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The electron number parity of the ground state of a semiconductor nanowire proximity coupled to a bulk
superconductor can alternate between the quantized values ±1 if parameters such as the wire length L, the
chemical potential μ, or the magnetic field B are varied inside the topological superconductor phase. The parity
jumps, which may be interpreted as changes in the occupancy of the fermion state formed from the pair of
Majorana modes at opposite ends of the wire, are accompanied by jumps δN in the charge of the nanowire,
whose values decrease exponentially with the wire length. We study theoretically the dependence of δN on
system parameters, and compare the locations in the μ-B plane of parity jumps when the nanowire is or is not
proximity coupled to a bulk superconductor. We show that, despite the fact that the wave functions of the Majorana
modes are localized near the two ends of the wire, the charge-density jumps have spatial distributions that are
essentially uniform along the wire length, being proportional to the product of the two Majorana wave functions.
We explain how charge measurements, say by an external single-electron transistor, could reveal these effects.
Whereas existing experimental methods require direct contact to the wire for tunneling measurements, charge
sensing avoids this issue and provides an orthogonal measurement to confirm recent experimental developments.
Furthermore, by comparing density of states measurements which show Majorana features at the wire ends with
the uniformly distributed charge measurements, one can rule out alternative explanations for earlier results. We
shed light on a parameter regime for these wire-superconductor hybrid systems, and propose a related experiment
to measure spin density.

DOI: 10.1103/PhysRevB.91.045403 PACS number(s): 74.78.Na, 73.63.Nm, 74.78.Fk

I. INTRODUCTION

The isolation of zero-energy Majorana modes is an essential
step in various proposals to perform topologically protected
quantum computation [1]. The existence of localized Majorana
modes has been predicted in several condensed matter systems,
although definitive detection of such modes remains an open
challenge [2–9], and in cold atom systems [10].

A promising physical system for realizing these modes
consists of a one-dimensional (1D) semiconductor wire with
strong Rashba spin-orbit coupling, coupled to a bulk s-wave
superconductor (SC), and with a strong applied magnetic field
[11,12]. Under appropriate conditions, this system can enter a
“topological” state, which would exhibit isolated Majorana
fermions at the wire ends. The condition for a wire with
strong spin-orbit interaction to enter this topological regime is
E2

Z > �2 + μ2, where EZ is the Zeeman energy, proportional
to the applied magnetic field B, while � is the induced
superconducting pair potential in the wire, and μ is the
chemical potential of the wire, measured relative to the electron
energy at wave vector k = 0 when EZ = � = 0.

For an infinitely long wire in the topological regime,
the wire has two possible ground states which are perfectly
degenerate. The Majorana modes appear at the ends of the wire
as zero-energy midgap states in the Bogoliubov–de Gennes
(BdG) spectrum. Moreover, in this limit the charge density
distribution is precisely the same in the two ground states. For
a long but finite wire, the two lowest-energy states of the wire
will generally not be perfectly degenerate, but will be split
by a small amount, which decreases exponentially as the wire
becomes long. Similarly, the charge density distributions in
the two states will differ by a small amount.

Since fermion number is conserved mod 2 in the Hamil-
tonian of the system, the number parity is a good quantum
number, which differs in the two competing ground states.
We can classify the parity by the eigenvalue of the number
parity operator ±1, and we call these even/odd, respectively.
If parameters such as B or μ or the length L of the system
are varied, the energies of the even- and odd-parity states can
cross, so the parity of the true ground state can jump discretely
between even and odd.

Since the total charge on the nanowire is not conserved, it
is not a good quantum number, and its expectation value, in
general, will not be an integer as the ground state will be a
superposition of components with a different electron number.
For a finite wire there will be a small but nonzero jump in the
total electron number, whenever the parity changes, but the
size of the jump can be much less than one electron charge.
Between these jumps, the average number of electrons will
vary continuously with the system parameters.

Although the quantum operators for Majorana modes do
not obey the commutation relations of a normal Dirac fermion
creation or annihilation operator, one can construct a proper
annihilation operator from a linear combination of the two
Majorana operators at opposite ends of the wire. Following
a BdG description, the difference between the even and odd
parity many-body ground states is equivalent to whether the
fermion state corresponding to this annihilation operator is
occupied or not. Moreover, the energy difference between the
two ground state energies is just the BdG energy of this single
fermion state. Since eigenstates of the BdG equation occur
in pairs with energies that differ by a sign, we may say that
the degenerate zero-energy state is split in the finite wire, into
states of positive and negative energy, due to a small overlap
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between the Majorana wave functions localized at the two
ends. Jumps in the parity of the ground state occur when this
energy splitting passes through zero. The charge difference
between the even and odd parity ground states is equal to the net
charge carried by the BdG fermion state, which can be nonzero
when the constituent Majorana wave functions overlap.

The purpose of the present paper is to explore in some
detail the regions in the phase diagrams where parity jumps
are expected, as well as the size of the jumps in electron
charge expected at these transitions. We also compute the
spatial distribution of the jumps in charge density. Although
the Majorana wave functions, and hence the tunneling density
of states, are peaked at the wire ends, we show that the
discontinuity in charge density arising from the overlap of
the Majorana wave functions is spread essentially uniformly
along the wire. Changes in total charge and charge density can
be measured experimentally using charge sensing techniques.

We note that the number parity of the nanowire can
change when a parameter is varied on laboratory time scales,
even though the model Hamiltonian conserves parity, even
in the absence of coupling to a normal lead. This is due
to the presence of a small number of thermally activated
quasiparticles in the bulk superconductor. These can be excited
across the gap of the SC, or might result from hopping between
localized states within the bulk SC.

In an important portion of the topological regime (see
Sec. III below), it is predicted that the energy splitting of
the Majorana modes will vary as δE ∼ exp(−L/ξ ) cos(kFL),
where ξ is the induced superconducting coherence length, kF

is the Fermi wave vector, and L is the length of the wire
[13,14]. Theoretically, the easiest way to probe this oscillatory
splitting might be to vary L, bringing the ends closer together.
In practice, however, the wire has a fixed length. It can be
effectively shortened in discrete steps by depleting pieces of
it using external gates, but local gating may lead to other
unforeseen consequences.

