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Abstract and key words
We address the definitions and synthesis of stochastic processes which possess warped scaling laws that
depart from power law behaviors in a controlled manner. We define warped infinitely divisible cascading
(IDC) noise, motion and random walk. We provide a theoretical derivation of the scaling behavior of the
moments of their increments. We provide numerical simulations of a warped log-Normal cascade to illustrate
these results. Algorithms for synthesis and Matlab functions are available from our web pages. 

Fractional Brownian motion, infinitely divisible cascades, multifractal processes, multiplicative cascades,
multiscaling, random walk, turbulence.

Résumé et mots clés
Nous présentons les définitions et synthèses de processus stochastiques respectant des lois d'échelles voilées, qui
s'écartent de façon contrôlée d'un comportement en loi de puissance. Nous définissons des bruit, mouvement et
marche aléatoire issus de cascades infiniment divisibles (IDC) voilées. Nous étudions analytiquement le comportement
des moments des accroissements de ces processus à travers les échelles. Ces résultats théoriques sont illustrés sur
l'exemple d'une cascade log-Normale voilée. Les algorithmes de synthèse et les fonctions Matlab utilisés sont 
disponibles sur nos pages web.
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multiscaling, marche aléatoire, turbulence.
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1. Introduction
Scaling has been observed for many years in a large number of
fields including natural phenomena: turbulence in hydrodyna-
mics, rhythm of human heart in biology, spatial repartition of
faults in geology and others such as computer networks and
financial markets. The multifractal formalism [1, 12, 20] has
become one of the most popular frameworks to analyse signals
that exhibit power law scaling. In current verbage, this latter
term refers to the power law behavior of the absolute moments
of increments δτ X (t) = X (t + τ) − X (t) of a process X. Then,
power law scaling is to be described by a set of multifractal
exponents ζ(q) such that1

E|δτ X (t)|q = Cqτ ζ(q) as τ → 0. (1)

For instance, statistically self-similar processes such as fractio-
nal Brownian motions [15] with Hurst exponent H fit into this
framework with ζ(q) = q H . The so-called multifractal forma-
lism establishes conditions under which property (1) and multi-
fractal are equivalent. The multifractal decomposition gives pre-
cious information on the presence of local singularities in the
trajectories of processes. However, this framework is restrictive
in at least two ways. 
First, in real world applications one is usually confined to obser-
ving power laws in a given range of scales τmin ≤ τ ≤ τmax

which we then prefer to call multiscaling to distinguish it from
multifractals. Multiscaling is usually considered as a best
approximation to (1) and as a first step towards the use of the
multifractal formalism. However, while property (1) is sensitive
only to the limiting behavior it might not capture some richness
in the progression at all observable scales. Second, powerlaws
may not provide an accurate description of the scaling behavior
of data or models. 
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The need for an appropriate mathematical framework substitu-
ting (1) was met with the infinitely divisible scaling (for an over-
view see [7]). This setting allows for more flexible scaling and
thus better fitting of data and honors the contribution of all
scales in a range of interesting scales τmin ≤ τ ≤ τmax as fol-
lows:

E|δτ X (t)|q = Cq exp[−ζ(q)n(τ)], τmin ≤ τ ≤ τmax , (2)

where n(τ) is some monotonous function. Such a behavior is
analysed in terms of a cascading mechanism through the scales
from τmax to τmin. In terms of scale dependence, the infinitely
divisible scaling framework generalizes (1) which is recovered
by choosing n(τ) = − ln τ. The difference in spirit lies in the
fact that multifractal analysis applies to any process (compare
footnote 1) and is concerned with local properties in the limit of
fine scales, but not finite scales. Note that both, multifractal ana-
lysis and infinitely divisible scaling can be formulated using
wavelet coefficients [19, 23]. 
While analysis tools for multiscaling and infinitely divisible
scaling processes have been widely developed, only few recent
works proposed tools for synthesis of processes with prescribed
and controllable infinitely divisible scaling [3, 5, 11, 21, 22].
Multiplicative cascades have always played a central role to this
purpose in intimate connection with multifractals. The synthe-
sis of Infinitely Divisible Cascades (IDC) presented below can
be seen as a generalized continuous multiplicative cascade.
Following a work by Barral & Mandelbrot [5] and inspired by
the densified multiplicative cascades by Schmitt & Marsan [22]
and the Multifractal Random Walk by Bacry et al. [3], we
recently discussed and studied the Infinitely Divisible
Cascading processes [10]. Similar results were obtained inde-
pendently and simultaneously by Bacry & Muzy [4, 18]. Here,
we extend our previous work to the case of warped IDC [8, 9].
These continuous-time processes have stationary increments

1. A definition which works for any process is:

ζ(q) = lim inf
τ→0

logτ E|δτ X (t)|q .
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Figure 1. Comparison between the "time-scale" construction of multiplicative cascades. (left) Binomial cascade, (center)
Compound Poisson Cascade, (right) Infinitely Divisible Cascade. The grey region indicates the cone containing multipliers 

that determine the value of the density at time t.



and exhibit continuous scaling laws with prescribed exponents
(cf. ζ(q)) as well as prescribed departures from power law
behaviors (cf. n(τ) �= − ln τ). This article provides an easily
accessible overview of their known properties as well as a tho-
rough illustration via numerical simulations. The reader is refer-
red to [9] for a more formal presentation and complete mathe-
matical proofs. 

