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Soft, inflatable segments are the active elements responsible for
the actuation of soft machines and robots. Although current
designs of fluidic actuators achieve motion with large amplitudes,
they require large amounts of supplied volume, limiting their
speed and compactness. To circumvent these limitations, here we
embrace instabilities and show that they can be exploited to
amplify the response of the system. By combining experimental
and numerical tools we design and construct fluidic actuators in
which snap-through instabilities are harnessed to generate large
motion, high forces, and fast actuation at constant volume. Our
study opens avenues for the design of the next generation of soft
actuators and robots in which small amounts of volume are
sufficient to achieve significant ranges of motion.

soft actuator | snap-through instability | fluidic segment | amplification

he ability of elastomeric materials to undergo large de-

formation has recently enabled the design of actuators that
are inexpensive, easy to fabricate, and only require a single source of
pressure for their actuation, and still achieve complex motion (1-5).
These unique characteristics have allowed for a variety of innovative
applications in areas as diverse as medical devices (6, 7), search and
rescue systems (8), and adaptive robots (9-11). However, existing
fluidic soft actuators typically show a continuous, quasi-monotonic
relation between input and output, so they rely on large amounts of
fluid to generate large deformations or exert high forces.

By contrast, it is well known that a variety of elastic instabilities
can be triggered in elastomeric films, resulting in sudden and
significant geometric changes (12, 13). Such instabilities have
traditionally been avoided as they often represent mechanical
failure. However, a new trend is emerging in which instabilities are
harnessed to enable new functionalities. For example, it has been
reported that buckling can be instrumental in the design of
stretchable soft electronics (14, 15), and tunable metamaterials
(16-18). Moreover, snap-through transitions have been shown to
result in instantaneous giant voltage-triggered deformation (19, 20).

Here, we introduce a class of soft actuators comprised of inter-
connected fluidic segments, and show that snap-through instabilities
in these systems can be harnessed to instantaneously trigger large
changes in internal pressure, extension, shape, and exerted force. By
combining experiments and numerical tools, we developed an ap-
proach that enables the design of customizable fluidic actuators for
which a small increment in supplied volume (input) is sufficient to
trigger large deformations or high forces (output).

Our work is inspired by the well-known two-balloon experiment,
in which two identical balloons, inflated to different diameters, are
connected to freely exchange air. Instead of the balloons becoming
equal in size, for most cases the smaller balloon becomes even
smaller and the balloon with the larger diameter further increases
in volume (Movie S1). This unexpected behavior originates from
the balloons’ nonlinear relation between pressure and volume,
characterized by a pronounced pressure peak (21, 22). Interest-
ingly, for certain combinations of interconnected balloons, such
nonlinear response can result in snap-through instabilities at
constant volume, which lead to significant and sudden changes of
the membranes’ diameters (Figs. S1 and S2). It is straightforward
to show analytically that these instabilities can be triggered only
if the pressure-volume relation of at least one of the membranes
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is characterized by (i) a pronounced initial peak in pressure,
(if) subsequent softening, and (i) a final steep increase in pressure
(Analytical Exploration: Response of Interconnected Spherical
Membranes Upon Inflation).

Highly Nonlinear Fluidic Segments

To experimentally realize inflatable segments characterized by such
a nonlinear pressure-volume relation, we initially fabricated fluidic
segments that consist of a soft latex tube of initial length L., inner
radius R = 6.35 mm, and thickness H =0.79 mm. We measured the
pressure—volume relation experimentally for three segments with
Lype =22 — 30 mm, and found that their response is not affected by
their length (Fig. S3). Moreover, the response does not show a final
steep increase in pressure. This is because latex has an almost
linear behavior, even at large strains.

Next, to construct fluidic segments with a final steep increase
in pressure and a response that can be easily tuned and con-
trolled, we enclosed the latex tube by longer and stiffer braids of
length Lp,q (Fig. 14). It is important to note that the effect of
the stiff braids is twofold. First, as L,z > Lupe, the braids are in
a buckled state when connected to the latex tube (Fig. 1B), and
therefore apply an axial force, F, to the membrane. Second, at a
certain point during inflation when the membrane and the braids
come into contact, the overall response of the segments stiffens.

