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ABSTRACT: We generated 18F-labeled antibody fragments
for positron emission tomography (PET) imaging using a
sortase-mediated reaction to install a trans-cyclooctene-
functionalized short peptide onto proteins of interest, followed
by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose
(FDG). The method is rapid, robust, and site-specific
(radiochemical yields > 25%, not decay corrected). The
availability of 18F-2-deoxyfluoroglucose avoids the need for
more complicated chemistries used to generate carbon−
fluorine bonds. We demonstrate the utility of the method by
detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate
macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-
labeled antibodies and their fragments at a level of molecular specificity that complements conventional 18F-FDG imaging.

■ INTRODUCTION

Imaging of medically relevant specimens by positron emission
tomography (PET) using 18F-labeled biomolecules is increas-
ingly important for both clinical diagnosis and in biomedical
research.1−7 By exploiting differences in the rate of glucose
uptake and its metabolism,8−11 2-deoxy-2-18F-fluoroglucose
(18F-FDG)-PET imaging can distinguish many tumors with
increased metabolic activity from surrounding normal tissue.
18F-Labeled ligands can also be used to track expression of the
receptors to which they bind.2,12,13 While 18F-FDG is readily
available in most radiopharmacies, the generation of other 18F-
labeled bioactive molecules of interest can require elaborate
synthetic strategies.12−14 A further challenge is the short half-
life of 18F (t1/2 = 110 min), which requires use within hours of
production. In terms of radiation exposure, the use of 18F-
fluorine has advantages over longer-lived isotopes such as 89Zr
(t1/2 3.27 days)

15 and 124I (t1/2 4.18 days).
16 Use of 18F-FDG is

potentially more practical in a clinical setting than are methods
using elemental 18F.17

Although antibodies are endowed with exquisite specificity
and are of considerable therapeutic value, the use of 18F-labeled
antibody fragments has yet to see widespread application for

imaging purposes.18,19 Our approach enables the use of 18F-
FDG to achieve efficient labeling of proteins and does so in a
manner that is reproducible and site-specific, leaving intact the
antibody fragment’s antigen binding site. The method also
could be applicable to other suitably modified biologicals, such
as cytokines and chemokines.20 The ability to determine the
biodistribution of therapeutically useful antibodies or their
fragments and a comparison of these measurements with
clinical outcomes can thus expand the repertoire of diagnostic
tools.

■ RESULTS AND DISCUSSION

Our strategy relies on a two-step process for labeling proteins
equipped with a sortase recognition motif.21,22 Sortases are
bacterial transpeptidases that are finding increasing use as tools
for protein engineering. Sortases stand out for their ease of
production, high degree of specificity, fast and efficient
conversion of the appropriately modified protein substrate,
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and ready access to a wide variety of nucleophiles in the
transacylation reaction.23−25

As a first step, we generated a short synthetic peptide, (Gly)3-
R, where R contains a trans-cyclooctene (TCO) functionality
that enables a TCO-tetrazine ligation reaction with a 18F-
tetrazine. The TCO-tetrazine reaction is fast, with an estimated
second order rate constant of 210−26000 M−1 s−1.26−28 We
established a method for 18F labeling using commercially
available 18F-FDG, the principal source of 18F in clinical use.
The dynamic equilibrium between an aldohexose in its linear
aldehyde form (the reactive molecular species) and its cyclical
hemiacetal derivative permits the installation of 18F-FDG on an
aminooxy-functionalized molecule.29

In view of the t1/2 of
18F ≈ 110 min, any synthetic process

using 18F as a substrate and the necessary downstream
purification steps must be rapid. Thus, we first optimized
reaction conditions using nonradioactive FDG and charac-
terized the reaction products by liquid chromatography−mass
spectrometry (LC−MS) (Supporting Information). Several
different catalysts have been reported for the oxime ligation
reaction, of which the phenylenediamines are among the most
efficient. While m-phenylenediamine is a more efficient catalyst
than p-phenylenediamine (pPDA), its Schiff base is more stable
and can block oxime formation if its concentration relative to
the aminooxy or aldehyde is high.30,31 In our case, the
concentration of aldehyde (18F-FDG) is extremely low (<nM).
We therefore used pPDA as the catalyst at ∼0.4−0.6 M and
tetrazine-aminooxy in the ∼0.2−0.3 M range. We incubated the