2. IDC Noise
Intuitions towards continuous cascades. The original ancestor
of multiplicative cascades is the binomial cascade introduced by
Mandelbrot [14]. Under some convergence hypotheses, binomial
cascades lead to positive densities that can display controlled
multifractal properties. From a time-scale point of view, the
construction of a binomial density relies on two basic ingredients:
a dyadic grid {(tj,k,rj,k) = ((k + 1

2 )2− j ,2− j ), j ∈ N,k ∈ N} in
the time-scale plane and positive i.i.d. mean one random multi-
pliers Wj,k associated to dyadic grid points (tj,k,rj,k). Without
loss of generality, let us fix the range of scales to (0,1] . Roughly
speaking, the binomial cascade is defined as the limit of densities
Qr (t) corresponding to resolution 1 > r = 2−n → 0. While
literature introduces Qr often as an iterative redistribution of
mass, an equivalent formulation is more useful here which writes
Qr as the product of precisely those multipliers which belong to
a cone Cr (t) = {(t ′,r ′) : r ≤ r ′ ≤ 1,t − r ′/2 ≤ t ′ ≤ t + r ′/2}
pointing to the time instant t, see Figure 1 (left):

Qr (t) =
∏

{( j,k):1≤ j≤n,k2− j ≤t<(k+1)2− j }
Wj,k, (3)

Because of the dyadic structure, binomial cascades display 
discrete scale invariance only. Moreover, such a construction is
not time-shift invariant so that it is not stationary in the strict
sense. 
The work by Barral & Mandelbrot [5] opened a door to overco-
me these drawbacks by introducing the Multifractal Products of
Cylindrical Pulses (MPCP). Essentially, the key idea consists in
replacing the dyadic grid by a well chosen random Poisson
point process (ti ,ri ) in the time-scale plane, see Figure 1 (cen-
ter):

Qr (t) =
∏

(ti ,ri )∈Cr (t) Wi

E

[∏
(ti ,ri )∈Cr (t) Wi

] (4)

Aiming at power law scaling, "well chosen" means that it has
density dm(t,r) = dtdr/r2 . Thus, the density in points
increases as r → 0 in a way similar to a dyadic grid. Note that
this density is time-shift invariant. Thus, MPCP are stationary.
Moreover, scaling laws are observed over a continuous range of
scales since no privileged scale ratio has been introduced. From
a time-scale point of view, MPCP may be called Compound
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Poisson Cascades since the distribution of Qr (t) is a compound
Poisson distribution. The Poisson distribution coming from the
point process (ti ,ri ) is compound with the distribution of the
random multipliers Wi . 
Noting that compound Poisson distributions are infinitely divi-
sible and that 

ln Qr (t) ∝ ln
∏

(ti ,ri )∈Cr (t)

Wi =
∑

(ti ,ri )∈Cr (t)

ln Wi (5)

one may go one step further. Indeed, the right hand term above
can be read as a specific (discrete) case of a random measure of
the set Cr (t). This leads to the definition of a process Qr (t)

based on the summation of a continuous random measure
d M(t,r) [10, 18]:

Qr (t) ∝ exp
∫
Cr (t)

d M(t ′,r ′) = expM(Cr (t)). (6)

It appears that the continuous random measure M needs to be
defined from an infinitely divisible distribution. The idea of
introducing an infinitely divisible random measure d M(t,r)

appeared in [22] where no systematic scaling analysis was per-
formed. The multifractal random walk (MRW) introduced in [3]
was built without using any explicit multiplicative construction
but, interestingly, the MRW can be described as resulting from
an infinitely divisible cascade as well. Infinitely divisible cas-
cades following the intuition given by (6) were simultaneously
and independently introduced in [18] and [10] in the scale inva-
riant case (with power law scaling). The purpose of our contri-
bution below is to show how far infinitely divisible cascades may
lead to non power law scaling behaviors. 

Infinitely divisible cascades. Now, we give precise definitions.
Let G be an infinitely divisible distribution with moment gene-
rating function G̃(q) that can be written in the form e−ρ(q). 
Let dm(t,r) = g(r)dtdr a positive measure on the time-scale
half-plane P+ := R× R+ .
Let M denote an infinitely divisible, independently scattered
random measure distributed by G , supported on the time-scale
half-plane P+ and associated to its so-called control 
measure dm(t,r). The random measure M is such that
E[exp [q M(E)]] = exp [−ρ(q)m(E)] ; for all disjoint subsets E1

and E2, M(E1) and M(E2) are independent random variables and
M(E1 ∪ E2) = M(E1) + M(E2) .

Definition 1. A cone of influence Cr (t) is defined2 for every
t ∈ R as Cr (t) = {(t ′,r ′) : r ≤ r ′ ≤ 1,t − r ′/2 ≤ t ′ ≤ t + r ′/2}
(see Figure 1 (right)). With an infinitely divisible randomly scat-
tered measure M given, an Infinitely Divisible Cascading noise

2. Note that the large scale in the definition of Cr (t) has been arbitrarily set
to 1 without loss of generality. Choosing a different large scale L would
simply reduce to a change of units t → t · L, r → r · L .



(IDC noise) is a family of processes Qr (t) parametrized by r of
the form

Qr (t) = exp [M(Cr (t))]
E[expM(Cr (t))]

(7)

Possible choices for distribution G are the Normal distribution,
Poisson distribution, compound Poisson distributions, Gamma
laws, Stable laws... See Figure 3 (left) for a sample of a realiza-
tion. 
An immediate consequence of the definition is that Qr is a sta-
tionary positive random process with:

EQr = 1. (8)

Stationarity is ensured by the time-invariance of both, control
measure and cone of influence. Moreover, Qr has a log-infinite-
ly divisible distribution, that is ln Qr has an infinitely divisible
distribution. 
Altogether, the measure M, the distribution G , the control mea-
sure m and the geometry of the cone of influence Cr (t) control
the scaling structure as well as marginal and higher order distri-
butions of the cascade. One major scaling property of IDC
noises is:

