+
Na(k)Na(�k)N

4�

)

, (D.1)

where we have neglected terms related to superconductivity (⌘ and  ), and

Z

dk

⌘
Z

d3
k

(2⇡)3
, (D.2)

A, B(k) ⌘ �2J(cos kx + cos ky) ⌥ 2J 0(cos kx � cos ky) � 2Vz cos kz + µ. (D.3)

Our goal is to compute hNa(k)Na(�k)i in the limit M ! 0, where M is the total number of replicas. First, we
integrate out � and obtain an e↵ective Hamiltonian for N , which satisfies

e��Heff[N ]

=

Z

D�D�† exp
n

� �Hreplica

o

=

Z

D�D�† exp

(

� �

Z

dk

⇣

�†
1,x, . . . ,�†

M,x

⌘

A�(k) (�1,x, . . . ,�M,x)T +
⇣

�†
1,y, . . . ,�†

M,y

⌘

B�(k) (�1,y, . . . ,�M,y)T

)

⇥ exp

(

� �
X

a

Z

dkdp

Na(k)
h

�†
a,x(k + p)�a,x(p) � �†

a,y(k + p)�a,y(p)
i

+
Na(k)Na(�k)N

4�

)

, (D.4)
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FIG. 12: The lowest order diagrams corresponding to Eq. (D.4) (both are order 1/N). The wavy lines corresponds to the bare
propagator of N , and the solid lines correspond to the bare propagator of �

x(y)

. Each vertex is order 1 and the loop is of order
N (coming from the sum of all the �’s).

where

A�, B�(k) ⌘ A, B(k) · IM⇥M +

✓

�2�2

T

◆

0

B

@

1 . . . 1
...

. . .
...

1 . . . 1

1

C

A

. (D.5)

We now expand the last exponential term in Eq. (D.4) to quadratic order in N (which is equivalent to keeping the
diagrams up to order 1/N , as shown in Fig. 12), and arrive at

exp

(

� �
X

a

Z

dkdp

Na(k)
h

�†
a,x(k + p)�a,x(p) � �†

a,y(k + p)�a,y(p)
i

)

= 1 � �
X

a

Z

dkdp

Na(k)
h

�†
a,x(k + p)�a,x(p) � �†

a,y(k + p)�a,y(p)
i

+
�2

2

X

a,b

Z

dkdpdk0dp0
Na(k)Nb(k

0)

·
h

�†
a,x(k + p)�a,x(p) � �†

a,y(k + p)�a,y(p)
i

·
h

�†
b,x(k0 + p

0)�b,x(p0) � �†
b,y(k0 + p

0)�b,y(p0)
i

(D.6)

The term linear in � will vanish due to the cancellation between �x and �y, and we will drop the constant 1. The
remaining �2 term gives

�He↵[N ] =
X

a,b

Z

dk

Na(k)tab(k)Nb(�k), (D.7)

with

tab(k) ⌘ �ab

4�T
� 1

2T 2

Z

dp

h�†
a,x�b,x(k + p)ih�†

b,x�a,x(p)i + h�†
a,y�b,y(k + p)ih�†

b,y�a,y(p)i, (D.8)

where we have included N
a

(k)N
b

(�k)N
4� from Eq. (D.4), and dropped the factor of N . The nematic correlation function

is

hNa(k)Na(�k)i =
1

M

X

b

hNb(k)Nb(�k)i =
1

M
(s�1

1 + . . . + s�1
M ) (D.9)

where {sa} are eigenvalues of 2tab (the factor 2 is due to the fact that the �0s are complex). Our strategy is to first
compute h�†

a,x�b,x(k)i in Eq. (D.8) by diagonalizing A�(k), which gives

h�†
a,x�b,x(k)i = (�ab � 1

M
)

T

A(k)
+

1

M
· T

A(k) � 2�2M/T
. (D.10)

We then diagonalize tab and obtain hNa(k)Na(�k)i according to Eq. (D.9), which yields

hNa(k)Na(�k)i(M ! 0)

=

1
2�T �

R

dp

n

1
A(k+p)A(p) + 2�2

T

h

1
A2(k+p)A(p) + 1

A(k+p)A2(p)

i

+ A $ B
o

+ 4�4

T 2

R

dp

h

1
A2(k+p)A2(p) + 1

B2(k+p)B2(p)

i

(

1
2�T �

R

dp

n

1
A(k+p)A(p) + 2�2

T

h

1
A2(k+p)A(p) + 1

A(k+p)A2(p)

i

+ A $ B
o

)2 .

