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Abstract 

Risk of normal tissues toxicity limits the amount of thoracic radiation therapy that 

can be routinely prescribed for the treatment of non-small cell lung cancer (NSCLC).  An 

early biomarker of response to thoracic radiation may provide a way to predict eventual 

toxicities during the multi-week treatment regimen.  This enables dose adjustment before 

the symptomatic onset of late effects, such as radiation pneumonitis and esophagitis.  

Micro-RNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by 

decreasing the translation of messenger RNAs.  miRNAs constitute a major fraction of small 

RNAs reproducibly found in circulation, in part due to their protective encapsulation within 

exosomes.  They are therefore attractive candidates as serological biomarkers.  In this 

study, we performed miRNA profiling of the blood of 5 NSCLC patients at 5 dose-points 

during thoracic RT and found 10 miRNAs that correlated well with total radiation dose as 

well as other common dosimetric parameters.  We then assessed these 10 miRNAs in 

samples from a separate cohort of 21 NSCLC patients receiving RT and identified miR-29a-

3p and miR-150-5p as potential, reproducible biomarkers that decreased in circulation 

with increasing radiation dose.  We also conducted in-vitro experiments to measure the 

expression levels of these miRNAs intracellularly and within exosomes in three NSCLC cell 

lines and two lung bronchoepithelial and fibroblast lines.  The exosomal expression of miR-

29a-3p and miR-150-5p decreased with radiation.  However, this was concomitant with an 

increase in intracellular levels, suggesting that exosomal export of these miRNAs may be 

downregulated in NSCLC and stromal cells as a response to radiation.  One may therefore 

hypothesize that outlier trends in levels of circulating miR-29a-3p and miR-150-5p may 

predict unexpected responses to radiation therapy, such as toxicity.   
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Glossary 

 

1. Gy: Gray = one Joule per Kilogram  

2. NSCLC: non-small cell lung cancer 

3. miRNA, MiR: micro-RNA 

4. RTOG: Radiation Therapy Oncology Group 

5. RT: radiation therapy 

6. RP: radiation pneumonitis 

7. QUANTEC: Quantitative Analyses of Normal Tissue Effects in the Clinic 

8. MLD: mean lung dose 

9. V20: percent of total lung volume exposed to at least 20 Gy of radiation 

10. V5: percent of total lung volume exposed to at least 5 Gy of radiation 

11. TGF-β1: transforming growth factor beta 1 

12. IL-1/6: interleukin 1/6 

13. MVB: multi-vesicular bodies 

14. cDNA: complementary deoxyribonucleic acid 

15. EBV: Epstein Barr virus 

16. FBS: fetal bovine serum 

17. RPMI: Roswell Park Memorial Institute 

18. TCGA: Tumor Cancer Genome Atlas 

19. GEO: Gene Expression Omnibus 

20. GSEA: Gene Set Enrichment Analysis 
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Introduction 

In 2015, an estimated 221,200 Americans will be diagnosed with lung cancer and 

158,040 will die of the disease (1).  Roughly 85% of lung cancers are non-small cell lung 

carcinomas (NSCLC), which are most often locally advanced (Stage III) or metastatic (Stage 

IV) at the time of diagnosis (2).  Platinum-based chemotherapy with concurrent 

radiotherapy (RT) comprise first-line treatment for locally advanced NSCLC and has been 

shown to increase survival (3).  However, despite optimal chemoradiotherapy, rates of 

loco-regional recurrence remain high and patients often suffer treatment failure within the 

irradiated area in approximately 40% of cases (4).  Indeed, the 5-year mortality rate for 

Stage III NSCLC is a dismal 15-25% (5, 6).  Attempting to improve survival rates, the 

Radiation Therapy Oncology Group undertook a trial (RTOG 0617) which randomized 

patients to receive 60 Gy, the standard dose, or a higher 74 Gy dose of radiation to observe 

whether dose escalation improves outcomes (7).  Unfortunately, there was no survival 

benefit to receiving the higher dose of radiation and there was even a higher number of 

absolute mortality in this arm.  Furthermore, despite sometimes compromising tumor 

coverage to meet normal tissue constraints, the rates of esophagitis was higher in the dose-

escalation arm compared to the standard dose arm.   

A major reason why NSCLC recurs loco-regionally as frequently as it does is our 

inability to predict which patients may require dose escalation for better local control, or 

those who can tolerate higher RT doses to organs-at-risk.  Despite complex variations in 

anatomic and biological characteristics between patients and their tumors, RT regimens 

have remained relatively uniform.  Currently, the standard recommended radiation dose is 

60 Gy given in 2.0 Gy daily fractions, based on the results of RTOG 0617 (7).  In practice 

however, prescriptions range between 60-70 Gy in 1.8 to 2.0 Gy daily fractions, depending 

on provider preferences as well as dosimetric constraints related to extent of tumor 

infiltration of or proximity to radiosensitive structures such as the lungs, spinal cord, 

esophagus and heart (8).   Particularly in the treatment of NSCLC, collateral damage to 

normal lung tissue is a major concern that often limits the achievable dose, likely to the 

detriment of local disease control.  It has been reported that between 10 and 20 percent of 

patients suffer moderate or severe radiation-induced pneumonitis (RP) following standard 
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treatments (9).  RP is an inflammatory response of the lungs resulting in symptoms of 

variable severity ranging from subclinical changes only detectable on imaging to chronic 

cough, dyspnea, low-grade fever, or even pulmonary failure requiring hospitalization.  

Moreover, this figure is likely to be underestimated since the clinical manifestations of RP 

are highly non-specific and common symptoms.  In severe cases, the RP-attributed 

mortality rate can be as high as 50% (10).   

The Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) meta-

analysis collated previous attempts to balance the need for adequate tumor control with 

normal lung toxicity by identifying dosimetric parameters, such as mean lung dose (MLD) 

and Vx (percent volume of both lungs receiving at least x dose of radiation; most often 20 

Gy or V20), which could predict RP and other endpoints of normal-tissue toxicity such as 

esophagitis and coronary fibrosis (8).  The study confirmed that higher indices of radiation 

exposure generally correlated with increasing probability of symptomatic pneumonitis.  

Unfortunately, the study failed to identify any reliable threshold above which RP was likely.  

Indeed, rates of symptomatic RP varied widely between different retrospective studies at 

any particular MLD or Vx.  This limitation in using dosimetric parameters to minimize 

toxicity has led to significant differences in practice patterns between radiation therapy 

groups.  It is likely that rates of radiation-induced toxicity will also vary, based upon 

institutional experience and provider preference.  To improve patient outcomes, a more 

reliable predictor of toxicity (or conversely, of tumor response) is required.   