E[Qr (t)
q ] = exp [−ϕ(q) m(Cr )] (9)

where

ϕ(q) = ρ(q) − qρ(1), (ϕ(1) = 0), (10)

for all q for which ρ(q) = − ln G̃(q) is defined. Note the simi-
larity between (9) and (2). Power laws are recovered when
m(Cr ) is proportional to − ln r. The cascade is called warped
when m(Cr ) is not proportional to − ln r. 
A nice property of IDC noises lies in the geometrical interpre-
tation of their correlations that are controlled by the intersec-
tions of cones Cr (t) ∩ Cr (s) in the time-scale plane P+ (see
Figure 2):
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E[Qr (t)Qr (s)] = exp [−ϕ(2)m(Cr (s) ∩ Cr (t))] (11)

This highlights the fact that multiplicative cascades provide an
easy way towards complex correlation structures: prescribing
the autocorrelation function of Qr is equivalent to choosing
measure dm(t,r) and cone Cr (t). 
As explained in the previous section, the IDC-noise can be reco-
gnized as a "continuously iterative" multiplication (compare
Figure 1 (left) & (right)) where m(Cr (t)) can be interpreted as
the "average number of multipliers" that determine Qr (t). A
causal definition can be proposed as well by simply defining
Cr (t) = {(t ′,r ′) : r ≤ r ′ ≤ 1, t − r ′ ≤ t ′ ≤ t} . For sake of sim-
plicity in this presentation, we will keep the symmetric non cau-
sal definition while results presented below extend without res-
triction to the causal definition. 

3. IDC Motion & Random
Walk
Besides their nice scaling properties, the IDC have the distinct
property of being positive. While this can provide an ideal
match in some applications such as network traffic modeling, it
is inappropriate in others such as the description of the velocity
in a turbulent flow where data shows oscillations in both positi-
ve and negative directions. Two steps will permit to overcome
this restriction. First, we define an increasing process A(t) (IDC
Motion). Then we define some process VH (t) = BH (A(t))

(IDC Random Walk) as a fractional Brownian motion BH of
which time has been replaced by the irregular time A(t). 
By analogy with binomial measures, we introduce the Infinitely
Divisible Cascading Motion as the integral of Qr (t).

Definition 2. An Infinitely Divisible Cascading Motion (IDC-
Motion) A(t) is the limiting integral3 of an IDC-noise Qr (t)

(see Figure 3):

A(t) = lim
r→0

Ar (t), (12)

where

Ar (t) =
∫ t

0
Qr (s)ds. (13)

The increment process δτ Ar (t) = Ar (t + τ) − Ar (t) of Ar

inherits stationarity from Qr since δτ Ar (t) = ∫ t+τ

t Qr (s)ds. An
IDC Motion A(t) inherits scaling properties from its IDC Noise
Qr (t) as shown below in Section 4.

Figure 2. Dependence between Qr(t) and Qr(s), in particular
their correlation, stems entirely from the contribution of the

intersection of two cones Cr (t) and Cr (s) .
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3. Conditions for the convergence of the positive martingale Ar as r → 0
are detailed in [9].



By construction, A is a non-decreasing process which appears
most natural in some real world contexts, but can be seen as a
severe limitation in others. Following an idea which goes back
to Mandelbrot [16] and to the Brownian motion in multifractal
time, we define a fractional Brownian motion in warped IDC
time. This process has stationary increments, continuous sca-
ling, prescribed departures from power laws and prescribed sca-
ling exponents as well as positive and negative fluctuations. 

Definition 3. Let A be an infinitely divisible cascading motion,
and BH the fractional Brownian motion with Hurst parameter
H. The process

VH (t) = BH (A(t)), t ∈ R+, (14)

is called an Infinitely Divisible Cascading Random Walk (IDC
Random Walk).

The IDC Random Walk inherits stationary increments from
both BH and A. Above all, the precise scaling behavior of A(t)

is transferred to VH (t) thanks to the self-similarity of the frac-
tional Brownian motion as explained below. A sample of infini-
tely divisible cascading processes Qr (t), Ar (t) and VH (t) is
shown on Figure 3. 

4. Scaling behavior of IDC
This section states our main results: it characterizes the scaling
properties of certain IDC-Motions and their associated IDC-
Random Walk. The reader is referred to Appendix A for the full
theorem and an outline of its demonstration. See [9] for detailed
proofs. Here only a corollary of the general results is stated. 

Theorem (simplified version). Let q > 0 . Let Ar be either a
CPC Motion with finite E[W q ] or a log-normal IDC motion.
Assume that the control measure g(r)dtdr is such that
g(n)(r) := b2ng(bnr) · 1[0,1] converges as n → ∞ for
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b ∈ (0,1) . Assume that Ar converges in Lq; for q < 2 , e.g.,
it suffices that cϕ(2) > −1 and g(r) ≤ 1/r2 . Then, there exist
constants Cq and Cq and C

′
q, C ′

q such that for any t < b

Cq ≤ EA(t)q · t−qeϕ(q)m(Ct ) ≤ Cq , (15)

C ′
q ≤ E|VH (t)|q · t−q H eϕ(q H)m(Ct ) ≤ C

′
q . (16)

The scaling behavior of VH is a direct consequence of the self-
similarity of a fractional Brownian motion BH combined to the
scaling behavior of an IDC Motion A [20]. Using the self-simi-
larity of BH , one finds that

E[|VH (t)|q ] = EE[|BH (A(t))|q ∣∣A]

= E[|B(1)|q ] · E[A(t)q H ].
(17)

The fact that A(t) and VH (t) have stationary increments and
A(0) = 0 and VH (0) = 0 yields, ∀τ ≤ 1,

{
E[δτ Aq ] = Cq(τ)τ qexp [−ϕ(q)m(Cτ )] ,

E[|δτ VH |q ] = C ′
q(τ)τ q H exp [−ϕ(q H)m(Cτ )] ,

(18)

where Cq(τ) and C ′
q(τ) are bounded, see (15) and (16). In

numerical experiments it turns out that both Cq(τ) and C ′
q(τ)

are close to constant for τ � 1. 
Moreover, one expects that E[δτ Aq ] ∼ τ q and E[δτ V q

H ] ∼ τ q H

for large τ � 1. This can be understood thanks to a central limit
theorem argument under some technical assumptions [9]. 
A key property of these scaling behaviors (15) or (18) is that
they hold continuously through the scales, not only for a parti-
cular set of discrete scales. Again, we put the emphasis as well
on the fact that the construction of Qr and A enables a full
control of the way the cascading process develops along scales
and not only of the multifractal behavior obtained in the limit
τ → 0. As far as applications and real world data modeling are
concerned, we believe that the control of the entire cascade pro-
cess is probably more relevant than that of the asymptotic beha-
vior as τ → 0 only. 