(D.11)



13

At k = 0, Eq. (D.11) reduces to

hNa(0)Na(0)i(M ! 0) =

1
2�T �

R

dp

⇣

1
A2(p) + 1

B2(p) + 4�2

TA3(p) + 4�2

TB3(p)

⌘

+
R

dp

⇣

4�4

T 2A4(p) + 4�4

T 2B4(p)

⌘

h

1
2�T �

R

dp

⇣

1
A2(p) + 1

B2(p) + 4�2

TA3(p) + 4�2

TB3(p)

⌘i2 , (D.12)

where A and B are defined in Eq. (D.3). A nematic transition occurs when the denominator vanishes such that

1

2�T
=

Z

dp

✓

1

A2(p)
+

1

B2(p)
+

4�2

TA3(p)
+

4�2

TB3(p)

◆

, (D.13)

which is consistent with mean-field saddle-point equation (3.8) after taking a derivative with respect to N and setting
N = 0.
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22 M. Hücker et al., Phys. Rev. B 90, 054514 (2014).
23 W. Tabis et al., Nat. Commun. 5 (2014).
24 T. Wu et al., Nat. Commun. 6 (2015).
25 R. Comin et al., Science 347, 1335 (2015).
26 Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys.

Rev. Lett. 88, 137005 (2002).
27 R. Daou et al., Nature 463, 519 (2010).
28 O. Cyr-Choinière et al., arXiv preprint arXiv:1504.06972

(2015).

29 V. Hinkov et al., Science 319, 597 (2008).
30 M. J. Lawler et al., Nature 466, 347 (2010).
31 E. W. Carlson and K. A. Dahmen, Nat. Commun. 2, 379

(2011).
32 K. Fujita et al., Science 344, 612 (2014).
33 O. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. B

57, 1422 (1998).
34 S. Sachdev and E. Demler, Phys. Rev. B 69, 144504 (2004).
35 L. E. Hayward, D. G. Hawthorn, R. G. Melko, and

S. Sachdev, Science 343, 1336 (2014).
36 L. Nie, G. Tarjus, and S. A. Kivelson, PNAS 111, 7980

(2014).
37 L. E. Hayward, A. J. Achkar, D. G. Hawthorn, R. G.

Melko, and S. Sachdev, Phys. Rev. B 90, 094515 (2014).
38 Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149

(2014).
39 A. V. Maharaj, P. Hosur, and S. Raghu, Phys. Rev. B 90,

125108 (2014).
40 D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 134516

(2014).
41 Y. Caplan, G. Wachtel, and D. Orgad, arXiv preprint

arXiv:1502.07498 (2015).
42 V. Dotsenko, Introduction to the replica theory of dis-

ordered statistical systems (Cambridge University Press,
2001).

43 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

44 W. K. Hastings, Biometrika 57, 97 (1970).
45 M. E. J. Newman and G. T. Barkema, Monte Carlo Meth-

ods in Statistical Physics (Oxford University Press, 1999).
46 U. Wol↵, Phys. Rev. Lett. 62, 361 (1989).
47 S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,

550 (1998).


	I Introduction
	II The model
	III Methods
	A Saddle-point solution in the large-N limit
	B Monte Carlo

	IV CDW Structure factor
	A Region 1
	B Region 2
	C Region 3

	V Phase diagrams
	A Zero temperature
	B Finite temperature

	VI Nematic correlation length
	VII Discussion
	A  Relation to experiments
	B Conclusions

	 Acknowledgments
	A Parameter conversion
	B Effect of 1/N correction
	C Details of Section ??
	1 Zero temperature
	2 Finite temperature

	D Nematic correlation function
	 References