Alternatively, an experiment can vary kF to access the
oscillations, and ξ to exhibit the exponential envelope. Both
kF and ξ depend on the chemical potential, which can be
controlled with a global backgate, and on the applied external
magnetic field. It has therefore been suggested in [13] to look
for signatures of this dependence. We demonstrate that charge-
sensing measurements could reveal such oscillations, and thus
may be a natural next step in the search for experimental
verification of the elusive Majorana end modes.

Many recent experiments [15–21] have probed these one-
dimensional semiconductor-superconductor hybrid systems
by studying electron transport through the nanowire. Such
transport experiments are very promising, but other physical
mechanisms have been offered as explanations for the ob-
served effects [22–27]. In particular, end effects, including
Kondo physics [28], can cause zero-bias peaks similar to
the ones observed. The alternate explanations suggest that
the transport measurements may be sensitive to other effects
beyond the possible Majorana modes predicted to exist at the
ends of the wire. Furthermore, recent studies suggest that
contact with a normal metal lead reduces the induced pair
potential in the wire [29].

An alternative experiment, using capacitive coupling to a
wire buried in a semiconductor heterostructure and designed

to measure the global density of states by harmonic generation
from high-frequency electric excitation, was proposed in
[30] and is the basis of ongoing experiments. Still another
experiment, examining two coupled nanowires in a microwave
cavity, is presented in [31], while a technique using an
oscillating electrode is discussed in [32], and a proposal to
use a resistive lead for tunneling measurements appears in
[33].

Lin et al. [34] proposed an alternate experiment to probe
the Majorana states by charge sensing using a single electron
transistor (SET). As addressed above and assumed in our
discussion, such a measurement does not require tunneling
to a normal lead, which could avoid some of the complications
encountered in previous experiments. Although the authors of
[34] present numerical calculations that illustrate the charge
density jumps associated with Majorana states in various cases,
we present here a more detailed analysis of these features.

While we employ a simplified model of the physical system,
in which we neglect the Coulomb interactions between elec-
trons in the nanowire, we believe that results presented hold
for real systems, and the effect should be visible in a realistic
experiment. We address the effects of interactions in Sec. VIII
below. Various regimes in parameter space are discussed. We
also address how to extract relevant system parameters using
this technique, demonstrating that this experimental technique
has other applications beyond the intended goal of detecting
split Majorana end states.

We stress that a scanning charge measurement showing
the additional charge spread across the wire, combined with
a scanning tunneling measurement, can rule out alternative
explanations of end effects for the previously observed features
of Majorana physics.

The rest of this paper is structured as follows. In Sec. II we
present the model and relevant parameters. We then discuss
the spectrum and number parity of systems with and without
induced superconductivity in Sec. III. We address the charge
of the wire in three sections, beginning with an analytic
analysis of the split Majorana modes in Sec. IV, followed
by a numerical calculation of the total change in charge in
Sec. V, and then a discussion of the spatial distribution of the
charge along the wire in Sec. VI. We end with an analysis of
jumps in spin density in Sec. VII, a discussion of the effects of
electron-electron interactions and screening in Sec. VIII, and
an overview of future experiments in Sec. IX.

II. MODELING

We model the wire using a standard BdG Hamiltonian:

HBdG =
(

− ∂2
x

2m
− μ(x)

)
τz + EZσzτz

+ iα∂xσyτz + �σyτy, (1)

where α is the Rashba spin orbit parameter, and E Z =
−gμBB/2 is the Zeeman energy in an applied magnetic
field B, with g factor g, and μB is the Bohr magneton
[35]. We have chosen the pair potential �, proximity induced
from the superconductor, to be positive and real. If tunneling
between the SC and nanowire is strong, � can approach
�SC, the gap of the bare SC, whereas if the tunneling is
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weak, � can be arbitrarily small. The τj and σj are Pauli
matrices in particle-hole and spin space, respectively. We
choose μ(x) = μ constant along the length of the wire.

We find the eigenvalues εν , and the corresponding eigen-
functions,

ψν(x) ≡ (uν
↑,uν

↓,vν
↑,vν

↓)T . (2)

We can then compute the average charge density at each site
at finite temperature, with f (ε) the Fermi-Dirac distribution:

〈ρ(x)〉T =
∑
ν,σ

∣∣uν
σ (x)

∣∣2
f (εν) + ∣∣vν

σ (x)
∣∣2

f (−εν), (3)

where the sum is over states with εν > 0. We can tune B and
μ, and calculate the induced change of the charge.

To apply our model numerically, we rewrite the Hamil-
tonian on a 1D lattice with total length 2 μm. For Figs.
1– 3 we use 80 sites, and for Fig. 4 we use 160 sites.
Both give a bandwidth larger than all other energy scales,
as desired for numerical accuracy. The figures shown in this
paper were computed using realistic parameters that might
be appropriate for an InSb wire such as in the experiments in
Ref. [15], namely � = 0.25 meV, α = 0.2 eV Å, g = 50, m =
0.013m0, where m0 is the electron mass. For completeness
we also tested the model for the system parameters from the
Weizmann experiment [16], but all figures were plotted with
the parameters defined here.

III. SPECTRUM AND PARITY

We begin by examining the case of a wire without a
superconductor to gain intuition of what one should expect
before adding the superconductor. The system we consider
consists of a semiconducting nanowire with large Rashba
spin-orbit (SO) coupling sitting on an insulating substrate with
a global backgate below, as shown in Fig. 1(a). The substrate is
required to break inversion symmetry for Rashba SO, and the
backgate allows for control of the chemical potential. Notice
that we have a wire sitting on an insulator with no other
contacts, not to be confused with the case of a wire connected
to a metal whose superconducting gap is reduced, say by a
magnetic field. If we think of � in the wire as being dependent
on �SC of a superconductor and the tunneling between the
wire and the superconductor, this is equivalent to taking the
tunneling to zero while keeping �SC fixed. We nonetheless
refer to this case as � = 0. Figure 1(c) shows the spectrum
for a wire without a superconductor as a function of magnetic
field, calculated from Eq. (1). The spectrum is not gapped, and
the discrete states crossing the Fermi level are due to the finite
length of the isolated wire.

