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Abstract 

The Au(110) surface offers unique advantages for atomically-resolved model studies of catalytic 

oxidation processes on gold. We investigate the adsorption of oxygen on Au(110) using a 

combination of scanning tunneling microscopy (STM) and density functional theory (DFT) 

methods. We identify the typical (empty-states) STM contrast resulting from adsorbed oxygen 

as atomic-sized dark features of electronic origin. DFT-based image simulations confirm that 

chemisorbed oxygen is generally detected indirectly, from the binding-induced electronic 

structure modification of gold. STM images show that adsorption occurs without affecting the 

general structure of the pristine Au(110) missing-row reconstruction. The tendency to form one-

dimensional structures is observed already at low coverage (<0.05ML), with oxygen adsorbing 

on alternate sides of the reconstruction ridges. Consistently, calculations yield preferred 

adsorption on the (111) facets of the reconstruction, on a 3-fold coordination site, with increased 

stability when adsorbed in chains. Gold atoms with two oxygen neighbors exhibit enhanced 

electronic hybridization with the O states. Finally, the species observed are reactive to CO 

oxidation at 200K and desorption of CO2 leaves a clean and ordered gold surface.  
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1. Introduction 

 

Visualization of reactive adsorbed species is a powerful tool for understanding how chemical 

reactions occur on surfaces, especially in heterogeneous catalysis.[1] Prof. Madix, who is being 

honored by this special issue, was a pioneer in the application of scanning tunneling microscopy 

(STM) to the investigation of chemical reactions on surfaces, including coinage metals.[2] 

Because gold is an efficient and selective catalyst for oxidation processes[3-9] there is 

considerable interest in imaging reactant species, including adsorbed oxygen (Oads), on its 

surfaces. Model studies on single crystal surfaces[10-13] provide a mechanistic understanding 

of how oxidative processes are promoted on Au,[14] with the final goal of predicting new 

reactions.[15] To date, the majority of mechanistic studies have focused on O-covered Au(111), 

which roughens upon O atom adsorption[16] even at low coverage (0.1ML) and low temperature 

(~200 K).[17] The roughening of the surface associated with oxygen adsorption limits our ability 

to use STM because it is not possible to visualize adsorbates at the atomic scale. If a more well-

ordered system state of adsorbed O were accessible that had the same reactivity, the high 

spatial resolution offered by STM could be used to probe the details of adsorbate organization 

and overall reactivity. 

Atomic visualization of the states of O adsorption on gold is of particular interest because its 

reactivity depends strongly on coverage and on the degree of order. DFT results coupled with 

studies of the vibrational properties of O adsorbed on Au(111) provide evidence that the local 

bonding environment depends on coverage.[18] While at low coverage and low temperature a 

disordered surface is observed, STM demonstrates that ordered oxide islands form at high O 

coverage.[17] The activity for CO oxidation on O-covered Au(111) at 200K is a factor of ~3 

times faster for the disordered low O coverage surface compared to the ordered surface oxide 

at half saturation.[17] In addition, the activity and selectivity for O-assisted methanol coupling on 

O-covered Au(111) depends on O coverage—higher activity and selectivity are observed for low 

O coverages. [19] 

 

Herein, we investigate the bonding of O on Au(110) in order to better exploit atomic-scale 

imaging using STM in conjunction with DFT studies.  The Au(110) surface reconstructs to the 

missing-row Au(110)-(1x2) structure, which consists of an ordered array of (111) 

microfacets[20-22] capped by rows of atoms with low coordination number along the [1-10] 

direction (Fig. 1a).  Where comparable studies have been performed, the reactivity of O-covered 
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Au(110)-(1x2)[23] and Au(111)[19] are similar. Likewise, the temperatures for O recombination 

to O2 are similar for the (111)[24,25] and (110)[26] surfaces.  

 

Previous electronic structure calculations suggest that O bound to Au(110) is most stably bound 

in pseudo-threefold sites (Fig. 1),[27] similar to the binding geometry for O on Au(111).[28,29] At 

higher O coverage, the formation of anti-symmetric chain-like structures are predicted (Fig. 