More recent efforts have focused on biochemical markers that potentially 

correspond to normal-tissue toxicities (11).  Naturally, inflammatory cytokines that could 

be measured in the circulation were attractive candidates.  Levels of circulating TGF-β1 

were explored as a potential biomarker of RP.  Li and colleagues measured pre-RT levels of 

both soluble TGF-β1 and ligand-receptor complexes between TGF-β1 and one of its 

receptors, CD105, in 91 patients treated for breast cancer (12).  They found that patients 

with higher pre-radiotherapy plasma levels of TGF-β1 and lower levels of ligand-receptor 

complexes were more likely to develop fibrosis of breast tissue.  The authors suggested a 

cutoff value of 96 pg/ml for TGF-β1, which predicted breast fibrosis with a sensitivity of 

76% and specificity of 74%.  In the lung, Anscher and colleagues measured TGF-β1 before, 

during, and after RT in 73 patients with NSCLC (13).  They were unable to ascertain a 
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reliable TGF-β1 threshold that predicted pneumonitis, although patients whose post-RT 

TGF-β1 had renormalized to pre-treatment levels were less likely to suffer from RP with a 

positive predictive value of 90%.  A subsequent, prospective trial from two institutions 

examined the ratio of TGF-β1 during RT compared to pre-RT as a predictive biomarker of 

radiation-induced lung toxicity (14).  In 165 patients, a TGF-β1 ratio of greater than 1 

performed significantly better than MLD in predicting patients who go on to suffer from RP.  

Unfortunately, the specificity of this approach was severely limited, as 53.8% of patients 

with TGF-β1 ratio greater than 1 did not suffer from RP.    

Based on these encouraging results suggesting that TGF-β1 as a biomarker may be 

superior to doximetric parameters in predicting RP,  Anscher and colleagues attempted a 

prospective dose-escalation trial for lung cancer patients whose TGF-β1 levels had 

returned to baseline levels at the end of standard-dose RT (15).   Patients whose serum 

TGF-β1 returned to baseline after a standard course of RT of 73.6 Gy received additional 

treatments up to 86.4 Gy.  This trial showed that patients with elevated post-RT TGF-β1 

still developed more severe lung toxicity, despite being spared additional radiation.  

Unfortunately, large fractions of patients in the TGF-β1 -guided dose-escalation arms also 

still experienced RP during follow-up despite having renormalized TGF-β1 levels.  Later 

studies have shown that TGF-β1 levels actually correlated with tumor volume (likely 

because tumors produced TGF-β1), and therefore the volume of lung irradiated, which 

rather than being predictive for RP, was already demonstrated by QUANTEC to be an 

unreliable marker (16, 17).   

Other investigators have focused on the cytokines, IL-1 and IL-6, as potential 

biomarkers to predict normal-tissue toxicity after RT (11).  Chen et al found that circulating 

levels of IL-6 were higher before, during, and after RT in a small group of patients who 

developed mild RP (18).  However, the sensitivity and specificity of IL-6 to retrospectively 

predict RP was only 78% and 40%, respectively (19).  Furthermore, comparing post-RT to 

pre-RT IL-6 levels did not perform any better as a predictor than simply measuring 

baseline IL-6 levels.  Finally, Stenmark et al.  attempted to combine dose-volume histogram 

parameters with inflammatory cytokines in order to improve the prediction of RP (20).  

They were able to slightly improve RP sensitivity (80%), but still reported low specificity 

(60%).   
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In recent years, micro-RNAs (miRNAs) have garnered interest as potential 

biomarkers for a range of biological and physiological states(21).  miRNAs are small (22-24 

nucleotide), non-coding RNAs that serve to modulate gene expression by decreasing the 

expression levels of as many as 60% of all coding sequences in the human genome via 

many components of the small-interfering RNA (siRNA) effectors pathway (22-24).  Mature 

miRNA can bind to Argonaute as part of the RNA-induced silencing complex (RISC) in order 

to identify and cleave complementary mRNA.  Alternatively, miRNA can bind to 

complementary segments of nucleotides within its target mRNA, most often in the 3’ 

untranslated regions (UTR), to decrease the efficiency of protein translation.  The sequence 

complementation between miRNAs and the mRNAs they target are remarkably conserved 

between species.  Circulating miRNAs are attractive as potential biomarkers of tumor 

radiation response and normal-tissue toxicity.  They constitute the major fraction of small 

nucleic acids found in circulation, and despite the high concentration of RNA-degrading 

enzymes, circulating miRNA expression levels have been measured to be stable, 

reproducible, and consistent (21).  miRNA expression has been shown to significantly and 

specifically change in murine serum following whole body radiation (25, 26).  Further, 

miRNA expression in peripheral blood cells has been used to accurately distinguish pre- 

and post-radiation states in human patients (27).   While the exact mechanisms underlying 

these changes are currently under investigation, miRNAs have been shown to be involved 

in regulating the DNA damage response, making it especially relevant in the context of RT 

for NSCLC (28).   

Despite being widely reported as potential biomarkers for a range of physiologic 

processes, the origins of circulating miRNAs have not been well studied.  It has been 

recently shown that the majority of circulating miRNAs in serum are found within 

exosomes, which protect miRNAs from degradation (29, 30).  Exosomes are small (50-

80nm) membrane vesicles of endocytic origin that are formed by the inward budding of 

endosomes into multi-vesicular bodies (MVB) (31).  Mature MVBs subsequently fuse with 

the plasma membrane to release exosomes from the cell in an orchestrated manner that is 

distinct from exocytosis.  Exosomes containing miRNAs have been shown to travel in an 

antigen-specified, unidirectional manner from T cells to antigen presenting cells during the 

formation of an immune synapse (32).  Interestingly, these exosomes communicate a 
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different set of miRNAs than those found in their parent T cells and serve to modulate gene 

expression in the target cells.  Further highlighting the importance of miRNA-containing 

exosomes as mediators of intercellular communication are co-culture experiments of EBV-

infected and uninfected cells (33).  These experiments showed that non-infected cells 

internalize exosomes secreted by EBV-infected B cells and subsequently down-regulate the 

expression of immunomodulatory genes confirmed to be critical in EBV-associated 

lymphoma transformation, most notably CXCL11/ITAC.   