The number parity of the wire is plotted as a function of μ

and B, in Fig. 2(a), with black regions corresponding to odd-
parity states. In this case, the parity is calculated directly from
the electron number in the wire, since it is well defined without
superconductivity. The boundaries between regions of constant
parity correspond to energy states crossing the Fermi level, as
in Fig. 1(c). These boundaries are the locus of points at which
the system is compressible, and the charge changes discretely
across these points as we fill each newly available state. We
therefore refer to these parity plots as charging diagrams.

FIG. 1. (Color online) (a) and (b) Schematic of geometry. Semi-
conducting nanowire sits on an insulating substrate (white), above a
global backgate. Superconductor (in black) present in (b) but not (a).
(c) and (d) Quasiparticle energy spectrum as function of Zeeman field
EZ for setups (a) and (b), with length L = 2 μm, and other parameters
μ = 0, α = 0.2 eV Å, m∗ = 0.013m0, as defined in the text. Levels
closest to zero are marked in red. In (c) we see discrete states from
confinement. In (d), once in the topological regime EZ >

√
μ2 + �2,

we see the midgap degenerate Majorana states, which then split and
oscillate (pair potential � = 0.25 meV).

At B = 0 we see degenerate Kramer’s pairs of opposite spin
states, and thus no odd parity region. As we increase B these
states are spin split, and at high enough fields, all states at a

FIG. 2. (Color online) Electron-number parity of the system, for
(a) wire without a superconductor to gain intuition, and (b) wire
proximity coupled to a SC with a topological regime. (c) and
(d) Zoom on upper-right part of (a) and (b). Arrow highlights a
double degeneracy. Dotted line marks an avoided crossing. System
parameters: g = 50, α = 0.8 eV Å, L = 2 μm, � = 0 in (a) and (c),
and � = 0.25 meV in (b) and (d).
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given μ are spin polarized. For intermediate B, i.e., 0 < EZ <

μ, we see figure-eight patterns in the charging diagram where
states avoid each other at some values of μ and EZ and cross
at others. These can be seen more clearly in Fig. 2(c), which
focuses on a region of Fig. 2(a). The avoided crossings [red
dashed line in Fig. 2(c)] are due to spin-orbit coupling, and the
degenerate points [red arrow in Fig. 2(c)] occur because the
Rashba spin-orbit interaction only mixes opposite-spin states
between wave functions with different spatial parity.

To see this, note that the Hamiltonian is a system of linear
equations which mix the two spin species. Since, for � = 0,
HBdG commutes with Pσz, where P is the spatial inversion
operator, it follows that states with different eigenvalues of
Pσz have vanishing matrix elements. Equivalently, by writing
the wave function for each spin expanded in Fourier modes,
it is obvious that mixing of opposite spins occurs only
when the Fourier modes have opposite spatial parity. We
calculate the spacing between avoided levels n and m, where
level n is the nth Kramer pair counting from μ = 0, in a wire
of length L. We find

�En,m =
∣∣∣∣ αnm

L(n2 − m2)

∣∣∣∣ , (4)

where B is implicitly included in the equation since larger
|n − m| means states only approach each other at higher B. The
avoided crossings can be used as another means to extract the
value of α, the spin-orbit strength. Note that the spin-polarized
states at high B and the avoided-crossing figure eights are the
only two distinct regimes in this � = 0 case.

Although it is not shown in the figures, we may also consider
rotating the magnetic field from along the length of the wire,
to the spin-orbit direction. When the applied B is parallel
to the spin-orbit field, it is qualitatively equivalent to setting
α = 0, although α does provide a quantitative shift to the result.
Indeed, the Zeeman split states no longer avoid each other,
and just evolve linearly with B. We note that an experiment in
which the magnetic field is rotated (see [36]) until the avoided
crossings completely disappear provides a clear measurement
of the spin-orbit direction. As discussed below, this can also
be done for the wire-SC hybrid systems.

With these insights from the nonsuperconducting case, we
consider a wire proximitized by a SC. This is similar to the
above setup, although the wire is now coupled to a large super-
conductor, which we treat as a bath as in Fig. 1(b). We assume
that the wire and superconductor are in thermal equilibrium,
such that fermion parity can change on the time scales of the
experiment. In Fig. 1(d) we show the spectrum for this case,
under the same conditions as the nonsuperconducting case. At
low B, the system is gapped, and as a function of magnetic field
the crossover from a nontopological state to a topological state
is clear at EZ =

√
�2 + μ2 where the gap closes. Within the

topological regime, we see the two midgap states oscillating,
with energy crossings that correspond to parity changes of the
wire. The splitting depends exponentially on the length of the
wire, and goes approximately as exp (−L/ξ ) cos(kF L), where
ξ is the superconducting coherence length in the wire, and kF

is the Fermi wave vector. Note that the splitting increases with
increasing Zeeman field, since ξ increases with B [13,14,16].

We calculate the number parity in the wire with induced
superconductivity, and plot it as a function of μ and B, in
Fig. 2(b). The method used to calculate the parity is discussed
in the Appendix. The theoretical boundary between the topo-
logical and nontopological regimes corresponds to the curve

EZ = Ec ≡
√

μ2 + �2, (5)

and in the limit L → ∞, the parity is constant below this
curve. Below this boundary, the number of particles fluctuates
as Cooper pairs are interchanged with the superconductor,
but there are no changes in the parity. Within the topological
regime EZ > Ec, the midgap states have net spin polarization
and evolve linearly in the μ-B plane, similar to the wire without
a superconductor. Between parity flips, the density varies
continuously. Comparing the parity flips in Fig. 2(b) with the
oscillations in the BdG spectrum [Fig. 1(d)] we see that the flips
correspond precisely to the degeneracy points between the Ma-
jorana modes. This confirms that the parity flips are a signature
of the split Majorana states crossing the Fermi energy.

We note that in an experiment, by fitting the outermost
parity flip, corresponding to the topological boundary, to the
hyperbola EZ =

√
�2 + μ2 for small B and μ, the value of the

induced pair potential � can be obtained. This is an important
system parameter, whose value has an important effect on
interpretation of experiments. Although � has been measured
through transport measurements, independent confirmation is
important, especially given the recent discussion of soft gaps
due to leads [29]. However, this fitting procedure can be
difficult, since at large B and μ, the topological boundary
is only weakly dependent on �; we show an alternate way to
extract � at the end of Sec. V below.