Figure 3. Sample of a realization of (left) Qr(t) , (middle) A(t) and (right) VH(t).



5. Evolution of the 
increments distributions
IDCs and infinitely divisible scaling. Let us note that previous
work in this area [6, 7, 23] inspired a priori the search for non
power law scaling as in (2) of the form exp[−ζ(q)n(τ)] by 
analysis and measurement. This approach has been referred to as
log-infinitely divisible cascades in the past. To avoid confusion
between synthesis and analysis, we prefer to reserve the word
"cascade" to describe a construction and to talk of  Infinitely
Divisible Scaling as far as the analysis is concerned below. 
In this paper, we have focussed on the construction of processes
with such prescribed properties. On one hand, this is achieved as
far as the behavior of Qr with r or the behavior of δτ A/τ are
concerned. On the other hand, we are naturally led in (15) (16)
and (18) to a mixture of a power law and a non power law beha-
vior of the form τ q · exp[−ϕ(q)m(Cτ )] . This result is inherent to
the use of an integral to define A(t). The τ q term is due to the fact
that an IDC-Motion is obtained by integration of an IDC-Noise.
The exp [−ϕ(q)m(Cτ )] term is related to the underlying IDC-
Noise Qr (t). Equation (18) does not reduce to (2) unless
m(Cτ ) = n(τ) = − ln τ . Even though the processes presented
here do not exactly match the framework of the traditional infini-
tely divisible scaling analysis, this approach provides us with a
way to point out relevant quantity to look at when aiming at a pre-
cise description of IDC motion and IDC Random Walk introdu-
ced above. The content of next paragraph is inspired by the spirit
of infinitely divisible scaling analysis but will mainly focus on the
particular properties of the IDC Motion and Random Walk. 

Evolution of probability density functions. Self-similar pro-
cesses such as fractional Brownian motion and Lévy motion are
bound to have linear exponents ζ(q) = q H . A non-linear
dependence of scaling exponents on q (ζ(q) �= q H ) on the
other hand has its bearing on at least two approaches to the ana-
lysis of process with complex scaling structure. 
First, in multifractal analysis the presence of a non-linear func-
tion ζ(q) is usually taken as an indication of a rich and highly
interwoven local regularity structure, though the connection
between the global ζ and the local Hölder regularity can be
made precise only in the context of the multifractal formalism,
which usually has to be established with much effort. Second, a
non-linear function ζ can be observed as well as an evolution of
the probability density functions (PDF) of the increments of a
process through the scales as we are about to explain. 
For a self-similar process like a fractional Brownian motion, the
PDF of the increments over small or large lags are identical up
to some adapted renormalization (e.g., a fBm has Gaussian
increments). In contrast, those PDFs for an IDC process display
an evolution from Gaussian at large scales to non-Gaussian at
small scales. We now briefly explain how those PDF of incre-
ments for IDC Motion and Random Walk evolve through the
scales (see Figure 9). 
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Let Pτ the probability density function of Y = ln |δτ X | at scale
τ . Note that,

E|δτ X |q =
∫

eq ln |δτ X | Pτ (ln |δτ X |)d ln |δτ X |

=
∫ +∞

−∞
eqY Pτ (Y ) dY = P̃τ (q)

where P̃τ (q) is the moment generating function (analogous to a
two-sided Laplace transform) of Pτ . If scaling laws (18) are
power laws, one has for 0 < τ2 ≤ τ1 < 1 :

E|δτ2 X |q = exp {−ζ(q).[(− ln τ2) − (− ln τ1)]} · E|δτ1 X |q
P̃τ2(q) = G̃(q)[(− ln τ2)−(− ln τ1)]︸ ︷︷ ︸

G̃τ1,τ2 (q)

·P̃τ1(q). (21)

Subjecting the last product to an inverse Laplace transform it
turns into the following convolution in the "real" space:

Pτ2(Y ) = G∗[(− ln τ2)−(− ln τ1)]︸ ︷︷ ︸ ∗ Pτ1 (Y )

= Gτ1,τ2 ∗ Pτ1 (Y ),
(22)

where Gτ1,τ2 is the probability density function of a distribution
that carries the whole information describing the evolution of
the probability density functions Pτ (ln |δτ X |) through the
scales τ . Note that Gτ1,τ2 takes a special form with an exponent
ln τ when associated to a power law scaling. 
Let us now remark that the general form of the last line of (22)
may suit more general scaling processes like IDC Motion and
Random Walk. Indeed, using (18), G̃τ1,τ2(q) in (21) becomes
for A and VH respectively:

 G̃ A
τ1,τ2

(q) = exp[q ln( τ2
τ1

) − ϕ(q)(m(Cτ2) − m(Cτ1))]

G̃VH
τ1,τ2(q) = exp[q H ln( τ2

τ1
) − ϕ(q H)(m(Cτ2) − m(Cτ1))].

