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Abstract

Numerically simulating deformations in thin elastic sheets is a challenging problem in computa-
tional mechanics due to destabilizing compressive stresses that result in wrinkling. Determining
the location, structure, and evolution of wrinkles in these problems have important implications
in design and is an area of increasing interest in the fields of physics and engineering. In this
work, several numerical approaches previously proposed to model equilibrium deformations in thin
elastic sheets are compared. These include standard finite element-based static post-buckling ap-
proaches as well as a recently proposed method based on dynamic relaxation, which are applied
to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Nu-
merical solutions are compared to analytic predictions, enabling a quantitative evaluation of the
predictive power of the various methods. Results indicate that static finite element approaches are
highly sensitive to initial imperfections, relying on a priori knowledge of the equilibrium wrinkling
pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial
imperfections and can generate solutions for a wide variety of loading conditions without requiring
knowledge of the equilibrium solution beforehand.

Keywords: thin elastic sheets, wrinkling, finite element method, dynamic relaxation

1. Introduction

Thin elastic sheets are not only found abundantly in nature (Ben Amar and Dervaux 2008), but
are also used in a wide variety of structural applications (Carbonez 2013) because of their excellent
tensional resistance-to-weight ratio. Determining equilibrium deformations in these structures is
nontrivial as loading a thin sheet typically results in regions that are locally tense, compressed,
or slack (i.e., stress-free). In the compressed regions, wrinkles form in response to instability.
Wrinkles may be something engineers wish to avoid (e.g., in solar sails, Vulpetti et al. 2008) or
perhaps something that can be used to control membrane behavior (Vandeparre et al. 2010; Breid
and Crosby 2013). In either case, it is of great interest to be able to determine their structure (i.e.
amplitude and wavelength) and location in a sheet at a given applied loading state.

Theoretical investigations of deformation and tensional wrinkling in thin sheets go back to the
works of Wagner (1929) and Reissner (1938). Early research focused on assuming the sheet to
be perfectly flexible and using membrane theory to model its deformation (Mansfield 1968; Stein
and Hedgepeth 1961). These studies formed the foundation of tension-field theory (Pipkin 1986;
Steigmann 1990; Haseganu and Steigmann 1994), in which the stress field at the midplane of
the sheet is assumed to have no compressive components. Tension-field theory is the appropriate
leading-order model at vanishing thickness (Pipkin 1986; LeDret and Raoult 1995) and is much
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more tractable than shell (or higher order) models incorporating bending stiffness (which involve
computation of the curvature and its derivatives). However, while tension-field-theory is very
useful for assessing the stress distribution and location of wrinkled regions in very thin sheets
(Haseganu and Steigmann 1994; Taylor et al. 2014), it offers no information on the actual structure
of wrinkles. Here, we call the membrane-dominant regime where tension-field theory is valid the
“far-from-threshold (FT)” parameter regime. In this regime, the compression induced by the
tensile loads is much larger than the thickness-dependent level at which a real sheet buckles. Thus,
tension-field-theory cannot describe the evolution of a real sheet, upon increasing loads, from a
bending-dominant (or ”near-threshold” (NT)) regime at the onset of wrinkling to the FT regime,
at which a fully wrinkled pattern develops.