We derived a simple analytical model to predict the effect of
Lpraiq and Ly, on the nonlinear response of these braided fluidic
segments (Simple Analytical Model to Predict the Response of the
Fluidic Segments). It is interesting to note that our analysis in-
dicates that for a latex tube of given length, shorter braids lower
the peak pressure due to larger axial forces (Fig. S4 C and E).
Moreover, it also shows that Ly, strongly affects the volume at
which stiffening occurs. In fact, the shorter the braids, the earlier
contact between the braids and the membrane occurs, reducing
the amount of supplied volume required to have a steep increase
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(A) Outer and stiffer braids are added to the latex tube to create fluidic

Fig. 1.
segments with highly nonlinear response. (B) Snapshots of a segment charac-
terized by (Lpraid, Ltube) = (46, 20) during inflation at v=0, 10,20 mL. Evolu-
tion of (C) pressure (p) and (D) length (/) as a function of the supplied volume
(v) for 36 fluidic segments characterized by Lp,jg =40 —50 mm and Lype =
20 —30 mm. (Scale bars: 10 mm.)

in pressure. Conversely, if Lpq,iq is fixed, and the length of the
membrane is varied, both the pressure peak and the volume at
which stiffening occurs remain unaltered (Fig. S4F). However, in this
case we find that shorter tubes lower the pressure of the softening
region. Finally, the analytical model also indicates that the length of
the fluidic segments, / = A, L, initially increases upon inflation (Fig.
S4 E and F). However, when the tube and braids come into contact,
further elongation is restrained by the braids and the segments
shorten as a function of the supplied volume.

Having demonstrated analytically that fluidic segments with
the desired nonlinear response can be constructed by enclosing
a latex tube by longer and stiffer braids, and that their response
can be controlled by changing Ly, and L., we now proceed to
fabricate such actuators. The stiffer braids are made from poly-
ethylene-lined ethyl vinyl acetate tubing, with an inner radius of
7.94 mm and a thickness of 1.59 mm. Eight braids are formed by
partly cutting this outer tube along its length guided by a 3D
printed socket. Finally, Nylon Luer lock couplings (one socket and
one plug) are glued to both ends of the fluidic segments to enable
easy connection (Fig. 14). We then measure their response ex-
perimentally by inflating them with water at a rate of 60 mL/min,
ensuring quasi-static conditions (Fig. 1B and Movie S2).

We fabricated 36 segments with L., =40—-50 mm and
Lype =20—-30 mm. As shown in Fig. 1C, all fluidic segments
are characterized by the desired nonlinear pressure—volume relation
and follow the trends predicted by the analytical model (Fig. S4 E
and F). In particular, we find that for the 36 tested segments the
initial peak in pressure ranges between 65 and 85 kPa (Fig. 1C). We
also monitored the length of the segments during inflation (Fig. 1D).
As predicted by the analytical model, we find that initially the seg-
ments elongate, but then shorten when the tube and braids come into
contact. It is important to note that no instabilities are triggered upon
inflation of the individual segments, because the supplied volume is
controlled, not the pressure.

Combined Soft Actuator

Next, we created a new, combined soft actuator by interconnecting
the two segments whose individual response is shown in Fig. 24.
Upon inflation of this combined actuator, very rich behavior

10864 | www.pnas.org/cgi/doi/10.1073/pnas.1504947112

emerges (Fig. 2C and Movie S3). In fact, the pressure-volume
response of the combined actuator is not only characterized by two
peaks, but the second peak is also accompanied by a significant and
instantaneous elongation. This suggests that an instability at con-
stant volume has been triggered.

Numerical Algorithm. To better understand the behavior of such
combined actuators, we developed a numerical algorithm that
accurately predicts the response of systems containing n segments,
based solely on the experimental pressure-volume curves of the
individual segments. By using the 36 segments from experiments
as building blocks, we can construct 36!/[(36 —n)!n!] combined
actuators comprising n segments (i.e., 630 different combined
actuators for n =2; 7,140 for n = 3; and 58,905 for n =4), where we
assume that the order in which we arrange the segments does not
matter. It is therefore crucial to implement a robust algorithm to
efficiently scan the range of responses that can be achieved.