Cumulants. Since the evolution of the PDF is described by a
convolution, a description in terms of the cumulants of distribu-
tions is enlightening4:

ln G̃τ1,τ2(q) =
∞∑

k=1

CG
k (τ1,τ2)

k!
qk . (24)

Thus, the cumulants CY
k (τ) of Y = ln | δτ X | obey:

CY
k (τ2) = CG

k (τ1,τ2) + CY
k (τ1). (25)

Recall that C1 and C2 are respectively the mean and the varian-
ce of the corresponding distribution. Note that only the mean

(19)

(20)

4. This description makes sense only under the assumption that the cumu-
lants are well defined. This may not be true in some cases. For instance,
only one singular cumulants Cα , 0 < α� 2, may be defined for α-stable
cascades.

(23)



may vary for a self-similar process: the invariance by dilation on
δτ X becomes an invariance by translation on Y = ln |δτ X | . The
PDF of the increments of δτ X have the same shape at all scales;
then the PDF of Y at scale τ2 simply results from a translation
of the PDF at scale τ1. As a consequence, all the cumulants CG

k

of order k ≥ 2 are zero in the self-similar case. As soon as there
exists some non zero cumulant CG

k (τ1,τ2) of order k ≥ 2, one
observes an evolution of the PDF of the increments through the
scales. 
One of the most simple example of multiscaling process is the
power law scaling log-normal cascade for which
ϕ(q) = σ 2

2 q(1 − q) , and

G̃VH (q) = exp(−(1 + σ 2

2
)q H + σ 2 H2q2/2) (26)

so that

Gτ1,τ2 = N (−(1 + σ 2

2
)H ln(

τ1

τ2
), σ 2 H2 ln(

τ1

τ2
)). (27)

Then
CG

1 = (1 + σ 2

2
)H ln(

τ2

τ1

)

CG
2 = −σ 2 H2 ln( τ2

τ1
)).

(28)

Thus CY
1 (τ) (resp. CY

2 (τ)) is expected to be an increasing5

(resp. decreasing) function of ln τ (see Figure 10). The log-
normal cascade corresponds to Kolmogorov's 1962 model of
turbulence [13] and is usually referred to as the simplest model
to describe the evolution of the PDF of the increments of a mul-
tiscaling process. Here a synthetic (not analytic) model is pro-
vided. 
In general, we get for IDC Motion A:

CG
1 (τ1,τ2) = ln(

τ2

τ1

) − ϕ′(0)[m(Cτ2) − m(Cτ1)],

CG
k (τ1,τ2) = −ϕ(k)(0)[m(Cτ2) − m(Cτ1)], k ≥ 2.

(29)

For IDC Random Walk VH, we get:

CG
1 (τ1,τ2) = H ln(

τ2

τ1

) − Hϕ′(0)[m(Cτ2) − m(Cτ1)],

CG
k (τ1,τ2) = −Hkϕ(k)(0)[m(Cτ2) − m(Cτ1)], k ≥ 2.

(30)

The next section will show that properties (29) and (30) can be
checked on synthesized processes A and VH. As soon as ϕ(q) is
a non-linear function of q (which is always the case, otherwise
resulting processes are trivial), the PDF of the increments evol-
ve from large scales to smaller scales from Gaussian to non-
Gaussian. 
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6. Numerical validations

6.1. A model from hydrodynamics

To give some pictures of these processes, we describe the nume-
rical examples of two IDC with respectively power law scaling
and warped scaling behaviors. We propose to consider a Log-
Normal cascade, i.e., distribution G is N (µ,σ 2) and
ϕ(q) = σ 2

2 q(1 − q) . For the warped IDC we choose the control
measure dm(t,r) = 1/r2+βdtdr with β < 0, which leads to the
function m(Cτ (0)) = (τ−β − 1)/β . This choice provably satis-
fies the conditions of the theorem above, e.g., there are no
convergence problems, and corresponds to the model known as
the Castaing model [6] in hydrodynamic turbulence. Note that
β = 0 reduces to the well-known power law scaling case
(m(Cτ ) = − ln τ ) [3, 5, 10]. Parameters of the simulation are
µ = −0.1, σ 2 = 0.2 and β = −0.4. The Hurst exponent H of
the fractional Brownian motion BH used to build VH (t) has
been set to H = 1/3. 
The next sections will illustrate with some graphics that the
numerically synthesized processes have the prescribed proper-
ties described in previous sections. 

6.2. Scaling of IDC Noise

Marginal distribution. A very basic property of the IDC noise
under study is that Qr (t) has a log-Normal distribution with
known parameters µ(r) = µm(Cr ) and σ 2(r) = σ 2m(Cr ) . The
log Normal nature of this distribution is independent of the pre-
cise form of m(Cr ); only parameters µ(r) and σ 2(r) are sensi-
tive to m(Cr ). Figure 4 shows that the estimated normalized his-
togram and the theoretical probability density function are in
perfect agreement. 

5. Recall that in the log-normal case, ϕ(q) = −µq − σ 2/2q2 and
ϕ(1) = 0 ⇒ µ = −σ 2/2 < 0 .

0 1 2 3 4 5 6
0

1

theory
histogram

Figure 4. Histogram of Qr compared to its theoretical 
log-Normal probability density function:

the agreement is perfect.



Autocorrelation. From (11), we get in the power law scaling
case (dm(t,r) = dtdr/r2 ) for r ≤ |t − s| ≤ 1:

E[Qr (t)Qr (s)] = |t − s|ϕ(2)e−ϕ(2)(|t−s|−1). (31)

Note that a power law behavior is expected at small scales:
power law scaling is connected to the power law behavior of the
autocorrelation of Qr. In contrast, we get for the warped scaling
case under study (recall that β = −0.4) for r ≤ |t − s| ≤ 1:

E[Qr (t)Qr (s)] =

exp
[
−ϕ(2)

(
1 − |t − s|−β

−β
+ |t − s| − |t − s|−β

1 + β

)]
. (32)

Figure 5 shows both theoretical and experimental autocorrela-
tion functions obtained from a power law scaling
(dm(t,r) = dtdr/r2 ) and a warped (dm(t,r) = dtdr/r2+β)
cascades with identical parameters. The observed behaviors are
clearly distinct and are in good agreement with theoretical com-
putations. 