In the last decade, several groups have attempted to develop a comprehensive framework that
addresses simultaneously the location, structure and evolution of tensional wrinkle patterns, focus-
ing on a few basic set-ups, such as a rectangular sheet under stretch (Friedl et al. 2000; Nayyar et al.
2011; Puntel et al. 2011; Cerda et al. 2002; Cerda and Mahadevan 2003; Nayyar et al. 2011; Healey
et al. 2013) or shear (Wong and Pellegrino 2006a, 2006b, 2006c; Zheng 2009; Diaby et al. 2006),
a disk-like (King et al. 2012) or annulus-like sheet (Bella and Kohn 2014; Géminard et al. 2004;
Coman 2007; Coman and Bassom 2007; Davidovitch et al. 2011, 2012; Piñeirua et al. 2013; Toga
et al. 2013) under axially-symmetric tensile loads, and a stretched-twisted ribbon (Chopin and Ku-
drolli 2013; Chopin et al. 2014). In particular, the first of these examples has attracted considerable
interest in the mechanical engineering community (Nayyar et al. 2011). Here, a rectangular-shaped
sheet is stretched where its short edges (of width W ) are clamped and its long edges (of length
L) are free to contract, such that a pattern of parallel wrinkles emerges in a large portion of the
sheet, away from the clamped edges. An early numerical work (Friedl et al. 2000) has focused on
the onset of wrinkles (i.e. the NT regime) in this system, and results were interpreted by drawing
analogy to the classical Euler buckling of rods. Later, Cerda and Mahadevan (2003) addressed
the structure of this tensional wrinkling pattern away from threshold (i.e. in the FT regime) by
drawing an analogy to the elementary example of uniaxially compressing a rectangular sheet on a
substrate of stiffness K, which is known to exhibit parallel wrinkles of wavelength λ ≈ (B/K)1/4,
where B is the bending modulus of the sheet and K is the substrate’s stiffness. The essential ob-
servation (Cerda et al. 2002; Cerda and Mahadevan 2003) was that the presence of tension T along
wrinkles of length L induces an effective substrate of stiffness K = T/L2, such that the wavelength
of tensional wrinkles satisfies the scaling law: λ ∼ (B/T )1/4L1/2.

Subsequent works by several groups, which addressed the stretched rectangular sheet, have
attempted to describe the complete evolution of the wrinkle pattern, as the tensile load is gradually
increased from its threshold value to the FT behavior addressed in (Cerda and Mahadevan 2003).
These studies, however, were encountered by significant difficulties: experimental efforts to probe
the onset of the wrinkling instability (Zheng 2009) were baffled by the high sensitivity of this
system to the non-uniformity of the applied loads and the likelihood of plastic deformations on
various scales; on the theoretical front – the difficulty may be attributed to the lack of analytic
solutions of the stress field neither for the planar state (necessary to describe the onset of instability
and the NT regime), nor for tension field theory (which provides the basis for analysis of the FT
regime). This situation highlights the important role of numerical simulations, even in such a basic
system, as the ultimate route for a systematic study of tensional wrinkling. The computational
challenge here stems from the multi-scale nature of wrinkling phenomena, whereby the wavelength
λ vanishes with the sheet’s thickness, while the size of the wrinkled region is determined by the
length L of the sheet.

Recognizing the need in reliable, efficient numerical simulations, the primary purpose of this pa-
per is to examine and quantitatively compare the performance of some popular numerical methods
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for studying the key aspects of tensional wrinkling patterns – their location, structure, and evolu-
tion as the tensile loads are being varied. This purpose dictates our choice of case study, which is
known as the Lamé problem (Timoshenko and Goodier 1970): an annular sheet under radial tensile
loads Tin and Tout, exerted, respectively, on its inner and outer boundaries (see Figure 1). The
key advantage of the Lamé set-up, in comparison to a stretched rectangular sheet, is the existence
of analytic predictions for the location and structure of the wrinkle pattern in both NT and FT
regimes, as well as the evolution of the pattern between these parameter regimes as the tensile loads
are gradually increased. A solution to the stress distribution of the planar state, which can be found
in classical textbooks on elasticity theory (Timoshenko and Goodier 1970) has been attributed to
Lamé, and has been recently used for linear stability analysis that yields the threshold value of the
tensile loads (Coman and Bassom 2007), as well as the location and structure of the wrinkle pattern
in the NT regime. More recently, an exact solution of the tension-field theory equations has been
obtained (Coman 2007; Davidovitch et al. 2011), allowing one to identify exactly the location of
the wrinkled zone in a very thin sheet, away from threshold.

Figure 1: Classical Lamé set-up. Opposing tractions Tin and Tout applied to the inner an outer boundary, respectively,
of the annulus causes compressive stresses in the region Rin < r < L leading to wrinkling.