The complementary mechanisms by which miRNAs regulate mRNA expression 

make it possible to computationally predict gene targets of any particular miRNA.  The 

most validated algorithm for performing target prediction is Targetscan, which has been 

shown to have performance rivaling experimental methods (34, 35).  Targetscan identifies 

mRNA sequences that are likely to be targets of a specific miRNA by generating a context 

score which takes into account 14 validated features of miRNA-target mRNA binding and 

recognition.  This tool makes it possible to quickly investigate changes in genetic 

expression due to any observed differences in miRNA expression.  With the proliferation of 

gene expression profiles that are publically available, genome target prediction makes it 

possible to infer the genotypic results of any particular miRNA signature.  miRNA signals 

can then be indirectly correlated to phenotypic classes, such as treatment exposure in 

radiation therapy.  While investigators should be cautious when performing combined 

analyses of multiple expression datasets, this approach could be useful in generating 

hypotheses for further studies.   

In this study, we hypothesized that miRNA expression in the peripheral circulation 

may serve as biomarkers for radiation response during thoracic RT in NSCLC patients.  We 

also investigated the potential cellular source of miRNAs in circulation by measuring 

miRNA expression in exosomes from cells and conditioned media.  Finally, gene set 

enrichment analysis of predicted targets of potential miRNA biomarkers were performed 

on previously published gene expression microarrays.  miRNA biomarkers that are 

identified as radiation-responsive may correspond to tumor response or damage to 

irradiated organs-at-risk, allowing prediction of acute and delayed injury to these organs.  

Such a tool has the potential advance the goal of rationally tailoring RT for NSCLC patients 

who would tolerate and/or need dose-escalation for local disease control.    
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Materials and Methods 

miRNA profiling and validation:   

Five plasma samples from each of five patients with Stage IIIA NSCLC treated with 

radical chemoradiotherapy (profiling cohort) were collected before—and at roughly 2 

week intervals during—RT (Table 1).  10 mL of blood were collected in K-EDTA coated 

Vacutainer tubes (Fischersci).  Whole blood was transferred to 15mL conical tubes and 

immediately spun at 2000xg for 15min at 4C.  The resulting platelet-depleted plasma was 

aspirated and aliquoted into 500ul volumes and stored in 1.5mL cryo vials at -80 deg C. 

Samples were comprehensively profiled for known human miRNAs (~1900) using Exiqon 

miRCURY LNA Universal RT microRNA PCR Human Panel I+II arrays.  Candidate miRNAs 

whose levels significantly correlated with RT dose, lung V5, lung V20, mean lung dose, and 

mean esophagus dose were identified.  miRNA candidates identified in the screen were 

validated using samples from the original screening cohort and an additional 21 NSCLC 

patients (validation cohort), collected before—and at 20Gy intervals during—RT.  Patients 

in the validation cohort had similar disease characteristics and treatment regimens (Table 

2).  All patients in the profiling cohort underwent concurrent chemoradiation while 10 of 

21 patients in the validation cohort received radiation in the adjuvant setting. One sample 

each from the 0 Gy and 40 Gy groups as well as two from the 20 Gy group had undetectable 

levels of miRNAs, likely due to degradation during processing or transport. 

For both screening and validation cohort plasma samples, total RNA was isolated 

from 200 uL volumes of plasma samples using Exiqon miRCURY Biofluids Total RNA 

Isolation kits (Exiqon, Copenhagen, Denmark).  cDNA synthesis was performed for all 

samples using Universal cDNA first-strand synthesis kits (Exiqon) by adding 4µL of total 

RNA.  Quantitative real time-PCR was performed using the Exiqon SYBR Green system in a 

96-well format.  All LNA primers were ordered from Exiqon and added at 250nM final 

concentration in the reaction mixture.   

Measurement of significant miRNAs in cells and conditioned media:   

Human NSCLC cell lines NCI-H460 (large-cell lung carcinoma), A549 (type II 

alveolar cell carcinoma), and NCI-H1299 (lung adenocarcinoma) as well as diploid, 



12 
 

embryonic-derived MRC5 (lung epithelial fibroblasts) and IMR90 (lung epithelial 

fibroblasts) cells were grown in 10 cm tissue culture plates (36-40).  NSCLC cells were 

cultured in Roswell Park Memorial Institute (RPMI) 1640 (Life Technologies) media 

supplemented with 10% fetal bovine serum (FBS, Sigma).  MRC5 and IMR90 cells were 

cultured in Eagle’s Modified Essential Media (ATCC, Manassas, USA) supplemented with 

10% FBS.  To minimize changes in miRNA expression due to serum starvation, cells were 

maintained throughout in complete media.   Because some miRNAs have been detected in 

FBS, the same batch of FBS was used for all in-vitro experiments.  Additionally, media with 

FBS were profiled for miRNAs of interest for background normalization (Figure 1).   

For measurement of intracellular miRNA expression, cells were transferred to 6-

well tissue-culture plates (Thermofisher, Waltham, USA) at a density of 105 cells per well 

and allowed to reach log-phase growth in 48 h.  Samples (n=6 per group) were then 

irradiated using a Gammacell 40 Exactor (Best Theratronics) with 2 Gy per day for 1,2, or 3 

days (2 Gy, 4 Gy, or 6 Gy total dose).  Each day, cells were trypsinized and harvested 2 

hours after irradiation.   

For measurement of extracellular miRNA expression in conditioned media, cells 

were transferred to 15cm tissue-culture plates (Falcon) at a density of 106 cells per plate 

and allowed to reach log-phase growth in 48 h.  Samples (n=3 per group) were then 

irradiated at 2Gy per day for 1 and 3 days (2Gy or 6Gy total dose).   Fresh media was added 

one hour prior to radiation on day 1 and media was not changed subsequently.  After days 

1 and 3, 10 mL conditioned media was collected from each plate 2 h after irradiation.  

Cellular debris was removed by centrifugation at 3200 x g for 10 minutes before the 

supernatant was stored at -70°C for downstream miRNA quantification.  Exosomes were 

isolated and purified using a solvent-exchange exosome isolation kit (Exiqon) before total 

RNA was isolated with Plant and Cells Total RNA Isolation kits.  Isolation of exosomes was 

confirmed by Western Blotting for Tsg101, a protein involved in multi-vesicular biogenesis 

(29, 41).  

After sample collection, total RNA was immediately isolated from cell pellets using 

Exiqon miRCURY Plant and Cells Total RNA Isolation kits.  cDNA synthesis was performed 

using Exiqon Universal cDNA first-strand synthesis kits by adding 100 ng total RNA for 

intracellular samples and 6.5 µL total RNA for exosome samples.  Quantitative RT-PCR was 
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performed using Exiqon SYBR Green master mix.  All LNA primers except miR-150-5p were 

ordered from Exiqon and added at 250nM final concentration.  Q-PCR was performed using 

an AB-7500 thermocycler.  For miR-150-5p, the Qiagen miSCRIPT SYBR Green primer 

assay was used, RT was performed using the miSCRIPT RT Kit (Qiagen) and Q-PCR was 

performed using the miSCRIPT SYBR Green Kit (Qiagen).  Relative miRNA expression of 

biological replicates was calculated using the ΔΔCt method (42).   