1).[30] These studies motivated our quest to image atoms of O on Au(110)-(1x2) at the atomic 

scale in order to better understand O-Au bonding. We find that O is generally imaged indirectly 

through the electronic perturbations induced in its gold nearest neighbors and this result is 

corroborated by simulated STM images. When the oxygen atoms are directly imaged, anti-

symmetric chain-like structures are revealed. Multi-oxygen features are prevalent already at low 

coverage and computational results indicate stabilization of the oxygen upon chain formation. At 

low coverage, the oxygen species do not induce strong surface reconstruction and they are 

reactive for CO oxidation, which makes this system amenable to studying oxidation reactions on 

gold at the atomic scale using STM. 

 

 

Figure1: (a) Schematic of the bare 

Au(110)-(1x2) surface reconstruction 

(top and side view). The surface 

periodic vectors shown by arrows are 

a=2.88 Å and b=8.16 Å. (b) Schematic 

of the oxygen (red) adsorption geometry 

at coverage ≤0.25ML based on the 

antisymmetric chain model.[27,30] 

2. Methods 

Experimental. The Au(110) single crystal was purchased from Princeton Sci. and cleaned via 

cycles of sputtering and annealing at ~900K until no impurity trace was detected by Auger 

electron spectroscopy, and STM showed a uniform Au(110)(1x2) surface. Atomic O was created 

by exposing the surface to ozone since O2 does not measurably dissociate on crystalline 

gold.[10,12] Directed ozone dosing was performed using a continuous flow from an ozone 

generator (Ozone Engineering, model LG-7) to the 1 cm-diameter doser, located ~2 mm from 

the sample surface. Prior to experiments, several cycles of ozone dosing/annealing were 
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performed to ensure a clean dosing line and sample surface. During exposure, the sample was 

kept at room temperature. Temperature programmed desorption (TPD) experiments confirm the 

adsorption of oxygen. At low oxygen coverage, a single desorption peak at ~550 K is observed 

(Fig. S1), in agreement with previous studies [31] which also determined that saturation of this 

peak corresponds to one monolayer (ML) of oxygen (4 atoms per Au(110)-(1x2) unit cell[21]). 

Prior to STM experiments, the samples were mildly annealed to ~450K for 5 min. The oxygen 

deposition on the surface was first calibrated by TPD and the amount of oxygen on the surface 

was verified via TPD post STM experiments. STM experiments were conducted under base 

pressure below 1.0 x 10-10mbar using an Omicron VT-STM and mechanically cut Pt-Ir tips. 

Typical scanning rate was 200-500 nm/s, bias voltage between -1.5 V and 1.5 V and low 

tunneling current of 0.1-0.2 nA. Imaging was mostly performed at a low temperature of ~150 K. 

While some oxygen mobility was detected at 300K, it did not prevent clear images.  

Computational.  Plane-wave DFT calculations were performed using VASP.[32,33] The PW91 

exchange-correlation functional was used, along with the projector-augmented wave 

method,[34,35] a 396 eV cutoff energy, and a 5x7x1 k-point grid. The supercell consisted of a 

4x2 Au(110)-(1x2) surface cell with 8 layers, with the bottom 6 fixed in their bulk positions. 

Approximately 20 Å of vacuum space were included in order to avoid artifacts on the calculated 

density of states contours. Simulated STM images were generated based on the Tersoff-

Hamann theory,[36] as implemented in the bSKAN package.[37] They consist of maps of 

constant density of states integrated over [EF;EF+1.5eV]. bSKAN and its interface with VASP 

allowed us to easily obtain accurate, noise-free contours far from the surface. Atomic graphics 

were created in QuteMol[38] and Vesta. 

3. Results and discussion 

STM contrast on oxygen on Au(110) and its origin.  Oxygen atoms bound to Au(110)-(1x2) 

generally appear as dark features on the surface row structure in STM images obtained using 

positive bias (Fig. 2).  We mainly concentrate on the empty-states (V>0) contrast since those 

imaging conditions provide the most reproducible contrast. Dramatic changes in contrast 

associated with the tip state when imaging filled-states (V<0) however provide useful 

information as will be discussed in connection with Fig. 3. The STM contrast on pristine 

Au(110)-(1x2)[20] consists of continuous rows in the [1-10] direction with a 0.5 Å corrugation 

amplitude in the [001] direction and 1.4 Å high atomic steps (Fig. 2a, left panel). Upon O 

adsorption, besides the appearance of dark features, the surface reconstruction is generally 

unaltered, as seen in Fig. 2a for O coverage of 0.025±0.005 ML. The length of the dark features 
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along the [1-10] direction can be indexed in terms of the Au lattice constant as (2+n) a with n=0, 

1, 2... and a=2.88Å, the lattice constant along the close-packed direction (Fig. 2b). The smallest 

(2-cell) features have an apparent depth of 0.54±0.02 Å, whereas longer ones appear to be 

0.61±0.03 Å deep relative to the top-most gold atoms (Fig. 2c). The small corrugation of these 

features compared to the bare surface step height (1.4 Å) suggests that the corrugation is an 

electronic effect, as opposed to pure topography. This assertion is addressed both 

experimentally and theoretically. 