The structure of the wrinkle pattern in the corresponding FT regime was described through a
singular expansion of the Föppl-von Kármán (FvK) equations around the tension-field-theory stress
field, and the evolution from the NT and FT regimes was characterized (Davidovitch et al. 2012).
This progress provides us with nontrivial analytic results on the location, structure, and evolution
of the wrinkle pattern upon varying the tensile loads, which can be used to test the reliability of
simulation methods.

Focusing on the Lamé set-up, and comparing numerical results of three distinct simulation
schemes with the analytic predictions, our main result is summarized in Table 1. The first two
approaches use the finite element method with general purpose shell elements as implemented in
Abaqus/Standard to determine the buckling eigenmodes, where the first method uses the buckling
modes as an imperfection in a general static analysis, and the second method uses the buckling
modes as an imperfection in a Riks analysis. The third approach involves the dynamic relaxation
method that has been recently used to solve for equilibrium deformations in thin sheets exhibiting
wrinkling (Taylor et al. 2014). All three methods are based (at least in part) upon Koiter’s shell
model, differing primarily in how the equations are solved. As Table 1 shows, both finite element
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approaches can accurately predict the stress field (and hence the location of wrinkles), but are unable
to determine the correct wrinkle state (i.e. structure) unless the analyst has a priori knowledge
of the appropriate wrinkling modes. In contrast to the first two methods, the dynamic relaxation
approach is able to accurately predict both the location and structure of the wrinkle morphology,
as well as the evolution of the stress field and the pattern from the planar state, through the NT
paramer regime, to the fully developed, FT state of the system.

Method Macro-scale Properties Micro-scale Properties

Finite Element: Static X 5

Finite Element: Riks X 5

Dynamic Relaxation X X

Table 1: Comparison of solution methods and general capabilities in the FT regime for the considered case study

The structure of the paper is as follows. In Section 2, we motivate the use of Koiter’s model for
tensional wrinkling problems and provide a brief summary of the relevant equations. In Section 3,
we provide an overview of the three numerical approaches used in this study. Finally, in Section 4,
we describe the Lamé problem, provide numerical results, and compare them.

2. Theoretical description of tensional wrinkling

Before turning to a detailed description of the numerical methods and our simulation results, let
us make some general comments on the theoretical description of tensional wrinkling phenomena.
The energy of a homogenous, isotropic elastic sheets, can be described as a sum of a “membrane”
term and a “bending” term, which depend, respectively, on the strain and curvature of the mid-
plane. For a sheet of thickness t made of elastic material of Young modulus E, these two energies are
proportional, respectively, to the stretching modulus (Y ∼ Et) and bending modulus (B ∼ Et3).
At a fundamental level, the success of tension-field theory in describing the location of wrinkles in
very thin sheets stems from the dominance of the membrane term, whereas its inability to predict
structure stems from ignoring the higher order terms in the energy, which involve a bending cost.
Thus, a consistent theoretical framework of tensional wrinkling phenomena must account for both
membrane and bending terms. The FvK theory is a particularly popular model that accounts for
both membrane and bending terms, and has been used successfully to describe wrinkling phenomena
in elastic sheets (Davidovitch et al. 2011, 2012; Chopin et al. 2014). Specifically, the theoretical
study of the Lamé problem (Davidovitch et al. 2012), whose predictions we use in our work, is
essentially a non-perturbative analysis of FvK equations that addresses both NT and FT parameter
regimes. Nevertheless, from the perspective of elasticity theory of solid bodies in 3D, the FvK model
is merely a successful phenomenological model, since certain assumption on the stress distribution
across the sheet’s thickness must be made. This leads one to the question of what is the best theory
to use for modeling deformation in thin sheets where wrinkling is a key feature of interest.

In recent years, research in plate and shell theory has focused on placing existing two-dimensional
theories onto rigorous mathematical foundations (Friesecke et al. 2006; Ciarlet 2000) as well as gen-
erating new theories of optimal accuracy with respect to the parent three-dimensional elasticity
theory (Friesecke et al. 2006; Steigmann 2013b). Both asymptotic (Ciarlet 1980) and gamma-
convergence (Friesecke et al. 2006) methods have been used successfully to place, for instance,
membrane, Kirchoff-Love, and the FvK theories on solid theoretical foundations given particular
assumptions on the energy. For example, the FvK equations can be rigorously derived from three-
dimensional elasticity theory only if the energy (per unit area) scales as h5 and if the midplane
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deforms isometrically (Friesecke et al. 2006). Notably, gamma-convergence and asymptotic methods
have not yet yielded a model with both stretching and bending in a single framework (Steigmann
2008).