Cell viability was determined using the Trypan blue dye exclusion method, using a 

standard protocol (43).  Cell proliferation was assessed by manually counting adherent 

cells, averaged over 5 random high-powered field (40x).   

Normalization and Technical Controls 

 Due to the lack of endogenous controls that normalize the amount of a miRNA of 

interest to the total amount of miRNAs (such as actin or tubulin for mRNA), the selection of 

appropriate normalizers is critical to quantifying miRNA expression (44).  When profiling 

data comprising many miRNAs are available, the average expression of all miRNAs in each 

sample is often used as the normalizer.  Alternatively, a basket of miRNAs whose 

expression are most consistent between samples can be used to normalize (45).  In the 

latter case, a different set of normalizers must be identified in each experiment.  

Normfinder is a statistical software that assigns a relative measure of “stability” based 

upon the variance of a miRNA’s expression between samples in an experiment (46).  

 In the profiling cohort, the global average expression of all detectable miRNAs were 

used to normalize.  In the validation cohort, miR-let-7d, miR-324, miR-16-2-3p, and miR-

126 were used as normalizers based upon their universal expression in all samples and 

high Normfinder stability.  For normalization of intracellular miRNA expression, the snRNA 

sequence U6 and miR-103a have been established as normalizers for quantification of 

intracellular miRNAs and were measured in addition to the two most stably expressed 

miRNAs from the initial screen, miR-let-7d and miR-16-2-3p, as putative normalizers (44).  

These four miRNAs were measured in each intracellular experiments and the two most 

stably expressed miRNAs—as assessed by Normfinder in each experiment—were used for 

normalization.  For normalization of exosomal miRNA expression, miR-let-7a-5p has been 

shown to perform well as a normalizer for miRNA quantification of exosomes derived from 
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cell culture and was measured to potentially supplement miR-let-7d and miR-16-2-3p (47).  

These three miRNAs were measured in each intracellular experiments and the two most 

stably expressed miRNAs—as assessed by Normfinder in each experiment—were used for 

normalization.   

 Hemolysis is another issue which may confound the quantitative analysis of cell-

free, circulating miRNA (48).  As previously described by Blondal and colleagues, the 

difference in miR-451 and miR-23a expression in plasma samples was used to assess the 

degree of hemolysis.  In this study, a cutoff value of greater than 8 was used to exclude 

samples that are likely to be hemolyzed.   

 Synthetic RNA and DNA were added to every sample to assure that RNA isolation, 

cDNA synthesis, and Q-PCR reactions were indeed consistent.  For the profiling cohort 

samples, UniSp2, UniSp4, and UniSp5 were used as RNA isolation spike-in controls. UniSp6 

was used as cDNA synthesis spike-in controls.  Additionally, the DNA spike-in UniSp3 was 

added. In the validation cohort samples, UniSp3 and UniSp6 were used as spike-in controls. 

In all samples, spike-in controls were assayed at steady levels. 

Computational Target Identification and Gene Set Enrichment Analysis 

 TargetScan (v7.0) was used to identify genes that are likely targeted by potential 

miRNA biomarkers.  The gene targets for each miRNA with a context score of less than -0.8 

were included in a custom miRNA gene list (less negative scores correspond to higher 

likelihood of miRNA-mRNA interaction).  Expression profiles available on the Genome 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/gds, last accessed January 29, 

2016) were abstracted using the search query: “lung cancer” OR “non-small cell lung 

cancer” AND “radiation”.  Microarray data were selected from experiments where NSCLC 

tumor cells were exposed to clinically-relevant gamma radiation.  Data were pre-processed 

to exclude unavailable or background values.  Gene set enrichment analysis (GSEA v.2.2.1) 

was then performed on the selected gene expression data and custom miRNA target gene 

set using a published software package (49, 50).  Samples were divided into two 

phenotypes: control (non-irradiated) and 24 h after irradiation.  1000 permutations were 

simulated on the phenotype and the weighted enrichment statistic was used.  The cutoff for 
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significance of gene set enrichment was a false discovery rate (FDR) of 25%, which 

incorporates adjustment for multiple comparisons testing.   

 

Statistical Methods: 

In the profiling experiment, miRNA expression data were normalized toward the 

average expression of miRNAs detectable in all profiling samples.  Using those miRNAs for 

normalization, we calculated dCp values by mean-centering all Cp values, using the 

formula, 

𝑑𝐶𝑝 =
∑ 𝐶𝑝(𝑖𝑡ℎ 𝑚𝑖𝑅𝑁𝐴)𝑛

𝑖=1

𝑛
−  𝐶𝑝(𝑚𝑖𝑅𝑁𝐴 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡) 

Thus, higher scores represent higher expression levels.  Fold changes of relative expression 

were calculated using the ΔΔCt method (42). 

In the profiling experiment using the screening cohort, we used analysis of variance 

(ANOVA) to identify miRNAs whose expression differed significantly depending on the 

dose of radiation.  The Benjamini-Hochberg step-up method was used to adjust significance 

values for multiple comparisons testing (51).   miRNAs that showed significance in ANOVA, 

were selected for the validation experiments.  For the validation experiment, we identified 

four miRNAs that were stably expressed in all screening cohort samples and did not 

correlate significantly with radiation dose.   

Analysis in the validation cohort was performed using 63 samples from 21 patients 

treated for locally-advanced NSCLC to verify whether the observed differences replicate in 

that cohort as well.  Given the larger number of patients and repeated measures at pre-

specified time points we were able to use repeated measures ANOVA to estimate the 

association between radiation dose and miRNA levels while taking into account individual-

specific patterns.  We performed pairwise comparisons between the baseline, 20Gy and 

40Gy time points using the Newman-Keuls test.  We subsequently evaluated correlations 

between miRNA and dosimetry parameters to determine the pattern of changes of miRNAs 

differentially expressed in the profiling experiment.  Pearson’s correlation was used to 

evaluate the direction and strength of such correlations.   
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For in-vitro data, we used Student’s t-test to compare miRNA expression levels 

between groups.  In all cases, we assumed p levels < 0.05 to be statistically significant.   
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Results 

Profiling of patient blood samples identifies two circulating miRNAs that inversely 

correlate with RT dose 

Of 752 miRNAs profiled in at least one sample in the screening cohort, 124 were 

universally detected in all 25 samples.  4 samples were excluded at pre-processing due to 

hemolysis.  Ten miRNAs differed significantly depending on the  received RT dose (Figure 

2).  Of these 10 miRNAs, miR-150-5p (p=0.036) and miR-29a-3p (p=0.032) (hereafter miR-

150 and miR-29a) were shown to differ significantly depending on the received RT dose in 

the validation cohort (Figure 3).  The remaining seven candidate miRNAs identified in the 

screening cohort did not reach statistical significance in the validation samples (Table 3).  