An interesting new parameter regime to examine is large B

and μ, outside the topological region, i.e., Ec > EZ > �, the
upper right side of Fig. 2(b), and enlarged in Fig. 2(d). Here
we see parity flips, but they evolve quite differently from those
within the topological region. In this nontopological regime,
B is so strong that the wire is almost gapless, and the changes
in parity are discrete and due to the finite length of the wire.
At large enough B, this is true on both sides of the topological
boundary. The figure-eight-like patterns from the � = 0 case
are no longer present, as the double degeneracy points have
now become avoided crossings.

For completeness we may consider turning off the spin-orbit
interaction, killing the midgap Majorana states. Setting α = 0
in our model, one finds that the system has even parity for
all μ and EZ < �. When EZ > Ec, the alternating parallel
parity stripes we saw in the other cases are present. For � <

EZ < Ec, one finds a checkerboard pattern of constant parities
formed by the two spin states evolving in opposite directions
with EZ. Although this behavior for EZ < Ec distinguishes
the α = 0 case from the α > 0 case, we stress that both show
very similar behavior when EZ > Ec.

For a “topological” wire with � > 0 and α > 0, if the
applied magnetic field is rotated so that it has a component
along the direction of the spin-orbit field, the system begins
to behave as if it has no spin-orbit interaction (α = 0). This
is analogous to the avoided crossings disappearing when the
field is rotated in the � = 0 case, as discussed above. When
this perpendicular magnetic field component becomes strong
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enough compared to the axial field, the charging diagram and
the peak heights look like the α = 0 case. The spin orbit does
not couple opposite spins, and just adds to the Zeeman field.
It therefore no longer makes sense to discuss a topological
regime. Rotating the field perpendicular to both the wire and
the spin-orbit direction has no effect on the charging diagrams.

In all of the above discussion, the parity transitions
indicate that the system is compressible at these points in
parameter space—it is possible to add charge. In particular,
we can calculate the change in charge as we cross these
boundaries. So far it seems that in the three cases we have
examined—the topological case, � = 0, and α = 0—there
are spin-polarized parity flips in the regime EZ > Ec, each
qualitatively indistinguishable from the other cases. In order
to identify split Majorana fermions, we need to distinguish
between these three cases. To do so we take a closer look at the
size of the discrete charge jump across these parity boundaries.
This change in charge can be detected through compressibility
measurements.

IV. JUMPS IN CHARGE DENSITY

In this section we show that while the Majorana wave
functions are localized at the two ends of the wire, the jumps
in the charge density are roughly uniform across the wire.
We show that this happens because, roughly speaking, the
difference in the charge density of the even and the odd ground
states is given by δρ(x) = |u(x)|2 − |v(x)|2, with 2u(x) =
uR(x) + iuR(L − x) and 2v(x) = uR(x) − iuR(L − x), where
uR/L(x) is an exponentially decaying (real) function peaked
at the right/left end of the wire. One therefore obtains that
δρ(x) = −uR(x)uR(L − x) is roughly uniform as the two
exponential factors cancel each other. We derive here the
expression for δρ(x) by calculating the full expression for
the wave functions u(x) and v(x).

Following the supplementary material of Ref. [13], we note
that in the bulk of the wire there are generally eight linearly
independent solutions of the BdG differential equations at the
energy E = 0. There are four solutions in which the spinor
u = (u↑,u↓)T is pure real and in spinor notation, v = u∗ = u,
and four in which u is pure imaginary, and v = u∗ = −u. The
two classes are labeled, respectively, by an index λ = ±1. The
general solution for a fixed λ can be written as

uλ(x) =
4∑

n=1

ane
−znxρn, (6)

where zn are roots of the quartic equation
(

z2

2m
+ μ2

)2

− E2
z + (zα − λ�)2 = 0, (7)

and ρn are two component spinors, independent of x, whose
explicit forms are given in Ref. [13].

For λ = −1, if the system parameters are in a topological
superconductor phase, the quartic equation will have two
complex conjugate solutions, denoted by (z1,z2) = z±, which
have positive real parts, one positive real solution, denoted
z3 = w, and one negative solution, which we denote z4 = s.
The spinors ρn may be chosen such that both components of ρ3

and ρ4 are real, while ρ1 = ρ∗
2 . Then, to obtain a solution with

pure imaginary uλ, we must choose a3,a4 to be pure imaginary,
and a2 = −a∗

1 .
For λ = 1, the solutions of Eq. (7) will be written as

z′
n = −zn, where zn are the solutions for λ = −1 and the corre-

sponding spinors are given by ρ ′
n = ρn. In the nontopological

phase there will be two solutions with positive real parts and
two with negative real parts for both choices of λ.

For a semi-infinite wire, defined in the region 0 < x <

∞, we impose boundary conditions that u = 0 at x = 0 and
that u → 0 for x → ∞. For the case λ = −1, the second
requirement is satisfied if and only if we choose a4 = 0. This
leaves us three real parameters, a3 and the real and imaginary
parts of a1. As the boundary condition at x = 0 imposes only
two additional conditions on u, we can always find a nonzero
choice of the coefficients an to satisfy all requirements. This
defines the wave function for a zero-energy Majorana mode
localized near x = 0.

For the case λ = 1, the requirements that the wave function
decay for x → ∞ means that three coefficients must be chosen
equal to zero, corresponding to n = 1, 2, and 3, leaving only
one coefficient to adjust. Clearly this will not allow us to
satisfy the boundary condition at x = 0. In the nontopological
regime, there are two adjustable coefficients for either choice
of λ, which means that one cannot find a nonzero solution of
the equations in either case.