However, Koiter’s nonlinear shell theory (Koiter 1966) is unique in that it wasn’t developed as
a limit model but rather based on considerable mechanical understanding and intuition (Ciarlet
2000). Ciarlet (2005) advocated this model as the best model in both the membrane-dominated
and bending-dominated regimes in the case of linear elastic deformations. Hilgers and Pipkin (1992;
1992b; 1996) initiated the work to rigorously extend Koiter’s model to finite mid-surface strains
but used an ad hoc regularizing term to deal with destabalizing compressive stresses. Steigmann
(2008; 2010; 2013b) continued this work and derived a well-posed and optimally accurate (in terms
of the parent three-dimensional theory) finite-strain shell model free of the ad hoc term. In addi-
tion, Steigmann (2013a) showed that Koiter’s model is the leading-order energy in the intermediate
regime where bending and stretching deformation energies are assumed to be of comparable im-
portance. This is precisely the region of interest in tensional wrinkling problems.

2.1. Koiter’s nonlinear isotropic plate model

Here, we briefly summarize Koiter’s model for an initially flat isotropic elastic plate (Steigmann
2013a). In the following, we note that Latin indices take values from {1,2,3} and Greek indices take
values from {1,2}. The implementation of this model in both Abaqus and the dynamic relaxation
codes is discussed in Section 2.2.

Stretch-induced wrinkling is associated with deformations where the stretching and wrinkling
energies in the sheet are of comparable importance. In this regime, the leading order energy is
(Koiter 1966; Steigmann 2013a; Taylor et al. 2014)

W = 1
2h{

2λµ
λ+2µ(trε)2 + 2µ |ε|2}+ 1

24h
3{ 2λµ

λ+2µ(trκ)2 + 2µ |κ|2}, (1)

where h is the sheet thickness, λ and µ are the classical Lamé moduli, ε = Eαβeα ⊗ eβ is the
in-plane part of the Lagrange strain tensor and κ is the bending strain. The bending strain is
related to the deformed surface curvature tensor, b via

κ = −(∇r)Tb(∇r), (2)

where r is the position of a material point on the deformed image ω, of the reference midplane, Ω
and the superscript T denotes tensor transpose. In components,

κ = −bαβeα ⊗ eβ; bαβ = niri,αβ, (3)

where ni are the components of the unit normal on the deformed surface, ri are the components of
the vector r, and the subscript comma refers to partial differentiation with respect to the coordi-
nates.

The Euler equations associated with foregoing strain energy are

divT = 0, or Tiα,α = 0. (4)

The tensor T is related to the three dimensional first Piola-Kirchoff stress evaluated on the mid-
surface P via

T = P1, (5)

where 1 = I − k ⊗ k, I is the three dimensional identity, and k is the unit normal to Ω. It has
nontrivial components

Tiα = Niα −Miαβ,β , (6)
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where
Niα = ∂W/∂ri,α and Miαβ = ∂W/∂ri,αβ, (7)

with W given by (1). Substituting (1) into (7) yields,

Miαβ = 1
12h

3ni

(
2λµ
λ+2µbγγδαβ + 2µbαβ

)
. (8)

and
Niα = hri,β( 2λµ

λ+2µEγγδβα + 2µEβα)−MiλµΓαλµ, (9)

where Γαλµ are the Christoffel symbols. These are related to the gradients of the in-plane strain
via,

Γαλµ = Eµα,λ + Eαλ,µ − Eλµ,α. (10)

The edge boundary of the reference mid-plane Ω is denoted ∂Ω. In general mixed-boundary
problems, position and orientation data are assigned on a part of the boundary denoted ∂Ωe,
and traction and bending moments assigned on a part of the boundary ∂Ωn. Typical boundary
conditions on ∂Ωe entail the specification of the position r and its normal derivative r,ν . Typical
boundary conditions on ∂Ωn are (Steigmann 2010)

Tiανα − (Miαβνατβ),s = fi and Miαβνανβ = ci, (11)

where fi and ci are the force and couple per unit length, τβ are components of the unit tangent to
the boundary, and s is the arc-length. In this study, we consider boundaries where only fi and ci
are specified, i.e. ∂Ωn = ∂Ω.