In the validation cohort, similarly to the screening cohort, circulating levels of miR-29a and 

miR-150 decreased with increasing RT dose.  Furthermore, miR-29a and miR-150 also 

significantly correlated with clinically relevant dosimetric parameters (lung mean dose; 

lung V20; lung V5; esophagus mean dose) that are themselves non-linearly correlated to 

total dose (Table 4).   

Intracellular levels of miR-29a-3p and miR-150-5p increase after irradiation in NSCLC 

cells and in lung fibroblasts:   

In all three tested NSCLC cell lines NCI-H460, A549, and NCI-H1299, radiation 

increased the intracellular expression of miR-29a and miR-150 as early as 2 hours after 

irradiation (Figure 4).  This difference persisted with each fraction of radiation for up to 3 

days of treatment.  The same pattern of increase was also observed in two non-cancer cell 

lines, MRC5 and IMR90 (Figure 4).  For miR-29a, the relative increase in intracellular 

expression peaked after the second fraction of radiation, e.g.  in H1299 cells where 

expression returned to baseline after the third fraction.  For miR-150, the relative increase 

in intracellular expression did not express a clear temporal trend, although expression was 

typically highest after the first fraction of radiation.  In all experiments, miR-let-7d, miR-16-

2-3p, and miR-103 demonstrated the highest Normfinder stability and were used to 

normalize intracellular measurements.  Likewise, miR-let-7d, miR-16-2-3p, and miR-let-7a 

were used to normalize in exosomal measurements.  In concordance with recent studies, 
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U6 routinely demonstrated low stability across groups, and was not used as a normalizer 

(44).   

miR-29a-3p and miR-150-5p levels are lower in exosomes secreted into the conditioned 

media of cells 

Western blotting confirmed the presence of TSG101 in exosome pellet samples, 

which were absent in the supernatant (Figure 5). miR-29a and miR-150 levels were lower 

in exosomes purified from conditioned media of irradiated NCI-H460, A549, and NCI- 

H1299 cells compared to un-irradiated control (Figure 6).  This difference persisted with 

each fraction of radiation for up to 3 days of treatment.  Exosomal miR-29a and miR-150 

were also lower for irradiated MRC5 and IMR90 cells (Figure 6).  At a 2Gy fractional dose, 

radiation treatment abrogated proliferation in all cell lines, but did not significantly induce 

cell death (Figure 7A).  In all experiments, miR-let-7a, miR-let-7d and miR-16-2-3p 

demonstrated high Normfinder stability and were used to normalize exosomal miRNA 

measurements.   

Genes predicted to be targets of miR-29a are enriched in genes that are significantly 

altered by radiation in H460 and H1299 cells 

TargetScan identified 24 and 6 genes that are likely to be regulated by miR-29a and 

miR-150, respectively (Table 5).   116 studies were identified from the GEO database using 

the search query stated in the above methods section.  Of these, 35 were relevant in terms 

of general experimental design.  Of these, one dataset, GSE20549, included adequate 

descriptions of cell lines, treatment technique, and RNA extraction method.  GSE20549 

consisted of 42 Affymetrix microarrays (Human Exon 1.0 ST) which included 6 control 

replicates, 3 replicates at 2 h post-radiation, 3 replicates at 4 h post-radiation, 3 replicates 

at 8 h post-radiation, and 3 replicates at 24 h post-radiation for each cell line, H460 and 

H1299.  Gene set enrichment analysis revealed that only miR-29a targets were significantly 

enriched in the H460 data (FDR = 0.158, Figure 8A).  6 of 24 predicted miR-29a targets 

(COL1A2, COL11A1, TET3, ELN, ING3, HRK) were significantly enriched in genes that are 

relatively upregulated in the non-irradiated phenotype (i.e. downregulated in the 
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irradiated phenotype) miR-29a targets were also relatively enriched in the H1299 data, but 

did not approach significance (FDR = 0.856, Figure 8B).    
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Discussion 

The Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) study 

delineated dosimetric parameters, such as mean lung dose (MLD) and V20, that predict RP 

and other endpoints of normal-tissue toxicity.  Unfortunately, the constituent studies failed 

to identify any reliable threshold for RP.  Thus, contemporary management is based on 

institutional and protocol guidelines for these dosimetric parameters, based on what is felt 

to be acceptable risk to the average patient.  In principle however, even if a dosimetric 

threshold could be reliably established, it would only provide a population-based estimator 

of RP risk.  What would be more clinically useful would be a constitutive biomarker that 

dynamically estimates risk of RP over the course of radiation therapy.  Whereas dosimetry 

is a proxy, we wish to interrogate the biology itself.     

In this study, we identified 2 miRNAs that decrease in circulation with thoracic RT in 

human patients with locally-advanced NSCLC.  This two-miRNA signal remained significant 

despite inter-patient variability in our relatively small sample size, which is a limitation of 

our data.  However, this may imply that the identified miRNAs are robust biomarkers of 

thoracic radiation RT, but does not preclude others that may become significant with 

increased statistical power. Due to institutional differences in treatment protocols, 10 of 21 

patients in the validation cohort received radiation in the adjuvant setting, whereas all 

patients in the profiling cohort underwent definitive chemoradiotherapy. One patient in 

the validation cohort received no chemotherapy and the remaining patients received 

definitive chemoradiation. This heterogeneity in the validation cohort may have altered the 

rate of change in lung or tumor-specific miRNAs, as we would expect irradiated volumes to 

be different in the adjuvant as compared to the neoadjuvant setting. This may explain why 

only the two most significant signals identified in the profiling cohort remained significant 

in the validation cohort. 