6.3. IDC Motion & Random Walk

Scaling behaviors. Departures from powerlaw behaviors cor-
responding to the exp[−ϕ(q)m(Cτ )] term in (15) are expected.
Figure 6 and Figure 7 shows the results obtained from the ana-
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lysis of IDC processes respectively in the power law scaling and
the warped scaling cases. The comparison between these results
shows that such departures are observed on both A(t) and
VH (t) . The performed analysis focuses on 
E[(δτ A/τ)q ] ∼ exp[−ϕ(q)m(Cτ )], resp. E[(δτ V/τ H )q ] ∼
exp[−ϕ(q H)m(Cτ )] . In a log-log plot, a curvature is clearly

0

0

1

power law
   scaling

warped
scalinglo

g(
E

[ Q
r(t

)Q
r(s

) 
])

log|t – s|

simulation
theory

Figure 5. Theoretical and estimated autocorrelation 
functions of Qr respectively in a power law scaling 

case (dm(t,r) = dtdr/r2 ) and a warped scaling 
case (dm(t,r) = dtdr/r2+β): it is sensitive to a departure

from the reference power law behavior in a controlled manner.
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Figure 6. A power law scaling cascade: (a) lnE[(δτ A/τ)2] compared to cϕ(2) ln τ + Cte. (b) lnE[(δτ V/τ H )2] compared to
cϕ(2H) ln τ + Cte. A warped cascade deviates from power laws: (c) lnE[(δτ A/τ)2] compared to −ϕ(2)m(Cτ ); 

(d) lnE[(δτ V/τ H )2] compared to −ϕ(2H)m(Cτ ) . Power law scaling is associated to straight lines in log-log diagrams.



visible whereas the power law scaling case (β = 0) would have
led to straight lines. Note that this warping is accurately control-
led for τ < 1 by the form of m(Cτ ) �= − ln τ . These numerical
observations are perfectly consistent with our theoretical
results. Exponents ϕ(q) can be estimated as well from linear
regressions in ln E[(δτ A/τ)q ] vs m(Cτ ) diagrams – Figure 7:
prescribed exponents are recovered. 
Note that a trivial scaling behavior is observed for A(t) as well
as for VH (t) at large scales. For τ ≥ 1, E[δτ Aq ] behaves as τ q,
while E[δτ V q

H ] behaves as τ q H (see Section 4). 
At small scales, the behavior of E[δτ Aq ] is dominated by the
term τ q. As a consequence, log-log diagrams display close to
linear behaviors if no renormalization is used. The warping of
the power law, due to the term exp[−ϕ(q)m(Cτ )], may be subt-
le yet it is true functional dependence and cannot be subsumed
by a constant error bound. One may also object that a trivial sca-
ling may be observed at infinitely small scales. Again, we
emphasize that the infinitely small scales limit remains out of
reach from measurements in applications. Furthermore, there
generally exists some finite smallest scale, e.g., the dissipation
scale in turbulence. Thus, it should be clear that the purpose is
not to control the scaling behavior over the whole range
τ ∈ [0, 1]: the control of a finite range of scales of several
decades is sufficient for modeling in applications. 
We emphasize that, as far as we are aware of, these are the first
cascades displaying controlled non power law behaviors up to a
large range of scales (two decades on Figure 7).
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Evolution of probability density functions. As explained in
section 5, one expects that the probability density functions of
the increments of an IDC Random Walk change from Gaussian
at large scales (τ ≥ 1) to non Gaussian at smaller scales
(τ � 1). This is numerically observed on Figure 9. Figure 9(a)
shows this evolution in the power law scaling case
(m(Cτ ) = − ln τ ) while Figure 9(b) deals with the warped case
(m(Cτ ) �= − ln τ ⇒ non power laws scaling). From a qualitati-
ve viewpoint, the effect is the same even though it seems that
this evolution is less important in the warped case – Figure 9(b).
This is actually true: the kurtosis varies from 3 to 3.6 for the
warped case while it varies from 3 to 4.6 for the power law case.
This is consistent with the cumulant analysis performed below. 

Cumulants of ln|δτ VH|. We have seen in section 5 that the
information describing the evolution of the PDF of the incre-
ments from large scales to smaller scales was held by some dis-
tribution Gτ1,τ2 (see (22)). Moreover, the cumulants of this dis-
tribution or equivalently the cumulants CY

k of Y = ln |δτ X |
appeared as relevant quantities to look at to precisely describe
this evolution. Cumulants of order 1 and 2 are shown on Figure
10 for both a power law scaling and a warped scaling processes.
We emphasize the fact that the comparison with the expected
theoretical behaviors is rather satisfactory in both cases. This is
an evidence of the quality of the synthesis method. Note that it
can be proven that if v is some Gaussian random variable, the
second order cumulant of ln |v| is some universal constant
close to 1.23. As a consequence, one expects that CY

2 � 1.23 at
large scales as observed on Figure 10(b). 

Autocorrelation of ln|δτ VH|. A last quantity people often look
at is the autocorrelation function of ln |δτ VH |. Indeed, its 
functional form is fundamentally linked to the type of scaling
the moments of the increments E|δτ VH |q obey. Power law sca-
ling is intimately connected to a logarithmic dependence on τ
[2, 3]. Figure 8 shows that this is indeed the case for the power
law scaling IDC Random Walk while a departure from this
canonical behavior is clearly observed for the warped one.
Again, the departure from a power law is visible where it was
expected to be. 