We note that the extension of (1) to finite midsurface strain is given by (Steigmann 2013a)

W = 1
2hW + 1

24h
3{ 2λµ

λ+2µ(trκ)2 + 2µ |κ|2}, (12)

whereW is an appropriate strain energy function suitably restricted to plane stress. Problems with
large midsurface strains are outside the scope of this work; however, they are common in polymeric
and biological thin films (Cerda and Mahadevan 2003). Further, in contrast to the present theory,
we note that the FvK theory assumes that all nonlinear terms of the Lagrange strain are negligibly
small except those involving derivatives of the out-of-plane displacement.

2.2. Numerical implementation of Koiter’s model

Koiter’s model as described above is implemented directly in the dynamic relaxation code used
in this study (more details can be found in Section 3.3).

For the numerical analysis in this work, we also use Abaqus/Standard 6.10 with S4R shell
elements. The S4R element is a 4-node quadratic finite-membrane-strain element with reduced
integration that has been used successfully in wrinkle analyses (Zheng 2009; Nayyar et al. 2011)
and is considered a robust, general purpose element (Abaqus 6.10 Theory Manual). The bending
strains in these elements are computed based on the Budiansky-Sanders form (Budiansky and
Sanders 1962; Ciarlet 2000, Abaqus 6.10 Theory Manual) of Koiter’s linear shell model (sometimes
referred to as the Koiter-Sanders theory). The membrane strains are computed based upon a
user-specified constitutive law. Although an explicit expression for the strain energy is not given
in the Abaqus theory documentation, it is likely to be akin to (12) but with the bending strain
κ replaced with the linearized Budiansky-Sanders bending strain (Budiansky and Sanders 1962;
Ciarlet 2000). The status of the combined bending-stretching model used in the S4R element
vis-á-vis three dimensional elasticity theory is not known to the authors.
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3. Overview of numerical approaches

In this section we describe the three numerical approaches that have been used to simulate
equilibrium deformations in isotropic elastic sheets. The first two are based on the finite element
method as implemented in the commercial package, Abaqus. The third involves a specifically
designed numerical code (Taylor et al. 2014), based on the method of dynamic relaxation.

The finite element method has been used in a variety of studies of wrinkling in thin sheets
(Zheng 2009; Wong and Pellegrino 2006c; Nayyar et al. 2011; Healey et al. 2013; Carbonez 2013).
There are typically three approaches used: static post-buckling (Zheng 2009; Wong and Pellegrino
2006c), the Riks method (Nayyar et al. 2011), and explicit (Zhang et al. 2013). The first two rely on
an initial analysis to determine the buckling eigenmodes of the sheet. The third approach, explicit
dynamic simulation, is not attempted in this study as it very similar to the dynamic relaxation
approach that is demonstrated here.

3.1. Finite Elements: General Static Post-buckling

The first step in this procedure is to obtain the buckling eigenmodes and eigenfrequencies. The
goal of this eigenvlaue buckling analysis is to determine the loads at which the system stiffness
matrix is singular via a linear perturbation process. In this study, we use the Lanczos algorithm to
determine the eigenvalues of the system. In Abaqus, the buckling mode computation is undertaken
by using the *BUCKLE input file command. Modes can then be added as imperfections to a mesh
using the *IMPERFECTION input file command or by moving each node manually.