To determine the potential source of this circulating miRNA signal, we interrogated 

the expression of significant miRNAs intracellularly and exosomes recovered from NSCLC 

and stromal cell culture.  To our knowledge, no prior study proposing circulating miRNAs 

as biomarkers for any application has identified—either in vitro or ex vivo—a validated 

cellular source of miRNAs.  In harmony with both our screening and validation data of 
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miRNAs found in circulation, radiation significantly diminished miR-29a and miR-150 

accumulation in exosomes secreted into conditioned media of NSCLC lines, lung fibroblasts 

and lung bronchoepithelial cells.  This final, in vitro observation provides a second, wholly 

independent, confirmation that extracellular levels of miR-29a and miR-150 decrease with 

radiation exposure.  Interestingly, whereas both miRNA biomarkers decreased 

extracellularly with radiation, they increased intracellularly.  This inverse relationship 

suggests that the decrease in miR-29a and miR-150 levels in circulation may be a regulated 

process, rather than simply a reflection of decreasing intracellular miRNA expression.  Both 

tumor and non-tumor cells may be downregulating the export of miRNAs, via decreased 

exosome secretion, leading to an intracellular buildup of miRNAs.  This is further supported 

by our observation that a 2 Gy fraction size was sub-lethal, whereas a lysis model of miRNA 

release would require significant cell death (Supplemental figure S2).  A conceivable 

alternate interpretation of the exosome expression pattern may be that radiation simply 

decreases cell proliferation, thereby leading to an apparent—or bulk—decrease in 

exosomal miRNA.  This is unlikely because the significant relative decrease happens as 

early as 2 hrs after the first fraction of radiation, when there is a negligible difference in cell 

proliferation between irradiated and control samples (Figure 7B).   

The decrease in exosomal export of miR-29a and miR-150 appears to hold for both 

NSCLC cells and lung stroma cells.  While the miRNA expression patterns of other cell types 

found in the lung (i.e.  lymphocytes and endothelial cells) were not measured, it is likely 

that tumor and stromal cells comprise most of the volume targeted by conformal RT 

methods.  Another limitation of our study is the comparison between miRNA levels in 

circulation and miRNA levels in isolated exosomes.  This comparison was necessary on a 

technical level because miRNAs exist in a much higher concentration in platelet-depleted 

plasma as compared to conditioned media.  An ideal comparison would have required the 

isolation of exosomes from patient plasma, which we do not believe necessary due to prior 

studies showing that the majority of circulating miRNAs are contained within exosomes 

(29).  These exosomes are dissolved and rendered measurable by the miRNA isolation 

process used in this study.   

A limitation of these in-vitro data was that intracellular and exosomal miRNA 

expression was not measured in the same experiment. Thus, the relationship between 
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intracellular miRNA expression and exosomal miRNA expression is indirect. However, with 

the exception of larger culture plates to allow for the collection of sufficient conditioned 

media for exosome isolation, all other experimental conditions were identical.  These data 

are also unable to distinguish whether the decrease in exosomal miR-29a and miR-150 is 

due to decreased loading of miRNAs into exosomes or due to decreased export of exosomes 

themselves.   

Whether miRNAs circulate freely, associated with ribonucleoprotein complexes, or 

encapsulated within exosomes or remains to be completely elucidated (29, 52, 53).  

Notably, Arroyo et al. showed that miR-let-7a, miR-92a, and miR-142-3p circulate 

predominantly complexed to Argonaute-2 protein (a member of the RNA-induced silencing 

complex).  Gallo et al. subsequently found that these same miRNAs, as well as all miRNAs 

they tested in human serum, to be much more enriched within purified exosomes.  I chose 

to explore exosomal miRNA for two reasons.  Firstly, exosome isolation allows for the 

concentration of extracellular miRNA, which exists at very low concentrations in 

conditioned media.  By focusing on miRNA within the exosome fraction, which already is 

likely to represent most extracellular miRNA, the technical challenge of quantifying very 

low amounts of miRNA became tenable.  Secondly, the more regulated mechanisms of 

miRNA trafficking within exosomes rendered this population of miRNAs more likely to be a 

biological response to radiation.  As Gallo et al. suggests, “Exosomal miRNA should be the 

starting point for early biomarker studies to reduce the probability of false negative results 

involving low abundance miRNAs that may be missed by using unfractionated serum or 

saliva.”  To our knowledge, no prior study specifically shows that circulating miR-29a or 

miR-150 are exosome associated.  However, in our data, these miRNAs had Ct values less 

than 35 cycles in exosome isolates but were undetectable in exosome-depleted samples.   

The post-hoc analysis of genome data generated by an independent group in this 

study must be seen cautiously as preliminary results.  Care was taken (see methods) to 

ensure that the experimental methods were well described before data were analyzed.  

Furthermore, a hypothesis (that genes regulated by miRNA observed to be radiation-

responsive would also be significant in changes in gene expression in irradiated cells) was 

the focus for the GSEA analyses undertaken in this study, rather than a random, catch-all, of 

many disparate biological pathways.   
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Gene set enrichment analysis revealed that miR-29a may play an important role in 

tumor cell’s response to radiation.  In H460 cells, 6 genes that are predicted to be regulated 

by miR-29a are upregulated in non-irradiated cells as compared to irradiated cells.  

Because miRNAs are known to repress gene expression, this is in concordance with the 

relative increase in intracellular miR-29a observed with radiation.  Interestingly, 3 of these 

(COL1A2, COL11A1, and ELN) belong to a family of extracellular matrix proteins and 

another (ING3) plays a part in macrophage activation.  No conclusions can be drawn based 

on the analyses of gene expression in H1299 cells since neither gene sets approached 

significance.  Many other gene sets were available for analysis, but were not specifically 

relevant to miRNA expression, and were thus beyond the scope of this study.  

Our results concur with previous studies by Templin and colleagues showing a 

significant decrease of miR-150 in the blood of mice exposed to whole body radiation (25).  

Our laboratory has also found that miR-150 decreases in the circulation of mice exposed 

specifically to thoracic radiation (unpublished data).  miR-150 has been identified as an 

important promotor of inflammation via its regulation of MYB, which is itself a conserved 

regulator of hematopoiesis (54, 55).  Adams and colleagues demonstrated that over-

expression of miR-150 impaired bone marrow reconstitution after hematopoietic ablation 

with 5-flourouracil (56).  In the context of circulating miRNAs, miR-150 may be a general 

marker of a leukocyte-driven inflammatory response in mammals exposed to ionizing 

radiation.  In contrast, there has been no prior study linking miR-29a to radiation response.  

miR-29a is known to be highly expressed in the mammalian lung, heart, and kidney (57-

59).  It is well described as an inhibitor of extracellular matrix (ECM) remodeling via its 

binding of 21 downstream proteins in the TGF-β/Smad3 pathway.  Reduction in miR-29a 

levels has been associated with bleomycin-induced lung fibrosis (58), myocardial fibrosis 

after ischemia (57), and renal fibrosis in hypertensive disease (59).  The decrease in 

circulating levels of miR-29a after thoracic radiation may thus be related to a pro-fibrotic 

state.  Alternatively, the concomitant increase in intracellular miR-29a may be an adaptive 

response to radiation exposure.  This has direct implications for miR-29a being a specific 

biomarker of interest for predicting radiation pneumonitis.  Indeed, miR-29a had 

significantly higher statistical correlation with radiation dose compared to miR-150 in 

patients undergoing thoracic RT.  Furthermore, data from the Cancer Genome Atlas also 
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reveals that miR-29a is expressed at much higher levels in both NSCLC tumors and normal 

lung tissue compared to miR-150 (Figure 9).   
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Conclusion and Future Directions 