 

Figure 2: STM signature of low-coverage O 

species. (a) evolution from clean Au(110)-

(1x2) (20x20 nm2 image; Vs=0.1 V; It=0.1 

nA). to 0.025±0.005 ML O-covered 

Au(110)-(1x2) (20 x20 nm2; Vs=+1.5V; 

It=0.2nA); (b) magnified view of boxed area 

in (a) The blue color cutoff corresponds to 

the average half-depth of the dark features. 

(c) Profiles in the row direction across the 

oxygen features in (b). (d) DFT-calculated 

geometry (e) DFT-simulated empty-states 

STM (tip-surface distance ~6 to 6.5 Å) (f) 

Contours of constant density of states 

integrated over [EF; EF+1.5eV], across the 

topmost gold atoms in the direction of the 

rows at various distances from the surface. 

Experimentally, the contour followed by the 

tip is governed by the tunneling current: the 

lower the set-point current, the farther from 

the surface. 

 

DFT calculations determine the lowest energy configuration and also confirm that the decrease 

in tunneling current observed experimentally is due to the nature of the O-Au bonding. The 

lowest energy configuration obtained corresponds to O bound to pseudo-3-fold sites on 

opposite sides of a ridge of gold atoms (Figs. 1b, 2d), in agreement with previous work.[30] This 

structure is consistent with the length of (2+n)a of features along the [1-10] direction, as 
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determined by STM. Within this structure model, features with n>2 darker gold atoms contain 

(n-2) atoms that are perturbed by two oxygen atoms. This would explain the slightly deeper 

features compared to the ones we associate with one oxygen atom. The oxygen adsorption 

structure and resulting electronic interactions are discussed in more detail below. When 

considering a 2-atom oxygen chain model (Fig. 2d), contours of constant density of empty 

states reproduce the depression above the gold atoms bonded to oxygen for tip-sample 

distance >5 Å (Fig. 2f), which is consistent with experimental estimates of this distance.[20] A 

more detailed analysis of the signal detected closer to the surface on the center gold atom is 

provided in the supplemental material (Figs. S2, S5b).  

Simulation of the empty-state STM image for a tip-surface distance of ~6 to 6.5 Å using the DFT 

results shows that the O feature presents mirror symmetry with respect to the [1-10] direction 

(Fig. 2e), as in STM (Fig. 2c). Consistent with STM, this suggests that any topographic change 

due to the oxygen adatoms is not detectable for this energy range and tip-surface distance. The 

oxygen adatom is located in the surface trough, ~0.1Å higher than the topmost gold atoms.[30] 

Hence, the topographic modulation is compensated by the electronic effect identified in our 

calculations, i.e. the perturbation in the electronic structure of gold by the adsorbed oxygen. 

There is precedent for oxygen adsorbed on transition metals appearing as depressions under 

positive bias in both experimental and theoretical studies. For example, low-temperature O 

adsorbed in the Ag(110) troughs is imaged as a depression[39] and this contrast was 

reproduced using similar STM simulations.[40] 

The experimental STM contrast associated with the presence of adsorbed O strongly depends 

on the sample voltage and tip state and even vanishes in certain tunneling conditions, further 

establishing that the corrugation is mostly electronic in nature. Two constant-current images 

obtained simultaneously (forward/backward trace) with sample biases of +1.5 V and -1.5 V 

demonstrate this effect (Fig. 3a). The +1.5 V image exhibits the typical darker contrast attributed 

to the presence of O (0.14±0.01 ML coverage). On the -1.5 V image, this contrast is vanishingly 

small. At +1.5 V, the dark areas and the areas attributed to unperturbed gold show a 0.73 Å 

height difference. At -1.5 V, this difference is nearly undetectable. Additionally, comparing 

images at various positive sample biases shows that the corrugation on the O-features 

decreases with sample bias (Fig. S3). This is also supported by I(V) mapping of the surface 

(Fig. S4). 