We start by noting that, upon inflation, the state of the ith
segment is defined by its pressure p; and volume v;, and its stored
elastic energy can be calculated as

Ei(vi)= / PP, [1]
Vi

in which we neglect dynamic effects. Moreover, V; denotes the
volume of the ith segment in the unpressurized state. When the
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Fig. 2. (A) Evolution of pressure (p) and length (/) as a function of the supplied
volume (v) for two fluidic segments characterized by (Lpaid, Liube) = (46, 20) and
(46,22) mm. Snapshots of the fluidic segments at v=0,10,20 and v=
0,12,24 mL are shown as Insets, respectively. (B) The two fluidic segments are
connected to form a new, combined soft actuator. (C) Evolution of pressure (p) and
length () as a function of the supplied volume (v) for the combined actuator.
Snapshots of the combined actuator at v=0, 9, 18, 27, 36, 45 mL are shown as Insets.
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total volume of the system, v=">"7,v;, is controlled (as in all our
experiments), the response of the system is characterized by n — 1
variables vy, ...,v,_1 and the constraint

n-1
V=V — Z Vi. [2]
i=1

To determine the equilibrium configurations, we first define the
elastic energy, E, stored in the system, which is given by the sum
of the elastic energy of the individual segments

E(i,...,vy)= Z/p,-(a)da, [3]
i=1 v

i

and use Eq. 2 to express the energy in terms of n — 1 variables

-3
pa(V)dv.  [4]

E(i,...,vp)= i/pi(f/)df»+

1
i=1 i v,

Next, we implement a numerical algorithm that finds the equi-
librium path followed by the actuator upon inflation (i.e., increasing
v). Starting from the initial configuration (i.e., v;=V;), we in-
crementally increase the total volume of the system (v) and locally
minimize the elastic energy (E). Because Eq. 4 already takes into
account the volume constraint (Eq. 2), we use an unconstrained
optimization algorithm such as the Nelder—-Mead simplex algorithm
implemented in Matlab (23). Note that this algorithm looks only
locally for an energy minimum, similar to what happens in the ex-
periments, and therefore it does not identify additional minima at
the same volume that may appear during inflation.

Using the aforementioned algorithm, we find that for many ac-
tuators the energy can suddenly decrease upon inflation, indicating
that a snap-through instability at constant volume has been trig-
gered. To fully unravel the response of the actuators, we also detect
all equilibrium configurations and evaluate their stability. The
equilibrium states for the system can be found by imposing

E
oE_,

o vie{l,...,n—1}. [5]

Substitution of Eq. 4 into Eq. 5, yields

oE =
—=pi(vi)=pn(v=) v | =0,
i ( 2 ) (61
vie{l,...,n-1},
which, when substituting Eq. 2, can be rewritten as
p1v)=pa(v2) = ... =pa(Va)- [71

As expected, Eq. 7 ensures that the pressure is the same in all n
segments connected in series.

Operationally, to determine all of the equilibrium configura-
tions of a combined soft actuator comprising 7 fluidic segments,
we first define 1,000 equispaced pressure points between 0 and
100 kPa. Then, for each of the n segments we find all volumes
that result in those values of pressure (Fig. S54). Finally, for
each value of pressure, we determine the equilibrium states by
making all possible combinations of those volumes (Fig. S5B).
Note that by using Eq. 2 we can also determine the total volume
in the system at each equilibrium state, and then plot the pres-
sure-volume response for the combined actuator (Fig. S5C).

Finally, we check the stability of each equilibrium configura-
tion. Because an equilibrium state is stable when it corresponds

Overvelde et al.

to a minimum of the elastic energy E defined in Eq. 4, at any
stable equilibrium solution the Hessian matrix

’E ’E
ov? V0V
H(E)(vl,...,v,,_l): [8]
E *E
| OVn—10v1 avﬁfl

is positive definite. Note that the second-order partial derivatives
in Eq. 8 can be evaluated as

n—1
- p{(vi)+p;,(v— vk>, ifi=j
*E ;

wviov; n-1 9]
e} ’ if i i
Pn| V- E Vi | ifi#j,
k=1
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Fig. 3. (A) Experimentally measured pressure-volume relations for all 36 fab-
ricated fluidic segments. (B) Experimentally measured length-volume relations
for all 36 fabricated segments. (C) Numerically determined elastic energy, E, for a
combined actuator comprising the two segments whose individual behavior is
highlighted in A and B. The energy is shown for increasing values of the supplied
volume, v. The stable and unstable equilibrium configurations are highlighted by
blue and red circular markers, respectively. (D) Equilibrium configurations for the
combined actuators. At v=19 mL an unstable (1, 1) transition is found, resulting
in a significant internal volume flow. A second instability of type (1, 2) is then
triggered at v =22 mL. (E) Numerically determined pressure-volume and length-
volume relations for the combined soft actuator.
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in which p/(v) = dp;/dv. Taking advantage of the fact that all off-
diagonal terms of the Hessian matrix are identical and using Sylvest-
er’s criterion (24), we find that an equilibrium state is stable if

k n-1 k k
Hp; i)+ pn (v - Evk) Z H .pf (Vj) >0, [10]