Figure 7. Estimated exponents ϕ(q)

correspond to prescribed theoretical ones.

Figure 8. Autocorrelation of the log of increments of VH

from a warped cascade deviates from logarithmic behavior.



7. Conclusion
In the present work, we gave an overview of the definitions and
main properties of continuous time processes with controlled
continuous multiscaling behavior. Most importantly, scaling
laws exist continuously through the scales and possible depar-
tures from a power law behavior are taken into account. We
have shown that numerical replications of such processes satis-
fied the expected theoretical properties that can be consistently
studied from various viewpoints (scaling of the moments
E|δτ X |q , autocorrelation functions, probability density func-
tions, cumulants of ln |δτ X | ...). Reference [9] gives a detailed
presentation of synthesis algorithms and theoretical results. Up
to our knowledge, Infinitely Divisible Cascading processes are
the first continuous multiplicative cascades displaying control-
led non power law scaling behaviors. Potential fields of appli-
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cation range from hydrodynamic turbulence to computer net-
work traffic. Matlab routines to synthetize these processes are
available on our web pages:
www.isima.fr/∼chainais, 

www.stat.rice.edu/∼riedi,

perso.ens-lyon.fr/patrice.abry.

A. Outline of proofs
This section outlines the proofs of our main theoretical results
which characterize the scaling properties of an IDC-Motion and
its associated IDC-Random Walk. The reader is referred to [9]
for detailed proofs. While scaling behaviors are rather easy to
describe, their mathematical proof calls for some technical
assumptions. 

Figure 9. Evolution of probability density functions of the increments δτ VH from Gaussian at large scales to non Gaussian 
at smaller scales, respectively for (a) a power law scaling cascade and (b) a warped cascade.

Figure 10. Cumulants of the log of increments of VH from a warped cascade deviates from power laws:
(a) C1 − H ln τ compared to −Hϕ′(0)m(Cτ ); (b) C2 compared to −H2ϕ”(0)m(Cτ ) . 



Let us start by making precise the rescaling property of IDCs.
To this end we introduce for r < bn,

A(n)
r (t) = 1

bn

∫ tbn

0

Qr (s)

Qbn (s)
ds. (33)

This cascade has control measure dm(n)(t,r) where

g(n)(r) := b2ng(bnr) · 1[0,1]. (34)

Since m(n)(Cr/bn (s)) = m(Cr (bns)\Cbn (bns)) we may unders-
tand A(n) as a rescaled zoom into the small scale details of A. In
the power law scaling case (dm(t,r) = dtdr/r2 ) we have
g(n) = g and, thus, A(n) is equal in distribution to A. 

Lemma 1. Let Qr be an Infinitely Divisible Cascading Noise
and Ar its Motion. Let 0 < r ≤ b < 1 . Then there exists a non-
decreasing process A(1)

r independent of Qb, such that

Ar (t) = b
∫ t

0
Qb(s)d[A(1)

r (
s

b
)]. (35)

In analogy, we may replace A by A(n) and A(1) by A(n+1).

Proof of Lemma 1. For the duration of the proof, we introduce
the "bandlimited cone"

Cb
r (t) := {(t ′,r ′) ∈ Cr (t) : r ′ ≤ b} = Cr (t)\Cb(t). (36)

and set

Qb
r (s) := exp

[
ρ(1)m(Cb

r )
]

exp
[
M(Cb

r (s))
]
. (37)

By convention, Qb
r (s) = 1 if r = b. Note that E[Qb

r (s)] = 1.
Note also that for any r < b and any t we have m(Cr ) =
m(Cb

r ) + m(Cb) and thus

Qr (s) = Qb
r (s) · Qb(s). (38)

Now define Q(1)
r (s) = Qb

r (bs) and set

A(1)
r (t) =

∫ t

0
Q(1)

r (s)ds =
∫ t

0
Qb

r (bs)ds = 1

b

∫ bt

0
Qb

r (s)ds.

(39)

Note that E[A(1)
r (t)] = t . Also, (35) follows by elementary ope-

ration. Further, A(1) = limr→0 A(1)
r and Qb are independent

since they are built using disjoint sets of the time-scale half-
plane P+ . Finally, Qb

r (b·) forms an IDC-noise with control
measure m(1) as claimed, which can be verified by defining
M(1)(Cr/b(s)) = M(Cb

r (bs) . Note that m(1)(Cr/b(s)) =
m(Cb

r (bs)) = m(bCr/b(s)).                                                   �

If the integrand Qb in (35) were constant over the interval [0,t]
a scaling law of moments would immediately follow. A measu-
re for the variation of the integrand which will prove useful is
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the following:

�b(t) := E sup0≤s≤t |Qb(s)q − Qb(0)q |
E[Qb(0)q ]

. (40)

The next lemma quantifies by how much the scaling law
deviates from the Binomial case where Qb(t) is indeed a
constant for t < b. 

Lemma 2. Fix q > 0 . Let 0 < r ≤ b < 1 and 0 ≤ t ≤ 1 . Then,

EAr (t)
q = bq · E[Qb(0)q ] · E[A(1)

r (t/b)q ] · (1 + e). (41)

The error term e is bounded as: |e| ≤ �b(t).