 

7 
 

 

Figure 3: Bias- and tip-dependent 

contrast on the O-related features 

demonstrates the electronic nature of 

the corrugation. (a) 0.14±0.01 ML O 

surface, simultaneous images (20x20 

nm2) obtained for positive (left) and 

negative (right) bias (Vs=+/-1.5 V; It=0.1 

nA, T= 150 K) and the corresponding 

profiles across the blue lines (below). 

(b) 0.03±0.01 ML O coverage surface. 

A tip variation reveals the O atoms at 

negative sample bias, bright protrusion 

ordered into zig-zag structures appear 

(10x6 nm2; Vs=-1.5 V; It=0.2 nA, T= 

150 K). Inset: bottom right feature, 

together with the surface 

reconstruction lattice.  

 

Oxygen adsorption structure.  STM reveals that the tendency for O to form one-dimensional 

multi-O structures exists already at low coverage (Fig. 2). A low temperature measurement for 

0.02 ML O coverage shows that isolated O features amount to only 9% of 367 features 

measured (Fig. S7). In agreement with this measurement, we calculate a stronger adsorption for 

a second O atom in the chain. In the convention of negative adsorption energy for binding 

interactions, the adsorption energy is lowered from -3.67 eV for the first O atom to -3.81 eV for 

the second (relative to the O in the gas phase) on the 2O-structure in Fig. 2e. 

Aside from bias-dependent variations presented (Fig.3), the tip state can also alter the O-related 

contrast, and even reveal the O atoms hence providing useful information on their adsorption 

structure. The dark features most commonly observed in positive bias (Fig. 2) are sometimes 

detected in negative sample bias images, and can also disappear almost completely on positive 

sample bias images (Fig. S5a). Contrast variations with the tip state are typical of features of 

electronic origin. Interestingly, on rare occasions, it is possible to image protrusions on alternate 

sides of the topmost Au row, forming small chains along the [1-10] direction (Fig. 3b). Note that 

we only observed this behavior at negative sample bias and it is thus not in contradiction with 
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the simulations for positive bias imaging. In the literature, a tip-dependent inversion of contrast 

on O on Pt(111) has been reported in some tip conditions[41] and simulations including 

contamination of the tip were able to reproduce it.[42] We propose that in our case, the 

protrusions correspond to the O adatoms, and that these can be imaged when the tip is 

contaminated, most probably with O. Note also that the protrusions appear when imaging the 

surface filled-states, for an energy window encompassing the O 2p-derived resonance on gold, 

as seen in Fig. 4. In this light, the features in Fig. 3b are consistent with the asymmetric chains 

structure model depicted in Fig. 1b.  

DFT calculations provide insight into local O-induced atomic and electronic structure 

modifications of the surface within an O chain. In the two-O chain structure in Fig. 4a, atoms in 

the topmost row binding to O are considered, atom 1 and 1’are binding to one O and atom 2 is 

binding to two O. Structurally, atoms 1 and 1’ have moved by 0.1 Å outward from the surface, 

while the central atom undergoes a larger displacement of 0.6 Å. Additionally, the top view in 

Fig. 4b shows that atoms 1 and 1’ move 0.2 Å away from atom 2 in the row direction which 

represents ~7% increase in the interatomic distance. In the direction perpendicular to the rows, 

they show 0.1 Å displacement away from the O atom and the structure is symmetric with 

respect to the central Au atom. Au atom 2 transfers significantly more charge (Bader[43] charge 

+0.45 e) to O (Bader charge -0.74 e) than Au atoms 1 and 1’ (Bader charge +0.15), as depicted 

in Figs. 4a,b. The comparison between projected density of filled states on Au atoms 1 and 2 

and that on clean Au shows electronic states hybridization between the O and Au states (Fig. 

4c-e) with an increased weight on both sides of the Au d band and the appearance of a sharp 

resonance close to -6 eV characteristic of O. Importantly, the electronic states hybridization is 

enhanced for the Au atom binding to two O (atom 2) with respect to an Au atom binding to one 

O (Atoms 1,1’), that is, at the end of a chain (Fig. 4) This result is similar to what has been 

recently reported for O adsorption on Au(321).[44] We note here that the antisymmetric 

geometry probably is favored because it allows a larger distance between the O adatoms and 

screening of their charge by the Au row. The structure also allows equilibrium in alternating 

displacement of the topmost atoms in the direction perpendicular to the rows. In the case of O 

chains on Ag(110), the ordering of the O and their mutual stabilization impacts oxidation 

reaction rates.[45,46] Although, as discussed in the following, the exact chain structure is 

different, similar end effects could be expected on Au(110).  