Returning to the topological case, and following [13], we
may write

z1 = −ikF + κ, (8)

where kF and κ are positive and kF reduces to the Fermi
wave vector of the normal wire in the limit where the pairing
potential � is small. The envelope of the Majorana wave
function will decay exponentially for x → ∞ with a decay
length ξ , given by

ξ−1 = min(κ,w). (9)

In the limit where EZ tends to the critical value Ec =√
�2 + μ2 for the transition to the nontopological phase, so the

energy gap vanishes at k = 0, one finds that w → 0, and hence
ξ = w−1. However, for magnetic fields such that EZ is larger
than a second value E2, one finds w > κ , so that ξ = κ−1. In
this regime the large distance behavior of the Majorana wave
function may be written

u(x) ∼ e−κx sin(kF x + φ), (10)

where the phase shift φ will itself be small for large values of
EZ. As was noted in [13], the crossover field B2 is fairly close
to the critical value Bc for nanowires such as InSb.

In the case of a long but finite wire, we must replace the
boundary condition at infinity by the condition that the two
components of u should vanish at x = L. For a finite wire,
we no longer require a4 = 0. Since a4 must be real, however,
this gives us only one additional parameter to choose, and
one cannot find a nontrivial zero-energy solution for general
values of the control parameters μ, B, and L. On the other
hand, zero-energy solutions could exist on discrete surfaces of
codimension unity in the control parameter space.

In the regime of parameters where Eq. (10) applies, for
the semi-infinite system, we expect to find these zero-energy
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solutions on surfaces close to the points where LkF (μ,B) =
nπ , where n is an integer.

If L/ξ is large compared to unity, then the magnitude of a4

necessary to satisfy the boundary conditions at x = L will be
of order e−L(w+κ). The nonzero value of a4 requires a correction
to a1, a2, and a3 in order to continue to satisfy the boundary
conditions at x = 0, but this correction is obviously small
when L is large.

If a nonzero wave function ψL(x) is obtained in this manner
for λ = −1, it can be used to construct a zero-energy Majorana
operator γ L, which will have maximum weight at the left end
of the wire, and decrease exponentially for large L. We define

γ L =
∑

σ

∫ [
uL

σ (x)�σ (x) + vL
σ (x)�†

σ (x)
]
dx. (11)

In order to satisfy the requirement (γ L)2 = 1, the wave
function must be normalized so that

2
∑

σ

∫ L

0

∣∣uL
σ (x)

∣∣2
dx = 1. (12)

In order to have a precise definition one must still introduce a
convention with regard to the overall sign of the wave function.
Here we adopt the convention that the sign of −iu(x) should be
positive for x slightly greater than zero, for the spin component
aligned with the applied magnetic field. For large magnetic
field values, such that κ < w, this implies that

−iuL
↓ (x) ≈ Cκ1/2e−κx sin(kF x), (13)

where C is a constant of order unity.
Following a similar procedure for the case λ = 1, we can

construct a Majorana operator γ R associated with the right end
of the wire. Again there is an arbitrariness of an overall sign,
however, we can fix the sign by choosing the wave function as

uR(L − x) = −iuL(x), vR(L − x) = ivL(x). (14)

It is easy to show that uR satisfies the necessary equations and
boundary conditions for λ = 1, and that the corresponding
wave function ψR is orthogonal to ψL under the BdG metric.
This means that {γ R,γ L} = 0.

We may now form a BdG fermion annihilation operator � =
(γ R + iγ L)/2, with the corresponding BdG wave function
ψ = (ψR + iψL)/2. Although the charge density is zero for
all x in the Majorana states ψR or ψL, the charge density
associated with the wave function ψ is given by

〈ρ(x)〉ψ = |vR(x) + ivL(x)|2 − |uR(x) + iuL(x)|2
4

= −uR(x) uR(L − x), (15)

which is generally not zero. Specifically, 〈ρ(x)〉ψ is the
difference in charge density when the state ψ changes from
unoccupied to occupied.

Let L and B be fixed at specified values, and let μ0 be a value
of the chemical potential μ for which there exist zero-energy
states for the given L and B. Let us now consider a chemical
potential μ = μ0 + δμ, where |δμ| is small. The system
Hamiltonian will therefore be modified by the addition of a
term −δμ

∫
ρ(x)dx. Then the wave function ψ constructed

above is no longer an exact solution of the BdG equations. To

lowest order in δμ, however, it remains a solution of the BdG
equations, and the energy of the state is given by first order
perturbation theory as Eψ = −δμ δNψ , where

δNψ = −
∫ L

0
uR(x) uR(L − x) dx, (16)

which we may interpret as the net number of electrons
associated with the zero-energy level ψ .

For δμ = 0, the ground state of the system will have ψ

occupied if and only if Eψ < 0. The relation Eψ = −δμ δNψ

implies that if δμ changes from a value slightly smaller than
zero to a value slightly larger than zero, the total electron
charge will always jump by a positive amount, given by the
absolute value |δN |. It also follows that the value of the jump
is given by the slope of the energy curve for δμ → 0+:

δN ≡ |δNψ | = lim
μ→μ+

0

∂Eψ

∂μ
. (17)

In the case of large B and κL > 1, one finds for the zero-
energy state at μ = μ0:

〈ρ(x)〉ψ ∼ κe−κL sin2(kF x)(−1)n+1, (18)

where n = kF L/π . The net charge associated with the state is
given by δNψ ≈ (−1)n+1κLe−κL.

V. NUMERICAL CALCULATIONS OF TOTAL CHARGE

We now calculate δN numerically, using Eq. (3), and
examine its dependence on the applied magnetic field. The
features described in Sec. III can be traced to the cosine term
in the splitting between the Majorana states. The magnitude
of the change in charge allows us to probe the e−κL factor
of Eq. (18), which also enters the energy splitting. From this
information we can distinguish between topological charging
events and nontopological states.

In particular, consider a plot of δN in the wire at μ = 0
as a function of EZ, as shown in the inset in Fig. 3. The
height of the peaks shows the magnitude of change in total
charge in the wire. The positions of these peaks correspond
to the parity flips at μ = 0 as seen in Fig. 2(b). At large B,
the split-Majorana states saturate to one, since at high B the
splitting becomes comparable to �, and the peaks represent
discrete single-particle states. The main part of Fig. 3 traces
and interpolates between the maxima of these peaks for the
various parameter regimes discussed, all at μ = 0. For a wire
without an induced superconducting gap—regardless of the
presence of spin-orbit interaction—the peak height is constant
and peaks are visible all the way down to B = 0 (black dashed
line in Fig. 3). This is as expected for a system without a gap,
in which every charging event corresponds to the addition of
an electron. For a system with finite induced � and α = 0, we
find that there are no peaks visible for EZ < �, as expected
when the system is gapped and there are no midgap states. At
large EZ � �, the discrete charging events correspond to the
addition of electrons, and δN = 1. As seen from the height of
δN , when EZ ∼ �, the peaks correspond to a change in charge
of less than one electron.