aminooxy-tetrazine with fluorodeoxyglucose in the presence of
the catalyst, pPDA, with constant agitation at 75 °C for ∼5−10
min. High-performance liquid chromatography (HPLC) of the
reaction mixture showed (near)-complete consumption of
FDG (Supporting Information). To produce the radioactive
aminooxy-tetrazine derivative, we performed the incubation
with 18F-FDG in the presence of the catalyst, pPDA, with
constant agitation at 75 °C for ∼5−10 min. Radio-HPLC
showed that the coupling reaction with 18F-FDG proceeded
rapidly, yielding >90% oxime 18F-FDG-tetrazine in ∼5−10 min
(Figure 1). We separated the 18F-oxime product by HPLC,
followed by capture of the product via a Sep-pak C18 column.
A solution containing the TCO-labeled protein of interest,
prepared previously using sortase, was then added to the
purified oxime 18F-FDG-tetrazine. The reaction was allowed to
proceed for ∼15−20 min at 25 °C with constant agitation. The
18F-labeled protein was purified by size exclusion in phosphate
buffer, providing the final 18F-labeled protein ready for
injection.
We previously used a 18F-TCO-tetrazine to label proteins

with 18F to image lymphoid organs using an anti-Class II MHC
single domain antibody, VHH7.32 We evaluated the present
labeling method to confirm that the binding site of the
nanobody remained intact. 18F-VHH7, produced as described
above, detected secondary lymphoid organs exactly as
reported32 (Figure 1 and movie 01 in the Supporting
Information).

Figure 1. (A−C) Site-specific 18F-labeling of proteins using 18F-FDG and sortase. (A) A tetrazine-aminooxy and 18F-FDG were combined in the
presence of p-phenylenediamine to produce 18F-tetrazine. Dynamic equilibrium between hemiacetal and linear forms of the aldohexose allows
capture of the FDG into a tetrazine molecule via an oxime ligation; the 18F-tetrazine product is purified via HPLC. (B) A single domain antibody
fragment (VHH) equipped at its C-terminus with the LPXTG sortase-recognition motif is site-specifically modified with a (Gly)3-trans-cyclooctene
(TCO), as confirmed by LC-MS (Supporting Information). (C) 18F-Tetrazine was added to the TCO-modified VHH, and after ∼20 min the labeled
VHH was retrieved by rapid size exclusion chromatography. (D−F) 18F-VHH7 (anti-mouse class II MHC) detects secondary lymphoid organs. (D)
PET images of a representative C57BL/6 mouse 2 h postinjection of 18F-VHH7; numbers indicate (i) lymph nodes: 1, 2, 3, 4, 7, 8, 9; (ii) thymus: 5;
(iii) spleen: 6. (E) PET-CT images of C57BL/6 mouse imaged with 18F-VHH7 from two different viewpoints (top and bottom panels); clearly
lymph nodes and thymus are visible. See movie 01 in Supporting Information for a 3D visualization of lymphoid organs. (F) PET signals in vivo in
different organs. Experiments are representative of three mice with similar results.
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Figure 2. (A) DC8 and DC15 specifically recognize the mouse Class II MHC complex: 106 splenocytes isolated from C57BL/6 Class II-GFP knock-
in and Class II knockout mice were stained with labeled VHHs as indicated. Plots are gated on live, CD19+ cells. VHH7 has been previously
demonstrated to recognize murine Class II MHC. DC8 and DC15 are novel VHHs isolated through staining of dendritic cells. VHH4 is specific for
human Class II MHC and does not recognize the murine homologue. (B) DC8 and DC15 are able to stain murine B cells at concentrations too low
for VHH7 staining: 106 splenocytes isolated from WT C57BL/6 mice were stained with the indicated concentrations of Alexa647-labeled VHHs.
Populations were gated on live, CD19+ cells, and the mean Alexa647 fluorescence of each population is plotted. (C) DC8 and DC15 outcompete
VHH7 for an overlapping epitope: 106 splenocytes isolated from WT C57/BL6 mice were costained with TAMRA-labeled VHH and a variable
concentration of unlabeled VHH. The costained splenocytes (dark gray peak) were compared to splenocytes stained only with the TAMRA-labeled
nanobody (light gray peak). VHH73 does not bind to class II MHC molecules and is used as a control. (D) 18F-DC8 (anti-mouse class II MHC),
produced using 18F-FDG and sortagging, detects secondary lymphoid organs. PET (left) and PET-CT (right-top and bottom) images of a
representative C57BL/6 mouse 2 h postinjection of 18F-DC8; clearly lymph nodes, spleen, and thymus are visible. Numbers indicate (i) lymph
nodes: 1, 2, 3, 4, 7, 8, 9; (ii) thymus: 5; (iii) spleen: 6. See movie 02 in Supporting Information for a 3D visualization of lymphoid organs. (E) PET
signals in vivo in all organs. (F, G) DC8 and VHH7 (both anti-mouse class II MHC) stain secondary lymphoid organs with different affinities. Images
were acquired using two-photon microscopy. VHHs were site-specifically labeled with Texas Red via sortagging. F and G are images of spleen of
C57BL/6 mice injected with 10 μg of DC8-Texas Red (F) or VHH7-Texas Red (G) 90 min prior to imaging. Clearly DC8-Texas Red stains Class II
positive cells with higher affinities compared to VHH7. Experiments are representative of three mice with similar results.
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The half-maximal binding of VHH7 for Class II MHC+ cells
on splenocytes is in the ∼55−60 nM range (Figure 2). Possible
in vivo applications might benefit from single domain
antibodies (VHHs) with improved affinities for their targets.
To that end, we identified higher affinity anti-Class II VHHs in
a phage display library generated from an alpaca immunized
with murine splenocytes. Specificity of the anti Class II VHHs
was ascertained by the absence of staining of splenocytes from
class II MHC knockout mice, and perfect costaining with GFP-
positive cells from class II MHC-GFP knock-in mice33 using
fluorescently labeled VHH derivatives. The affinity of newly
identified class II MHC-specific VHHs was compared to that of
VHH7. VHHDC8 and VHHDC15 bind ∼3−4 fold better to
Class II MHC molecules (Figure 2) than does VHH7. In
competition experiments both VHHDC8 and VHHDC15
interfered with each other’s ability to bind spleen cells and
inhibited binding of VHH7; similarly, an excess of VHH7
inhibited binding of VHHDC8 and VHHDC15 (Figure 2).
These findings imply that these different Class II MHC-specific
VHHs recognize a closely related epitope.
For in vivo analysis, we prepared Texas Red-conjugated