In conclusion, we show from an unbiased screen that miR-29a and miR-150 

decrease in the circulation of NSCLC patients undergoing thoracic RT.  Furthermore, this 

miRNA signal may originate—at least in part—from intracellular accumulation and 

concomitant reduction in exosome export from NSCLC and stromal cells.  While miR-150 is 

likely a general biomarker of any tissue exposed to radiation, the reduction in circulating 

miR-29a may reflect a pro-fibrotic or adaptive state in the lung specifically.  Patients whose 

levels of miR-29a decrease significantly more (in a pro-fibrosis model), or less (in an 

adaptive model), compared to average may be at higher risk for normal tissue toxicity, 

regardless of their estimated lung V5, lung V20, or lung MLD.  Likewise, these differential 

expression patterns may reflect biological tumor response (or resistance) to radiation.   

 The successful translation of this present work depends upon correlating trends in 

circulating miR-29a and miR-150 expression with clinical endpoints such as late effects, 

tumor response, or even mortality.  A larger patient population will be required to 

statistically power such a future study, as the primary endpoint of interest—radiation 

pneumonitis—occurs in only 5-20% of patients.  This present work has formed the basis 

for recruiting additional patients at the Dana Farber Cancer Institute (DFCI).  As of the 

submission of this thesis, serial blood samples from 15 patients undergoing definitive 

radiation therapy for NSCLC have been collected.  Because the in-vitro data showed that 

non-tumor cells also express the decrease in circulating radiation-responsive miRNAs, this 

biomarker may conceivably correspond more to normal tissue toxicity rather than tumor 

response.  As such, this biomarker signature may be also useful for estimating risk of 

normal tissue toxicity in patients with lung cancers other than Stage IIIA.  This would 

include the increasing number of patients with early, Stage I tumors that are being detected 

due to routine screening in elderly smokers (60).  Interestingly, these patients do not 

undergo multi-week courses of fractionated radiation therapy, but more often single 

courses of ablative stereotactic body radiation therapy (SBRT).  In this context, miRNA 

biomarkers may be helpful in predicting those who need close monitoring for radiation-

induced pneumonitis rather than for dose-reduction.   
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A challenge in this future study is the relatively long follow-up time required to 

accrue late effects endpoints (RP can be observed up to one year after the completion of 

RT).  Nonetheless, the strength of these potential biomarkers is that they can be collected 

and measured with ease and at very low cost.  A near-term goal of this work is to establish 

a normative curve of circulating miRNA expression in patients who do not experience late 

effects from which outlier expression trends would predict toxicity.  Alternatively, miRNA 

biomarkers may predict radiation resistance and tumor response (Figure 10).   There is no 

guarantee that miR-29a and miR-150 are actually biomarkers of either effect.  However, we 

posit that if any such useful biomarker exists, it is likely to first trend with exposure to 

thoracic radiation.  That is, a biomarker of any particular radiation effect must first be 

radiation-responsive.  In narrowing thousands of miRNAs that can be found in circulation 

down to two that correlate with radiation exposure, this work lays the foundation for 

identifying clinically useful biomarkers of radiation treatment.  Such a tool would 

powerfully advance the goal of tailoring radiation therapy to each patient’s biology in real 

time. 

 There are likely limits to using biomarkers of normal-tissue toxicity to adjust 

radiation dose.  In two prospective, randomized trials of 551 patients with lung cancer, 40 

Gy regimens of RT were significantly inferior to 60 Gy regimens for local control (61).  

Thus, even if a patient were predicted to have pulmonary toxicity due to radiation therapy, 

that tradeoff may still be acceptable for adequate tumor control.  What is more likely to be 

useful should miR-29a and miR-150 be reliable biomarkers of toxicity is informing dose-

escalation.  A conceivable prospective trial to test the clinical utility of such biomarkers 

would be to measure these markers in all patients getting standard RT for NSCLC up to 60 

Gy.  Patients with outlier trends in these markers (predicting toxicity) would only receive 

60 Gy while those with normal trends (predicting no toxicity) would be randomized to 

either 60 Gy or dose-escalation to 70 Gy.  This would be a better design than the TGF-beta-

guided dose-escalation trial attempted by Anscher and colleagues because it would allow 

for comparing standard versus higher dose treatments in patients who are predicted to 

have less toxicity (15).   

 Beyond adjustment of radiation dose, circulating miRNAs may give information 

concerning the biological changes in the body due to treatment, and provide a basis for 
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intervention.  For example, because a decrease in circulating miR-29a may herald a TGF-β 

mediated pro-fibrotic state in the lung, patients shown to have exaggerated declines in 

miR-29a levels may be candidates for anti-TGF-β therapy.  The monoclonal antibody 

against TGF-β, Fresolimumab, has already been shown to have safety and activity in 

humans (62).  However, the potential for using biomarkers to drive biologic intervention 

must be accompanied by a consideration of the high cost of such therapies.  Biologics—

specifically monoclonal antibodies—are among the most expensive pharmaceuticals and 

contribute to the incessantly rising cost of healthcare in the United States (63).  It is evident 

that, even if Fresolimumab were effective in preventing radiation pneumonitis, it should 

only be offered to a small subset of patients who are most at risk for severe toxicity.  

Circulating miRNAs that can be collected and measured at very low cost can be extremely 

useful in identifying this population of patients.  This degree of biological precision would 

lead not only to clinical benefits, but also economic savings.    

 The general approach of measuring circulating miRNAs to identify potential 

biomarkers can also be extended to other disease sites.  While miR-29a may be a lung-

specific marker, miRNA profiling could potentially identify other organ-specific miRNAs 

that are radiation-responsive.  Supported by the preliminary data in this study, patients 

undergoing RT for prostate cancer at the DFCI will be enrolled in a pilot study in which 

circulating miRNAs will be profiled for potential biomarkers of radiation-induced proctitis.  

Similarly, this approach can be applied to any disease site where radiation therapy is 

standard of care and there is high concern for normal-tissue toxicity such as for breast 

(brachial plexopathy) and for pancreas (enteritis).   
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Summary 

 Radiation therapy (RT) is an important part of standard treatment for lung cancer.  