Although the peaks in our calculations have zero width,
we note that in a real experiment, finite temperature and long
parity-breaking time will both lead to larger widths for the
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FIG. 3. (Color online) Jumps in electron number in the wire δN

as a function of EZ for μ = 0. Inset: Peaks corresponding to the
zeros of the spectrum in the topological regime. Red dashed line is
at EZ = �. Main figure: Trace of the maximum of the peaks with
interpolation. Solid red line α > 0, � > 0; blue dash-dot line α = 0,
� > 0; black dashed line α = 0, � = 0.

peaks. Additionally, if we allow tunneling to a normal metal,
peak width could change.

When α > 0, the topological case, peaks begin to appear at
EZ ∼ E2 > �, and the magnitude has the form of the prefactor
in Eq. (18). Since κ ∼ 1/EZ for EZ > E2 (see [13,37]), the
dependence on the Zeeman field, solid red line in Fig. 3, is
roughly exp(−L/EZ)/EZ. The shape of the curve is closely
linked to the overlap—and splitting—of the Majorana modes.
The difference between the different traces of the amplitude
height is a useful tool to distinguish between the oscillations
in an experiment.

The calculations shown here are done at T = 0. At finite
temperatures we expect the discrete jumps to be smeared. Since
at μ = 0, E2 ∼ Ec = �, an experiment can extract a value for
� from a plot such as Fig. 3.

VI. NUMERICAL CALCULATIONS OF THE CHARGE
DISTRIBUTION

Having established that the charge in the wire changes
whenever the split Majorana states are degenerate, we now
examine how the charge is distributed along the wire. Since
the discrete charging events within the topological regime
correspond to the midgap state [as in Eq. (18)], we examine
the wave function and charge of that state alone. In the BdG
basis chosen above, we calculate the amplitude |ψ(x)|2 =
|u|2 + |v|2 and the charge 〈ρ(x)〉ψ = |u|2 − |v|2 as a function
of position along the wire. As in previous works [37,38], we see
that the Majorana state is concentrated on the edges, as shown
in the upper panel of Fig. 4. However, the charge corresponding
to this state—when the wires overlap—is spread out along
the wire (bottom of Fig. 4). Similar results may be seen in
Fig. 6 of Ref. [34]. Figure 4 is calculated at a degeneracy

FIG. 4. Top: Intensity |ψ(x)|2 = |u|2 + |v|2 of the wave function
for a Majorana-pair state whose energy crosses zero at a degeneracy
point in the spectrum (EZ ∼ 0.69 meV). As expected, the wave
function is concentrated at edges, and decays toward the center.
Bottom: The change in charge density 〈ρ(x)〉ψ = |v|2 − |u|2 when
this state becomes occupied. The charge is small but not zero, and is
spread uniformly along the wire length.

point in the spectrum at μ = 0 and EZ ∼ 0.69 meV, well
inside the topological regime, with EZ > E2. Near this point,
the splitting decays and oscillates, as discussed in [13]. The
charge is distributed sinusoidally across the wire, implying
that a measurement of the charge does not need to be done
near the end of the wire. Furthermore, the fact that the charge
is distributed along the whole wire can be used to distinguish
between the various explanations of the zero-bias conductance
peak seen in transport measurement, since any nontopological
causes should not have a uniform charge distribution.

VII. JUMPS IN SPIN DENSITY

Jumps in parity will generally be accompanied by jumps
in the electron spin density as well as the charge density. The
jump in total spin δ〈�S〉 will be given by

〈δ �S〉 = ±b̂
∂Eψ

∂EZ
, (19)

where b̂ is a unit vector in the direction of �B and the sign in front
is given by the sign of δNψ . The ratio between |〈δ �S〉| and δN is
fixed by the Clausius-Clapyron relation which states δ〈�S〉/δN
is equal to the slope of dμ/dEZ of the locus of parity jumps
in the μ-EZ plane. The discontinuity in spin density should
be uniformly spread along the length of the wire in a manner
similar to the jumps in charge density.

VIII. EFFECTS OF ELECTRON-ELECTRON
INTERACTIONS

Although our calculations, so far, have been based on
a model with noninteracting electrons, we present here a
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brief discussion of the modifications one might expect due
to Coulomb interactions in a real system.

In general, one would expect that electron-electron interac-
tions will renormalize parameters of the model, so that, e.g., μ
and � may depend in a nontrivial way on the applied magnetic
field and on the voltage applied to a nearby gate. However,
we expect that a renormalized single-particle description
will remain valid at low energies. Therefore, we expect that
interactions will change the positions in the magnetic field and
gate voltage where jumps in the number parity occur, but will
not have a major effect on the size of the associated jumps in
the charge of the nanowire, provided that the size is computed
with a decay length ξ appropriate to the renormalized values of
� and the Fermi velocity. Our argument that the charge jump
due to change in occupancy of a zero-energy Majorana pair
should be roughly uniform along the length of the wire should
be unchanged. At the same time, a parity jump due to a change
in occupancy of, say, a localized impurity state, would produce
a charge-density change in the nanowire that would remain at
least partially localized in the vicinity of the impurity. We
note that due to screening by the adjacent superconductor, the
effective interaction between electrons on the nanowire will
be relatively short ranged.

Of course, screening by the superconductor will reduce the
charge sensitivity of a nearby SET. However, we argue, using a
simple model, that this effect should not be drastic. Therefore,
we expect that SET measurements could be used to study the
size of charge jumps in a real experiment, and could be used to
distinguish a jump that is uniform along the wire from one that
is concentrated at an impurity or at the ends of the nanowire.