VHH7 for comparison with similarly labeled VHHDC8. We
injected mice with 10 μg of the Texas Red-conjugated VHHs.
Ninety minutes postinjection we excised spleen and lymph
nodes for analysis by two-photon microscopy. The signal
obtained from VHHDC8-stained lymphoid organs was
substantially stronger than that seen for VHH7, indicating
that higher affinity for the target improved image intensity
(Figure 2). Having established the utility of the new anti-Class
II MHC VHH for in vivo staining, we used it for PET imaging.

18F-VHHDC8 prepared as described above detected secondary
lymphoid organs (Figure 2 and movie 02 in the Supporting
Information) in a manner comparable to 18F-VHH7 (Figure 1).
Compared to VHH7, we observed stronger binding of
VHHDC8 to spleen relative to lymph nodes (compare SUVs
in Figures 1 and 2). The higher affinity of VHHDC8 and its
short circulatory half-life, typical of a VHH, might lead to its
more efficient capture upon passage through the spleen, leaving
comparatively less available for exit from the bloodstream and
staining of lymph nodes.
Pancreatic tumors are often poorly infiltrated with immune

cells and develop a dense stroma, implicated in the resistance to
standard chemotherapy and immunomodulatory antitumor
treatments.34 We used the pancreatic cancer cell line Panc02
as a model for pancreatic cancer and explored the possibility of
imaging its presence by tracking the arrival of Class II MHC-
positive cells (activated host macrophages, dendritic cells) using
18F-VHHDC8. Panc02 itself does not express Class II MHC
products. Mice injected subcutaneously with 1 × 106 Panc02
cancer cells were imaged with 18F-VHHDC8 2 weeks after
injection of the tumor. Although the tumors were not palpable
at the time of imaging (tumor size estimated at ∼1.2 mm in
diameter), PET images clearly showed their presence (Figure 3
and movie 03, Supporting Information). PET imaging using
18F-FDG failed to detect the tumor, likely due to its small size
and/or low metabolic activity (Figure 3 and movie 04 in the
Supporting Information). To correlate the results obtained by
PET with microscopy, we injected tumor-bearing mice with 20
μg of Texas Red-VHHDC8. Two hours postinjection, the