Numerical Results. To demonstrate the numerical algorithm, we
focus on two segments where the experimentally measured
pressure—volume and length—-volume responses are highlighted
in Fig. 3 4 and B. In Fig. 3C we report the evolution of the total
elastic energy of the system, E, as a function of the volume of the
first segment, vy, for increasing values of the total supplied vol-
ume, v, and in Fig. 3D we show all equilibrium configurations in
the v1—v; plane. We find that initially (0 <v <5 mL) the volume
of both segments increases gradually. However, for 5 <v <19 mL,
v; remains almost constant and all additional volume that is
added to the system flows into the second segment. Moreover, at
v=6 mL a second local minimum for E emerges, so that for
6 <v <19 mL the system is characterized by two stable equilib-
rium configurations. Although for v> 13 mL this second mini-
mum has the lowest energy, the system remains in the original
energy valley until v=19 mL. At this point the local minimum of
E in which the system is residing disappears, so that its equilib-
rium configuration becomes unstable, forcing the actuator to snap
to the second equilibrium characterized by a lower value of E.
Interestingly, this instability triggers a significant internal volume
flow from the second to the first segment (Fig. 3D) and a sudden
increase in length (Fig. 3E). Further inflating the system to v =22
mL triggers a second instability, at which some volume suddenly
flows back from the first to the second segment. After this second
instability, increasing the system’s volume further inflates both
segments simultaneously.

All transitions that take place upon inflation (i.e., at v=>5, 19, and
22 mL) are highlighted by a peak in the pressure-volume curve (Fig.
3E), and correspond to instances at which one or more of the in-
dividual segments cross their own peak in pressure. These state
transitions can either be stable or unstable (Fig. 3 C-E). A stable
transition always leads to an increase of the elastic energy stored in
the system, and an instability results in a new equilibrium configu-
ration with lower energy. Each state transition can therefore be
characterized by the elastic energy release, which we define as a
normalized scalar AE = (Epoy — Epre)/Epe. Here and in the fol-
lowing, the subscripts pre and post indicate the values of the quantity
immediately before and after the state transition. Moreover, to
better understand the effects of each transition on the system, we

define the associated normalized changes in internal volume
distribution, length and pressure as AV = max(V;post — Vipre) /Vpre»
L

Al= (lpqst ~byre) [ (lpre) and Ap = (ppost ~Ppre) [ Dpre- .

In Fig. 4 we report AV, Al, and Ap versus the normalized
change in energy, AE, for all transitions that occur in the 630
combined soft actuators comprising 7 =2 segments. Note that
there are more than 630 data points, because all actuators show
two or more state transitions. We find that —0.1 <AE <4 - 107,
indicating that some of the transitions are stable (i.e., AE > 0),
and others are unstable (AE <0). We furthermore observe that
the energy increase for stable transitions is very small, and is
therefore sensitive to the increment size used in the numerical
algorithm. By contrast, the elastic energy released during un-
stable transitions can be as high as 10% of the stored energy.

We also characterize each state transition according to the
changes induced in the individual segments, and use (a,f) to
identify the number of segments to the right of their pressure
peak before (a) and after (p) the state transition. For combined
soft actuators comprising n =2 segments, the numerical results
show three possible types of transitions: (0,1), in which both
segments are initially on the left of their peak in pressure and
then one of them crosses its pressure peak during the state
transition (blue markers in Fig. 4); (1,2), in which the second
segment also crosses its peak in pressure (green markers in Fig.
4); (1,1), in which both segments cross their pressure peak, but
one while inflating and the other while deflating (red markers in
Fig. 4). We find that transitions of type (0, 1) occur in all com-
bined actuators and are always stable. Therefore, the associated
changes in elastic energy, length, pressure, and the internal vol-
ume distribution are approximately zero. By contrast, transitions
of type (1,1) are always unstable and result in both high elastic
energy release (up to 10%) and high internal volume flow (up to
80%). Unlike (1,1), transitions of type (1,2) can be either stable
or unstable. The unstable transitions result in moderate energy
release (up to 2.5%), but can lead to significant and instantaneous
changes in length (up to 14%). Therefore, our analysis clearly in-
dicates not only that snap-through instabilities at constant volume
can be triggered in soft fluidic actuators, but also that the associated
released energy can be harnessed to trigger sudden changes in
length, drops in pressure, and internal volume flows.