Let us consider the voltage V (y,z) measured at a point
(x,y,z), which is a distance R =

√
y2 + z2 from the axis of

the nanowire, at a position x along the length of the wire, with
rw � R � L, where rw is the radius of the nanowire. The elec-
trostatic potential V at the specified point should have the form

V (x,y,z) =
∫ L

0
dx ′ρ(x ′)K(x ′,x,y,z), (20)

where ρ is the charge density in the nanowire and the kernel
K depends on the detailed geometry. We expect that V

should be most sensitive to the charge density at points where
|x ′ − x| � R, so as a crude approximation we may write

V (x,y,z) ≈ ρ̃(x)C(y,z), (21)

where ρ̃(x) is an average of the charge density over the region
|x ′ − x| � R and C(y,z) again depends on the geometry of
the system.

We may now envision an experiment with, say, three
SETs, localized at different positions x but the same distance
R from the wire. We may position one SET at the center
of the wire (x = L/2) and the other two near the ends,
x = x0, and x = L − x0, where x0 is larger than R but smaller
than the superconducting decay length ξ . The prediction of
our analysis, combined with the approximation (21), is that
a charging event due to a change in the occupation of a
zero-energy Majorana pair should cause a voltage jump with
the same strength at all three detectors. By contrast, if the
charging event were concentrated at the two wire ends in the
same way as the Majorana wave function itself, one would

expect the voltage signal to be larger at the two ends than at
the central SET. If the charging event were associated with an
impurity at an arbitrary point in the wire, the voltage signals
would in general be different on all three SETs, and might vary
randomly from one event to another.

More properly, one should not use the approximation
(21) but rather the nonlocal relation (20) to analyze the
charge distribution in the nanowire. However, if the kernel
K is known, either from a calculation or from experimental
calibrations, it should be relatively easy to distinguish between
the different charge distributions considered above.

In order to estimate the coefficient C(y,z), we consider
a simplified model. We suppose that the superconductor is
represented by a perfect conductor of radius rs , parallel to the
nanowire, with an axis displaced from that of the nanowire by a
distance D which is of the order of rw + rs . We assume that the
point x is far from the ends of the wire compared to R, so we
may treat the wires as infinite. Furthermore, we approximate
the nanowire as a uniform line charge with a fixed density ρ̃,
located on the line y = z = 0.

Under these assumptions, we expect an image line charge
a distance d above the infinite semiconducting wire, and we
expect it to lie within the cylindrical SC. For two wires (charge
and image charge), we have the potential at a point (x,y,z):

V (y,z) = ρ̃

4πε0
{ln(y2 + z2) − ln[y2 + (z − d)2]} + ηρ̃,

(22)

where η is the value of the potential at infinity. We want
the potential to vanish on the surface of the SC. Setting the
potential to zero, we find that the potential vanishes on a circle,
and by setting the radius to be rs , we can solve for

d = 2rwrs + r2
w

rs + rw

(23)

and

η = − 1

2πε0
ln

[
1 + rw

rs

]
. (24)

This gives

C(y,z) = 1

4πε0
{ln(y2 + z2) − ln[y2 + (z − d)2]}

− 1

2πε0
ln

[
1 + rw

rs

]
. (25)

The analysis above may be extended to the case where the
charge density on the nanowire has the form

ρ(x) = ρq cos qx, (26)

where the wave vector q is assumed small compared to
1/rw. In this case, the charge on the superconductor will not
precisely cancel the charge on the nanowire, and there will be
a component of the potential which depends logarithmically
on R, in the region rw < R < 1/q, while the potential falls
to zero for R � 1/q. More precisely, for q = 0, one finds
V (x,y,z) = Kqρ(x), with

Kq ≈ η

[
1 − ln(R/rw)

ln(qrw)

]
(27)
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in the region rw < R < 1/q, where η is the quantity given by
Eq. (24). Thus, Kq reduces to our previous result for C(y,z), in
the limit q → 0, with R/rw fixed but large. For an infinite wire,
the dependence of the kernel K(x ′,x,y,z) on the separation
x ′ − x may be obtained by taking the Fourier transform of Kq .
The logarithmic dependence of Kq means that K will not fall
off very rapidly for |x ′ − x| � R.

For R � d, taking rs = 2rw and ρ̃ = 0.1e/L, where e is
the electron charge and L = 2 μm, we find V (R) ∼ 60 μV,
which should be detectable with a SET.

So far we have assumed implicitly that there is just a single
contributing mode in the nanowire. In the case of a multimode
wire, any charge inhomogeneity due to a localized impurity
state will be further screened by the additional modes in the
wire, which will tend to spread the resulting charge more
uniformly along the wire. This will reduce the differences in
the voltages measured by SETs at different positions along the
wire, but it should not affect the average voltage signal. The
extra modes should not affect the signal induced by a spatially
uniform charge jump, such as predicted due to the change in
occupancy of a zero-energy Majorana pair.

IX. EXPERIMENT

As we have argued above, charge jumps in the semicon-
ductor nanowire should be observable using a single electron
transistor (SET) as a sensitive charge detector [34,39,40],
assuming that the wire length L is not too much longer than
the coherence length ξ . Furthermore, measurements at several
positions either through multiple or scanning SETs can be
done to confirm the uniform charge distribution.

We note that this measurement technique can be applied
to other systems expected to have Majorana end states. In
particular, Majorana states in wires made from other materials,
or created within 2D topological insulators (e.g., HgTe
quantum wells [41]), if realized, can hopefully be observed
with an SET. Furthermore, in these systems, multiple-band
concerns might be alleviated.

The results presented assume a clean system. A real system
will include some amount of disorder. We have checked that
small amounts of disorder shift the parity transitions slightly,
but do not change the qualitative results. Adding a large amount
of disorder wipes out all the effects discussed. The effects of
disorder on Majorna end states in one-dimensional wires are
discussed in [42,43].

An important experimental parameter which we hold fixed
in our discussion is the wire length. For the case of a
long wire, the Majorana end states are present, but the
splitting between the two states is exponentially suppressed,
and therefore the number-parity oscillations are harder to
observe. Simultaneously however, a longer wire means smaller
level spacing, and therefore more oscillations with respect
to B before the splitting reaches the size of the gap. We
thus conclude that there is an intermediate range ideal for
experiments, where the exact length desired depends on the
other system parameters. For a nontopological wire—α = 0
or � = 0—the level spacing decreases with wire length, until
the system is compressible everywhere in the μ-B plane. Our
calculations are consistent with these expectations.