The benefits of RT must be carefully weighed by the risks of radiation toxicity to normal 

lung tissue that exists in intimate proximity to tumor.  The goal of this study is to find an 

early marker of radiation exposure that can be measured in the blood of patients 

undergoing RT.  This marker of radiation exposure—or biomarker—may be useful to 

predict eventual toxicity or disease response to radiation before they occur.  This 

technology would allow clinicians to make adjustments to treatment plans in order to 

prevent or treat toxicities that would otherwise damage structures such as the lungs or 

esophagus.  Micro-RNAs (miRNAs) are small nucleic acids that regulate many genes in the 

human body.  In the blood, they are remarkably stable and diverse, making them good 

candidates to be biomarkers for RT.  In this study, 1900 miRNAs were measured in the 

blood of 5 patients undergoing RT for lung cancer.  10 miRNAs were found to correspond 

with increasing doses of radiation that patients receive over their 6 to 7 week treatment 

course.  To validate this correlation, these 10 miRNA signatures were specifically measured 

in the blood of an independent set of 21 lung cancer patients.  2 miRNAs, miR-29a-3p and 

miR-150-5p, remained significant in this validation group.  Experiments were also 

conducted on lung cancer cells previously isolated from a single tumor as well as normal 

cells.  When these cells were treated with radiation, the levels of miR-29a and miR-150 

measured within them increased, while the levels of these miRNAs in their environment 

decreased.  Together, these data suggests that both tumor and normal cells decrease the 

export of miR-29a and miR-150 in a regulated manner, making them attractive candidates 

as biomarkers for radiation response.  By measuring trends in miR-29a and miR-150 in the 

blood of patients undergoing RT, clinicians may be able to predict toxicity, and therefore 

tailor care precisely to that patient’s unique biology.   
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Tables 

Table 1.  Patient characteristics of profiling cohort.  Abbreviations: SCC, squamous cell 

carcinoma; AC, adenocarcinoma 
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Table 2.  Patient characteristics of validation cohort.  Abbreviations: R1, positive 
microscopic margins; R2, positive gross margins; SCC, squamous cell carcinoma; PN, 
cisplatin/navelbine; KG, carboplatin/gemcitabine; PG, cisplatin/gemcitabine; KN, 
carboplatin/navelbine; NOT*, not otherwise specified 
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Table 3. Validation of miRNAs candidates. Average dCp values with standard deviation at 0, 20, and 

40 Gy timepoints are shown for each miRNA identified in the profiling cohort.  P-values were 

calculated as described in the methods section. Only miR-29a and miR-150 showed statistically 

significant correlation with RT dose in the validation cohort of 21 patients. 
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Table 4.  Of 10 miRNAs significantly correlated with total dose, 7 are also significantly correlated 

with lung V20, MLD, lung V5, or esophagus mean dose.  Pearson correlation coefficient (R) and p-

values are reported. 
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Table 5.  Predicted gene targets of miR-29a (left) and miR-150 (right) by TargetScan.  6 of 24 genes predicted to be regulated by miR-29a 

are enriched in genes whose expression is downregulated in H460 cells exposed to radiation.   
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Figures 

 

Figure 1. Background expression of miRNAs. Expression of miR-29a and miR-150 is 

substantially higher in exosomes isolated from cell-conditioned media compared to 

exosomes isolated from cellfree, FBS-containing media. Levels are reported as relative fold 

difference and normalized to conditioned media. Notably, miR-150 was undetectable in 

cell-free media and Ct values of 40 (upper limit) were assigned for comparison, leading to 

the >400 fold difference in some cultured media samples. 
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Figure 2. Heatmap of statistically significant signatures from a miRNA screen of patient blood 

samples taken over six weeks of radiation therapy.  Of 124 universally expressed miRNAs, 10 were 

significantly correlated with RT dose.  Five miRNAs decreased in expression in circulation with 

increasing radiation dose while five increased in expression.  ANOVA p-values are reported. 
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Figure 3.  (A) miR-29a-3p and (B) miR-150-5p expression significantly decreased in the circulation 

of patients undergoing thoracic RT in the validation cohort (overall p = 0.020 and 0.030, 

respectively).  P-values displayed are post-hoc comparisons between 0 and 20 Gy, 20 and 40 Gy, 

and 0 and 40 Gy.  Higher dCp scores represent higher expression levels.  Error bars represent 

standard deviation.  
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Figure 4.  Intracellular expression of miR-29a and miR-150 increased with radiation in both NSCLC 

and stromal cell lines after 1, 2 or 3 days of 2 Gy fractions.  Error bars represent standard deviation 

(*p < 0.05, ***p < 0.001). 
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Figure 5.  Exosome isolation: Western blot of conditioned media from MRC5 cells after 26 hours of 

cell culture, with and without radiation. Dark bands show Tsg101 (56 kDa) protein levels in the 

isolated exosome pellet (left) compared to the supernatant (right). 
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Figure 6.  Exosomal expression of miR-29a and miR-150 decreased in both NSCLC and stromal cell 

lines after 1 or 3 days of 2 Gy fractions.  Error bars represent standard deviation (* p<0.05, 

***p<0.001).  
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Figure 7. Viability vs. IR status. (A) Irradiation at 2 Gy fractional doses does not significantly 

decrease cell viability. There was no statistical difference in cell viability in any comparisons 

between groups. (B) Radiation decreases cell proliferation compared to control after a single 

fraction of 2, 3 or 4 Gy. 
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Figure 8.  Enrichment plot for gene set enrichment analysis of differences in gene expression in (A) 

H460 (FDR = 0.158)  cells and (B) H1299 cells (FDR = 0.856).  In both cases, only genes predicted to 

be targets of miR-29a were enriched.  For each plot, the top portion shows the running enrichment 

score (ES) for the gene set over every gene in the entire dataset.  The middle portion shows where 

members of the gene set appear in a ranked list of all genes (hits).  The bottom portion of the plot 

shows the ranking metric (postive values indicates correlation with the unirradiated phenotype 

while negative values indicates correlation with the irradiated phenotype).   
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Figure 9.  miRNA expression in NSCLC and lung samples. miRNA SEQ data from TCGA database of 

504 patient samples. miRNA expression profiles of 456 lung tumor specimens and 48 normal lung 

specimens were examined. On average, miR-29a and miR-150 are highly expressed (compared to 

the global average expression) in both normal and tumor tissues. Other miRNAs including miR-342 

were not highly expressed. Error bars indicate 95% confidence interval of all data. 
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Figure 10. Clinical schematic of circulating miRNAs as biomarkers of thoracic radiation therapy.  In 

this scenario, overexpression of a miRNA biomarker predicts toxicity and allows for reduction of 

total dose while underexpression predicts radioresistance and allows for dose-escalation.  

 

 

 

 

 

 

 

 

 

 

 

 

 