Experimental Results. To validate the numerical predictions, we
measured experimentally the response of several combined ac-
tuators. In Fig. 54 we show the results for the system whose
predicted transitions are indicated by the diamond gray markers
in Fig. 4. We compare the numerically predicted and experimen-
tally observed mechanical response, finding an excellent agree-
ment. In particular, for this combined actuator we find that the
pressure-volume curve is characterized by two peaks, indicating
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Fig. 4. A-Cshow Ay, Al and Ap versus the normalized change in energy AE for all state transitions that occur in the 630 combined soft actuators comprising n=2
fluidic segments. Blue, red, and green markers correspond to (0, 1), (1, 1), and (1, 2) transitions, respectively; (A) Av versus AE; (B) Al versus AE; and (C) Ap versus AE.
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Fig. 5. (A and B) Experimental (solid lines) and numerical (dashed lines)
pressure-volume curves for two soft actuators comprising n=2 fluidic seg-
ments. (A) Results for a combined actuator with (Lpaig, Ltupe) = (48, 30) and
(50,20) mm. The transitions for this actuator are highlighted by diamond
markers in Fig. 4. Snapshots of the combined actuators 0.5 mL before and after
each state transition (at v =4, 26 mL) are also shown. (B) Results for a combined
actuator with (Lpraia, Ltube) = (44,30) and (48,26) mm. The transitions for this
actuator are highlighted by square markers in Fig. 4. Snapshots of the combined
actuators 0.5 mL before and after each state transition (at v=5, 16,24 mL)
are also shown. Experimentally measured exerted force as a function of the
supplied volume for a combined actuator with (C) (Lpajd. Ltube) = (48,30) and
(50,20) mm and (D) (Lpraids Ltube) = (44,30) and (48,26) mm with con-
strained ends.

that two transitions take place upon inflation. Although the (0,1)
transition is stable, the (1, 2) transition is unstable and results in an
instantaneous and significant increase in length of 11% and a high
pressure drop of 23% (Fig. 54 and Movie S4). This unstable
transition is also accompanied by a moderate internal volume re-
distribution of 22%, resulting in the sudden inflation of the top
actuator (see snapshots in Fig. 54 and numerical result in
Fig. S6A).

In Fig. 5B we present the results for the combined actuator
whose response is indicated by the square gray markers in Fig. 4.
Our analysis indicates that one stable (0, 1) transition and two
unstable transitions are triggered during its inflation. The first
snap-through instability is a (1,1) transition and is accompanied
by a significant and sudden volume redistribution (see snapshots
in Fig. 5B and numerical result in Fig. S6B) and a large increase
in length (Movie S5), and the second instability is a (1,2) tran-
sition and results in smaller values for A/ and Av. Again, we
observe an excellent agreement between experimental and nu-
merical results, indicating that our modeling approach is accu-
rate and can be used to effectively design soft actuators that
harness instabilities to amplify their response.

Although the results reported in Fig. 5 A and B are for actuators
free to expand, these systems can also be used to exert large forces
while supplying only small volumes. To this end, in Fig. 5 C and D we
show the force measured during inflation when the elongation of the
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actuators is completely constrained. We find that also in this case an
instability is triggered, resulting in a sudden, large increase in the
exerted force. Note that the volume at which the instability occurs is
slightly different from that found in the case of free inflation. This
discrepancy arises from the fact that the pressure—volume relation of
each segment is affected by the conditions at its boundaries.