Figure 3. 18F-DC8 (anti mouse Class II MHC) detects infiltration of Class II+ immune cells in/around a tumor. Tumor-associated class II MHC+
cells were visualized using 18F-VHHDC8. A C57BL/6 mouse was inoculated subcutaneously on the back of the left shoulder with 106 murine panc02
cancer cells and imaged 2 weeks post injection. (A−C) PET (A) and PET-CT (B, C) images. In A−C, different sets of lymph nodes (1, 2, 3, 4, 8, 9,
10 and their symmetrical counterparts), thymus (5), tumor (6), and spleen (7) are visible. In A−C, as pointed by the arrow, tumor-associated Class
II MHC positive cells are visible, attributable to influx of host-derived Class II MHC positive cells. See movie 03 in Supporting Information for a 3D
visualization of lymph nodes and tumor-associated Class II MHC positive cells. (D−F) 18F-FDG fails to detect the tumor. A C57BL/6 mouse was
inoculated subcutaneously on the back of the left shoulder with 106 murine panc02 cancer cells and imaged 2 weeks post injection. 18F-FDG,
routinely used in clinic, was used to image tumor-bearing mice. Only highly active tissues (heart, brown fat, mouth muscles) were visible due to their
high metabolic activity. The tumor was not visible, probably due to its very small size (∼1.5 mm in diameter) and low metabolic activity. See movie
04 in Supporting Information for a 3D visualization. (G) PET signals in vivo in different organs. (H) 2-photon microscopy image of an explanted
tumor with MHC class II positive (VHHDC8 stained) infiltrating immune cells. VHHDC8 was site-specifically labeled with Texas Red via
sortagging. A C57BL/6 mouse was inoculated subcutaneously on the back of the left shoulder with 106 murine panc02 cancer cells. 2 weeks post
panc02 cancer cell injection, 20 μg of VHHDC8-Texas Red was injected IV 90 minutes prior to explant imaging of the panc02-tumor. See image 01
in the Supporting Information for high-resolution visualization. Experiments are representative of three mice with similar results.
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tumor was excised and imaged by two-photon microscopy. The
tumor was infiltrated with or surrounded by Class II MHC+
cells, consistent with the PET imaging result (Figure 3; see
image 01 in the Supporting Information for high resolution
visualization).
The short half-life of VHHs (∼10−20 min) likely requires

compensation in terms of affinity of the VHH for its target to
ensure retention by the tumor. An important limitation of the
use of VHHs for immuno-PET is their accumulation in the
kidneys and intestine. The use of a longer-lived isotope such as
64Cu or 89Zr might permit an observation window that allows
adequate clearance from kidneys and intestine without
compromising imaging quality, but this remains to be explored
experimentally.
In conclusion, we have site-specifically labeled biomolecules

with 18F, starting from a widely available precursor, 18F-FDG.
The method avoids the far more demanding generation of
carbon−18F bonds and thus facilitates access to 18F-labeled
biomolecules, provided these tolerate the presence of a sortase
recognition motif, for example, as shown for 4-helix bundle
cytokines.20 We successfully applied immuno-PET to the
detection of small heterotopic pancreatic tumor transplants,
using high affinity anti-Class II MHC VHHs to decorate the
tumor-surrounding immune cells.
The VHH-PET method provides information on the tumor

immune microenvironment, while the use of 18F-FDG-PET can
identify tumors based on their increased metabolic activity
compared to surrounding normal tissue. Both approaches can
be applied to the same specimen repeatedly to obtain
information on tumor growth and regression, for example, in
response to therapy. Immunogenicity of VHHs remains an
issue of concern in the case of repeated administration, but
approaches for humanization of camelid-derived VHHs have
been described35 to address this issue. The small size of VHHs
and their ease of enzymatic modification relative to other
formats commonly applied to antibody fragments present a
powerful addition to the radiodiagnostic toolbox.36−38
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