Proof of Lemma 2. We will be using the fact [17] that∣∣∣∣(∫
I

x(s)dµ(s)

)q

− C

∣∣∣∣ ≤ sup
s∈I

|x(s)qµ(I )q − C| (42)

Applying it for the measure µ induced by A(1)
r (·/b) and using

(9) and (35) we obtain∣∣∣Ar (t)
q − bq Qb(0)q A(1)

r (t/b)q
∣∣∣

=
∣∣∣∣(b

∫ t

0
Qb(s)d[A(1)

r (s/b)]
)q

− bq · Qb(0)q · A(1)
r (t/b)q

∣∣∣∣
≤ bq sup

0≤s≤t

∣∣∣Qb(s)
q A(1)

r (t/b)q − Qb(0)q A(1)
r (t/b)q

∣∣∣
= bq · A(1)

r (t/b)q · sup
0≤s≤t

∣∣Qb(s)
q − Qb(0)q

∣∣ .
�

The error term (41) in lemma 2 can be bounded for certain
IDCs, such as the ones featured in the next lemma. To formula-
te it, some notation is required. For an IDC Motion Ar with
control measure dm(t,r) = g(r)dtdr we set for convenience 

g(b) :=
∫ 1

b
g(r)dr (44)

as well as for b ∈ (0,1) and ν > 0

Cb,ν[g] := sup
0<t≤b

1
tν

· �b(t) ∈ [0,∞] (45)

Lemma 3. Fix q > 0 . Let 0 < t ≤ b < 1 .
CPC Case: If Qb is a Compound Poisson Cascade with weights
W which possess finite q-th moments, then Cb,1[g] is finite. In
other words, for all t < b:

1
t

�b(t) ≤ Cb,1[g] < ∞. (46)

Log-normal Case: For any log-normal IDC with

ρ(q) := −qµ − q2σ 2, (47)

Cb,1/2[g] is finite. More precisely, given q > 0 , b ≤ 1 and g,
there exist real numbers J , c1 and c2 depending only on q, b, µ,

(43)



σ 2 and on g(b) such that:

1√
t

�b(t) ≤ (J · c1
√

t + c2) · max(1,eρ(q)g(b)). (48)

In both cases, if in addition g(n) as defined in Theorem 1
converges, then the bounds Cb,1/2[g(n)] remain uniformly
bounded as n → ∞.

Proof of Lemma 3. First, we simplify the expressions and sepa-
rate independent from dependent parts of M(Cb(u)) and
M(Cb(0)). Thus, we write easily

�b(t) = E sup0≤u≤t |eq M(Cb(u)) − eq M(Cb(0))|
E[eq M(Cb(0))]

(49)

and introduce the following parallelepiped as subsets of the
time-scale strip:

L(u,v) = {(s,r) : b ≤ r ≤ 1,−r + u ≤ s < −r + v},
R(u,v) = {(s,r) : b ≤ r ≤ 1, r + u ≤ s < r + v},
B = Cb(t) ∩ Cb(0) = {(s,r) : b ≤ r ≤ 1,−r + t ≤ s ≤ r}.

Checking the constraints on the variable s one verifies quickly
the following decomposition of a cone Cb(u) into disjoint sets
which is valid for u ∈ [0,t] and for t ≤ b (see Figure 11):

Cb(u) = L(u,t) ∪ B ∪R(0,u). (51)

As a particular case we have Cb(0) = L(0,t) ∪ B. Noting 
that L(u,v) ∪ L(v,w) = L(u,w) with disjoint union 
whenever u ≤ v ≤ w , we find M(Cb(u)) − M(Cb(0)) =
M(R(0,u)) − M(L(0,u)) and may write �b(t) as:

E[eq M(B)]
E[eq M(Cb(0))]

· E
[

eq M(L(0,t)) sup
0≤u≤t

∣∣∣∣ eq M(R(0,u))

eq M(L(0,u))
− 1

∣∣∣∣
]

(52)
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Here, we used that the term eq M(B) is statistically independent
of the others in the enumerator. We note that 

E[eq M(B)]
E[eq M(Cb(0))]

= e−ρ(q)(m(B)−m(Cb(0)))

= eρ(q)m(L(0,t))

≤ max
(
1,exp[ρ(q)m(L(0,b))]

)
.

(53)

using the fact that m(L(0,t)) is monotonous in t. Note that
m(L(0,b)) = g(b). It remains to bound the second term in (52). 
Now the idea is to show that with t very small and thus u small,
the control measures m(R(0,u)) and m(L(0,u)) are very small,
thus the corresponding random variables are small with high
probability and thus eq M(R(0,u)) and eq M(L(0,u)) are both close
to 1. Thus their quotient is close to one and the contribution to
the last term in (52) is small with large probability. 
As a matter of fact, that quotient is exactly equal to 1 with large
probability in the CPC case. The log-normal case is somewhat
more intricate but relies only on standard bounds [9].    �

Theorem. Let q > 0 . Let ρ(·) defining as above some infinite-
ly divisible law. Let Ar be an IDC Motion with control measure
g(r)dtdr. Assume that there are constants b ∈ (0,1) and ν > 0
such that Cb,ν[g(n)] are finite and remain bounded as n → ∞;
assume that Ar as well as A(n)

r for large n converge in Lq. Then
there exist constants Cq and Cq and C

′
q, C ′

q such that for any
t < b

Cqtqe−ϕ(q)m(Ct ) ≤
EA(t)q

≤ Cqtqe−ϕ(q)m(Ct ),

(54)

C ′
q tq H e−ϕ(q H)m(Ct ) ≤

E[|VH (t)|q ]

≤ C
′
q tq H e−ϕ(q H)m(Ct ).

(55)

The assumptions of the Theorem are verified for compound
Poisson distributions as well as for the Normal distributions,
assuming that the functions g(n) converge (see above lemmas as
well as [9]). 
The proof of Theorem 1 relies on iterating (41) n times keeping
b fixed. Thus, we will apply it successively with t/bk to the cas-
cades A(k)

r introduced in (33), for k = 0,. . . ,n − 1 . Note that
A(k)

r possesses the control measure g(k)(r)dtdr which leads to

EAr (t)
q = (bq · E[Qb(0)q ])n · E[A(n)

r (t/bn)q ] ·
n−1∏
k=0

(1 + ek).

(56)

The error terms can be bounded using Cb[g(k)].                    �

Figure 11. Definition of L, B and R.

(50)
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