The proposed approach can be easily extended to study more
complex combined actuators comprising a larger number of
segments. By increasing n, new types of state transitions can be
triggered. For example, transitions of type (2,1) are also observed
for n=3 (Fig. S7 A-C), in which two segments deflate into a
single one, causing all three segments to cross their peak in
pressure. In Fig. 6, we focus on an actuator that undergoes an
unstable (2,1) transition at v=29 mL. We first inflate the actu-
ator to v=28 mL, and then decouple it from the syringe pump
and connect it to a small reservoir containing only 1 mL of water.
Remarkably, by adding only 1 mL of water to the system, we are
able to trigger a significant internal volume flow of ~20 mL that
results in the deflation of two segments into one segment (Fig. 6
and Movie S6).These results further highlight that snap-through
instability can be harnessed to amplify the effect of small inputs.

Conclusion

In summary, by combining experimental and numerical tools we
have shown that snap-through instabilities at constant volume can
be triggered when multiple fluidic segments with a highly nonlinear
pressure-volume relation are interconnected, and that such un-
stable transitions can be exploited to amplify the response of the
system. In stark contrast to most of the soft fluidic actuators pre-
viously studied, we have demonstrated that by harnessing snap-
through instabilities it is possible to design and construct systems in
which small amounts of fluid suffice to trigger instantaneous and
significant changes in pressure, length, shape, and exerted force.

To simplify the analysis, in this study we have used water to
actuate the segments (due to its incompressibility). However, it is
important to note that the actuation speed of the proposed actu-
ators can be greatly increased by supplying air. In fact, we find that
water introduces significant inertia during inflation, limiting the
actuation speed. It typically takes more than 1 s for the changes in
length, pressure, and internal volume induced by the instability to
fully take place (Movie S7). However, by simply using air to actuate
the system and by adding a small reservoir to increase the energy
stored in the system, the actuation time can be significantly re-
duced (from Ar=1.4to 0.1 s for the actuator considered in Movie
S7), highlighting the potential of these systems for applications
where speed is important. Although this actuation time is similar to
that of recently reported high-speed soft actuators (3), only a small
volume of supplied fluid is required to actuate the system because
we exploit snap-through instabilities at constant volume. As a

Fig. 6. Snapshots of a combined actuator with (Lpaig, Lube) = (40,28), (44, 30),
and (50,24) mm. The numerical analysis predicts a (2, 1) state transition at
v =29 mL (see gray triangle in Fig. S7 A-C). The combined actuator is inflated
to v=28 mL, and then decoupled from the syringe pump and connected to a
small reservoir containing only 1 mL of water. An additional volume of 1 mL
supplied to the system is enough to trigger a significant internal volume flow
of ~20 mL that results in the deflation of two segments into one segment
(Movie S6).
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result, small compressors are sufficient to inflate these actuators,
making them highly suitable for untethered applications.

Our results indicate that by combining fluidic segments with
designed nonlinear responses and by embracing their nonlinearities,
we can construct actuators capable of large motion, high forces, and
fast actuation at constant volume. Although here we have focused
specifically on controlling the nonlinear response of fluidic actua-
tors, we believe that our analysis can also be used to enhance the
response of other types of actuators (e.g., thermal, electrical and
mechanical) by rationally introducing strong nonlinearities. Our
approach therefore enables the design of a class of nonlinear sys-
tems that is waiting to be explored.

Materials and Methods

All individual soft fluidic segments and combined actuators investigated in
this study are tested using a syringe pump (Standard Infuse/Withdraw PHD
Ultra; Harvard Apparatus) equipped with two 50-mL syringes that have an
accuracy of +0.1% (1000 series, Hamilton Company). The segments and the
combined actuators are inflated at a rate of 60 and 20 mL/min, respectively,
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ensuring quasi-static conditions. Moreover, during inflation the pressure
is measured using a silicon pressure sensor (MPX5100; Freescale Semiconductor)
with a range of 0-100 kPa and an accuracy of + 2.5%, which is connected to a
data acquisition system (NI USB-6009, National Instruments). The elongation of
the actuators is monitored by putting two markers on both ends of each actu-
ator, and recording their position every two seconds with a high-resolution
camera (D90 SLR, Nikon). The length of the actuator is then calculated from the
pictures using a digital image processing code in Matlab. Each experiment is
repeated 5 times, and the final response of the actuator as shown in the paper is
determined by averaging the results of the last four tests. Finally, we measured
the force exerted by the actuators during inflation when their elongation is
completely constrained. In this case we use a uniaxial materials testing machine
(model 5544A; Instron, Inc.) with a 100-N load cell to measure the reaction force
during inflation.
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