 

9 
 

 
Figure 4: Two-O relaxed structure together with charge density difference isosurfaces and 

projected density of states (PDOS) on Au atoms and O adatom. (a) Perspective side view, and 

(b) top view of the relaxed structure together with the O-induced charge accumulation and 

depletion (isosurface values ±0.02 e/Å3). PDOS on the topmost Au atoms binding to O 

compared to topmost Au atom in the clean structure. (c) Au with 1 O neighbor (atom 1 in (a)); 

(d) Au with 2 O neighbors (atom 2 in (a)); (e) PDOS on O. For symmetry reasons, both O (1 

and 1’) atoms show the same PDOS. Arrows indicate PDOS features that are common in both 

Au and O, indicating electronic state hybridization. O-Au hybridization appears to be stronger 

for the Au with 2 O neighbors than the Au with 1 O neighbor. 

 

In order to understand how O can adsorb on Au(110) without inducing strong structural 

perturbations, we compare gold and silver in their response to O adsorption. Regarding the 

clean surfaces, it is known that the transition from 4d to 5d has important structural implications. 

While pure Ag(110) adopts a (1x1) surface structure, the Au(110) surface reconstructs. In the 

reconstruction, the total amount of Au-Au bonds is unchanged compared to the ideal surface but 

the total energy is reduced by redistributing them into a richer variety of coordination 

numbers.[47,48] Relativistic effects are important in Au[27,49] but not Ag, and the stability of the 

Au reconstruction has been explained by overall contraction of the s electrons and their 
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enhanced extension into the vacuum at the surface, both of which allow a larger d-orbital 

overlap between metal atoms.[48,50,51] When exposing Ag(110) to dioxygen at T>200 

K,[52,53] metal atoms are incorporated into an added-row structure of Ag-O-Ag chains along 

the [001] direction.[54-56] Generally, surfaces reconstruct upon adsorption if the gain in 

adsorption energy on the reconstructed surface compensates the cost of the reconstruction.[47] 

The cost of breaking Ag-Ag bonds is compensated by the gain in chemisorption energy through 

enhanced electronic interaction between O and under-coordinated metal atoms.[57] Because 

gold shows a stronger metal-metal bond due to strong 5d bonds and a weaker O-metal bond, 

we expect it to respond differently to O adsorption. Theoretical investigations of O adsorption on 

Au(110) show stabilization of the adsorbate on the missing-row surface as opposed to 

adsorption on the (1x1) surface,[27] up to 0.5ML when forming chain-like structures.[30] The 

reported optimum adsorption site involves two topmost Au atoms of the (1x2), similarly to the 

tendency for O to adsorb close to defects with under-coordinated atoms on Au(111).[28,29] On 

the missing-row reconstruction, no creation of defects is required to allow O to interact with 

under-coordinated Au atoms, at least until maximum coordination for the topmost Au atoms is 

reached at 0.5ML of O.[30] Consistently, we observe the onset of atomic roughness around this 

coverage for the as-deposited surface (Fig. S6). Additionally, the (1x2) structure is still detected 

up to at least 0.75 ML of O in our low energy electron diffraction (LEED) measurements (not 

shown). Consistently with the literature,[26,58] we however observe a progressive increase in 

background intensity. The background signal below 0.5 ML of O could be explained by the 

limited extension of the O chains, their weak ordering (discussed below) and their small mobility 

at room temperature together with the above presented induced distortions in the Au surface. 

For sufficiently high coverage, the non-random distribution of the O chains becomes apparent. 

For high coverage but below 0.25 ML which corresponds to saturation coverage for the 

antisymmetric chain geometry (e.g. ~0.15ML in Fig. 3a), the surface shows O chains that are 

limited to a few nm in length i.e. in the Au row direction. Loose ordering of those chains results 

in a nanopattern consisting of alternate bright/dark stripes of a few nm in width in the direction of 

the Au rows and several tens of nm in the direction perpendicular to the Au rows. It is known 

that stress relaxation can lead to the patterning of surfaces in the nm scale, e.g. Au(111) 

ordering into the characteristic herringbone pattern.[59] Given the O-induced mild atomic 

structure perturbations indicated by our DFT calculations, it is relevant to consider a similar 

origin to the O-Au(110) surface nanopattern. In fact, O adsorption on the missing-row Pt(110)-