General static post-buckling is perhaps the simplest method to determine the post-buckling
behavior of a wrinkled sheet and has formed the basis of several numerical studies including shearing
(Wong and Pellegrino 2006c) and uniaxial stretch (Zheng 2009) of a thin sheet under displacement
control. First, an imperfection based on some number of the computed buckling modes is added to
the mesh to promote the formation of wrinkles. As will be demonstrated in the numerical results,
the wrinkle morphology predicted by the post-buckling analysis is strongly affected by the modes
chosen as an imperfection. Next, a geometrically nonlinear analysis is carried out whereby the
system of equations are solved using Newton-Raphson iteration (this analysis is started using the
*STATIC, NLGEOM command). The prescribed load (or displacement) is applied incrementally
over a user-specified ”time” interval. In order to avoid numerical instabilities, artificial viscous
damping can be applied via a stabilization factor. Ideally, the damping used is kept small enough
to not significantly alter the solution of the problem in the stable regime. Viscous damping is added
using the STABILIZE directive.

3.2. Finite Elements: Modified Riks Method

The Riks method is an arc-length continuation procedure used primarily to find solutions to
problems involving global instabilities such as snap-through (in force control) or snap-back (in
displacement control). These are situations where the general static method typically fails to
provide solutions in the unstable regime of the force-displacement space. The modified Riks method
used in Abaqus assumes that all of the applied loads on the sheet can be scaled by a single parameter
introduced via an auxiliary constraint equation. This ”load proportionality factor” is computed at
each step (via Newton-Raphson iteration) as part of the solution. Solution progress is recorded with
respect to arc-length measured along the force-displacement path rather than the ”time” parameter
of the general static approach. A drawback of the Riks method is that it can be difficult to obtain
the solution at exactly a target load. User specified loads are only used to set a reference direction
and magnitude. Commonly, Abaqus will return a solution near that target.
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Although not specifically intended for local instabilities, Riks has been used in wrinkling studies
(Nayyar et al. 2011). However, (Wong and Pellegrino 2006c) tried to apply it to problems such as
uniaxial tension and shear of a rectangular sheet in displacement control, but were unsuccessful.

In Abaqus, the Riks option is chosen using *STATIC, RIKS with NLGEOM. Like in the general
static approach, we use initial imperfections based on the buckling eigenmodes.

3.3. Dynamic Relaxation Method

Dynamic relaxation has been used successfully to solve a wide variety of equilibrium problems
in tension structures such as membranes and cables (Silling 1988, 1989; Shugar 1990; Haseganu
and Steigmann 1994; Epstein and Forcinito 2001; Taylor and Steigmann 2009; Rezaiee-pajand
et al. 2011; Rodriguez et al. 2011). Here, we briefly summarize the dynamic relaxation method
implemented by Taylor et al. (2014) for the simulation of equilibrium deformations in thin sheets.

Dynamic relaxation (DR) involves embedding the equilibrium problem into an artificial dy-
namical system with positive-mass. As there are no known theorems for the existence of energy
minimizers for (1), Taylor et al. (2014) argues that this gives additional motivation for the use of
dynamic relaxation as it regularizes the problem. Thus, (4) is replaced by surrogate equation of
motion,

Tiα,α = ρr̈i + cṙi, (13)

where ρ is a mass density parameter and c is a damping parameter. A strength of the method is
that the mass and damping parameters do not need to be representative of any physical analogues
of the problem of interest. Instead, they are chosen to maximize stability and rate of convergence
to equilibrium. Optimal parameters for mass and damping for a chosen time-step size can be found
using the eigenvalues of the system stiffness (or tangent stiffness) matrix (Shugar 1990; Topping
and Khan 1994; Rezaiee-pajand et al. 2011).

Equation (13) is discretized in time using central differences. In space, the system is discretized
using a finite-difference scheme derived from Green’s theorem, which was originally described by
Silling (1988; 1989) and adapted to membrane theory in Haseganu and Steigmann (1994) and
Taylor and Steigmann (2009). This discretization does not lead to an explicitly computed stiffness
matrix as is common in conventional finite difference schemes. Rather, it results in a system of
nonlinear equations. To avoid the computational cost of computing a tangent stiffness matrix to
determine optimal dynamic relaxation parameters, Taylor et al. (2014) uses an efficient variant of
dynamic relaxation called kinetic damping (Shugar 1990; Topping and Khan 1994; Rezaiee-pajand
et al. 2011). In this method, the damping parameter is set to zero. Instead of explicit viscous
damping, the kinetic energy of the system is monitored. When it reaches a peak, the velocities of
each node are set to zero and the simulation restarted. This process is continued until the system
is within a user-specified tolerance of equilibrium. Thus, the number of parameters is reduced to
one (i.e., the mass). Satisfactory values of the mass can be easily determined by hand.