To estimate the ideal wire length, we begin by relating the
energy gap and coherence length to known system parameters.
For EZ � �, the gap at kF is Egap = 4�

√
ESO/EZ, where

ESO = α2m∗ is the spin-orbit energy scale. Using the Fermi ve-
locity (for μ ∼ 0) vF = pF/m∗ = 2/lSOm∗ = 4ESOlSO, with
lSO the spin-orbit length, we find the coherence length ξ =
vF/Egap = lSO

√
ESOEZ/�. To observe the splitting, we need

a wire length such that the splitting between the midgap
states ε0 ∼ Egape

−L/ξ is larger than a typical temperature,
say T ∼ 100 mK � 10 μeV, and also ε0 � ESO. For typical
values of EZ = 750 μeV, ESO = 50 μeV, and lSO = 200 nm,
we find Egap ∼ 250 μeV. If we choose ε0 ∼ 1

5Egap � T , we
find L ∼ 250 nm.

A related possible experiment is to measure the jumps in the
spin of these wires. The split Majorana states carry spin in ad-
dition to their electric charge. This spin is considerably smaller
than the spin of a single electron, and therefore very difficult
to detect using available experimental techniques [44,45].
However, recent advances suggest that such measurements
might not be so far off [46,47]. With an extremely sensitive
magnetometer, we can hope to pick out the oscillations in
the magnetization of the system as a function of μ and B, as
discussed for the charge.

X. CONCLUSION

In short topological wires, the predicted zero-energy Ma-
jorana end modes are split due to the significant overlap of
their wave functions. The split states carry charge, which can
be detected in experiments. Whereas the tunneling density of
states measured in transport experiments is only an end effect,
the charge of the split Majoranas is uniformly distributed along
the wire. Comparing both charge and tunneling experiments
at the end and bulk of a wire can thus resolve remaining
unanswered questions in the field.
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APPENDIX: METHODS FOR CALCULATING
NUMBER PARITY

We discuss two equivalent numerical methods for calculat-
ing the number parity when � > 0. The plots in Fig. 2 were
actually obtained using the second method, but both methods
were checked against each other.

The first option is to follow the energy eigenvalues along
a curve in the μ-B plane, starting at a point with B = 0,
and ending at the desired point (μ,B). We know that the
number parity must be even when B = 0, and the number
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parity will flip when and only when an energy level crosses
zero. Therefore, the number parity at (μ,B) is equal to (−1)n,
where n is the number of zero-energy crossings along the
curve. Numerically, some care must be taken to correct for
errors where two consecutive zeros are so close to each other
that they appear as one, resulting in the wrong parity being
recorded beyond the second of the close points.

As an alternative, we have used a new method, which
to our knowledge has not been previously discussed in the
literature. For a spinful system on a lattice with N sites, write
H = �ψ†HBdG �ψ , with �ψ = (a1, . . . ,a2N,a

†
1, . . . ,a

†
2N )T . Then

HBdG = UDU †, where U = ( u v

v∗ u∗) is a unitary matrix and
D is a diagonal matrix ordered so that the the first 2N elements
are the positive energy eigenvalues. We thus have

H = �ψ†UDU † �ψ
= �η†D�η, (A1)

with �η = (η1, . . . ,η2N,η
†
1, . . . ,η

†
2N )T . We claim that the parity

of the system is P = (−1)q , where q = rank(v)mod2. We have
checked this numerically for � � 0, and prove it for � = 0,
along with a slightly different version of the claim for the case
� > 0. In particular, for � > 0, we will show that det(v) = 0
if and only if the system is in an even-parity state, subject to the
following assumption, which we find compelling. Specifically,
since the pairing term in the Hamiltonian does not conserve
electron number, we assert that a ground state with even
number parity should contain some admixture of states with
every possible even electron number between zero and 2N ,
including the single basis state with 2N electrons present.
Thus, we shall assume that if the ground state |G〉 has even
number parity, then

〈G|a†
1 · · · a†

2N |0〉 = 0. (A2)

Proof for � = 0. In the absence of a pairing potential
an occupied eigenstate of HBdG corresponds to a vanishing

column in u and a nonzero column in v, whereas for an
unoccupied eigenstate the converse is true. This means that the
number of occupied states nocc simply equals the number of
nonzero columns in v which, since U is unitary, are all linearly
independent. One then has by definition that nocc = rank(v),
and in particular q = rank(v)mod2 as claimed.

Proof for � > 0. Consider the state

|G′〉 ≡ η2N · · · η1|0〉. (A3)

Since any ηi operating on this state annihilates it, |G′〉 must be
proportional to the ground state, unless it is identically zero.
That is, |G′〉 = C|G〉, for some constant C. Furthermore, if we
transform the ηi in (A3) back to the electron operator basis,
it is straightforward to show that the term a

†
1 · · · a†

2N |0〉 occurs
with a coefficient equal to det(v). According to our assumption
(A2), this term cannot have zero weight in the even-parity
ground state, and therefore det(v) = 0, which further implies
that v must have maximal rank.

Conversely, if det(v) = 0, then the system does not have
a component containing 2N electrons, so by our assertion, it
cannot be an even-parity state. We thus have that det(v) = 0
if and only if the number parity of the ground state is
even.

Although this result is sufficient for our purposes, if we
make an assumption analogous to (A2) for the case where the
ground state has odd number parity, namely that the 2N − 1
electron state must have nonzero weight in the ground state,
we see that the prefactor in the expansion from (2N − 1) ηi

to the electron operator basis must be nonzero. In particular,
one can show that the prefactor of the leading term is now
a weighted sum of the first minors of the matrix v, and by
the same argument as above it cannot vanish. A vanishing
determinant with a nonvanishing first minor implies that a
matrix has rank one less than its maximal rank, and so for the
odd case, rank(v) = 2N − 1. Since v has size 2N × 2N , we
see that the ground state number parity is given by P = (−1)q ,
where q = rank(v)mod2, as claimed.
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