(1x2) surface leads to analogous nanopatterns, which was proposed to arise from stress relief 

through lattice relaxation along the ridges.[60] Our calculations yield an increase of interatomic 
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spacing by ~7% in the Au ridges where O is adsorbed (Fig. 4f), which is of the same order as 

the 5% reported lattice expansion within O chains on Pt(110); the Pt(110) surface lattice 

parameter in the row direction is 2.78 Å which is close to 2.88 Å for gold. The nanopatterns 

formed upon O adsorption could thus have the same origin on both surfaces. Interestingly, 

elastic relaxation has been invoked in order to explain the repulsive interaction between Ag-O 

chains on Ag(110) in the direction of the Ag rows ([1-10]).[61-63] Further studies on the quasi-

ordering of the chains below roughening coverage and its impact on reactivity are planned.  

Reactivity of the oxygen species.  The oxidation of CO by the O adsorbed on Au(110) 

demonstrates that the features observed in STM are, indeed, due to O and also that there is no 

Au atom incorporation into the O structures. Exposure to CO removes the dark features, leaving 

a clean Au(110)-(1x2) surface with no obvious restructuring of the step edges (Fig. 5). CO is 

known to react with O adsorbed on Au(110), even below room temperature.[64] In the example 

shown, the temperature (200K) was chosen so as to suppress the mobility of the O, 

demonstrated by the correspondence of images taken before and after a short exposure of the 

O-covered Au(110) to CO (Figs. 5a, b).  At the same time, the temperature is sufficiently high 

that there is no accumulation of either CO or of the CO2 product.[65] Approximately a third of the 

O is removed after exposure to ~10L of background CO at 200 K.  Initially, there are 28 features 

related to Oads compared to 19 features after exposure to CO (Figs. 5a,b respectively). After 

~1000L of CO, no adsorbed O remains and the image is the same as the initially clean surface; 

notably, there is no restructuring of the step edge. Note that because of the close proximity of 

the tip to the surface, a much lower effective CO pressure than the measured background 

pressure is expected in the field of imaging. Here we present qualitative results; the kinetics of 

CO oxidation on O-activated Au(110) have been investigated in detail with reactive thermal 

desorption measurements by Gottfried et al.[64,65] The disappearance of the dark features 

upon exposure to CO is strong supporting evidence that the dark features are caused by the 

presence of O adatoms. After the reaction, the typical contrast for pristine gold is restored (see 

blue arrow on Figs. 5a,b). We show here that the O species we observe are reactive and that 

they form without strong restructuring of the gold surface, unlike O on the Au(111) surface. The 

CO oxidation itself also does not induce strong restructuring of the gold surface. 
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Figure 5: Reactivity of O towards CO at 200K, 0.02-0.03 ML initial O coverage. 25x25nm2 STM 

images (Vs=+1.5V; It=0.2nA, the images have been flattened in order to show both terraces and 

the step edge appears brighter.) (a) no CO, (b) 12 minutes at 1x10-8 mbar (c) 3.75 hours at 

average background pressure 0.7x10-8 mbar. Imaging time: 60 s. The O features are 

progressively cleaned off (see arrow).  

 

 

4. Conclusion 

Using a combination of experimental (STM) and theoretical (DFT) tools, we have provided a 

detailed interpretation of the STM contrast and identified the O adsorption site and multi-O 

structures for low-coverage O on Au(110). O is mostly detected indirectly on empty-states 

images, through the reduced density of states on its direct Au neighbors, as reproduced by STM 

images simulated with DFT. Low coverage of O does not induce strong restructuring of the gold 

surface. STM results are consistent with adsorption on the (111) facets of the reconstruction, on 

a 3-fold coordinated site involving two undercoordinated topmost gold atoms. We unequivocally 

demonstrate that O atoms form asymmetric chains even at low coverage, which to our 

knowledge had only been studied theoretically in the literature. Within the chains, topmost gold 

atoms are binding with two O atoms and our calculations show a stabilization of the system 

together with an increased Au-O electronic hybridization. The ability to clearly identify O 

structures at the atomic scale opens new possibilities for atomically resolved studies of catalytic 

oxidation on gold. We have presented, in a proof-of-principle experiment, that the O species 

observed are reactive to CO oxidation. Probing the interplay between the O adsorption structure 
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and its reactivity would be one particular interesting direction for future investigations, since 

computations indicate a stabilization of the O within the chains. 
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