4. Case Study: Annular sheet under differential tension

The Lamé set-up is the simplest (yet nontrivial) example of a radial stretching problem, whereby
an annular sheet of thickness t and radii Rin < Rout is subjected to co-planar radial tensile loads
Tin and Tout at its inner and outer boundaries, respectively. Intuitively, if Tin is sufficiently larger
than Tout, a region near the inner boundary is pulled inward, such that the sheet is subjected there
to hoop compression, which is relieved through a wrinkle pattern. For a sufficiently thin sheet, the
stress field, as well as the location, structure, and evolution of the wrinkle pattern are governed by
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two dimensionless groups only, τ and ε−1, which were termed, respectively, the “confinement” and
“bendability” of the system:

τ =
Tin
Tout

; ε−1 =
ToutR

2
in

B
, (14)

where B = Et3/[12(1 − ν2)] is the bending modulus of the sheet. Fig. 2 shows a “morphological
phase diagram”, spanned by the dimensionless pair (ε−1, τ). As the load ratio τ increases, the
system evolves from a flat state (white), through a NT parameter regime (light gray), to a fully
developed, FT state (black), at which the wrinkle pattern can be described through perturbation
theory of the singular limit of infinitely thin sheet, addressed by tension-field theory. Two features
of this phase diagram are noteworthy. First, the transition between the NT and FT regimes occurs
through a narrow window in the parameters space (τ , ε−1), that vanishes as ε → 0, indicating
the relevance of tension field theory at confinement values arbitrarily close to threshold. Second,
neither τ nor ε involves the sheet’s stretching modulus (Y ), implying that the strains may remain
arbitrarily small (since the tensile strains scale as T/Y ), while the wrinkle pattern evolves to its
fully developed, FT state. Hence, all basic aspects of the tensional wrinkling phenomenon can
be studied quantitatively within a theoretical framework that assumes Hookean material response
(i.e., stress proportional to strain).

Figure 2: Phase diagram of the space spanned by bendability and confinement (reproduced from Davidovitch et al.
2011, 2012). The white region corresponds to a flat sheet. Light gray corresponds to the near-threshold (NT) regime,
while the black region corresponds to the far-from-threshold (FT) regime. The darker gray region corresponds to the
transition region between NT and FT regimes.

We begin with a characterization of the NT parameter regime, which is based on the exact
solution of the planar state, attributed to Lamé. In this regime, the hoop stress in the sheet can
be expressed as (Timoshenko and Goodier 1970)

σθθ =
−ToutR2

out + τToutR
2
in

R2
in −R2

out

+

[
−Tout + τTout
R2
in −R2

out

]
R2
inR

2
out

r2
, (15)

where r is radial distance measure from the inner boundary. When the confinement ratio exceeds
a critical value τ > τ c ≈ 2, the hoop stress becomes compressive in the zone Rin < r < LNT (τ),
whose width increases with τ . The parameter LNT is therefore the radial distance from the center
where the hoop stress transitions from negative to positive values. Setting σθθ = 0 in (15), we have
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(Piñeirua 2011; Davidovitch et al. 2011)

LNT = Rin

√√√√ 1− τ−1

τ−1 − R2
in

R2
out

. (16)

A linear stability analysis around the Lamé solution (Coman and Bassom 2007) shows that τ c−2 ∼
ε1/4, and yields the scaling of the wrinkle number:

mNT ∼ ε−3/8 . (17)

Importantly, Eq. (17) shows that the number of wrinkles diverges, as the sheet becomes thinner
(i.e. ε→ 0) even when the sheet is very close to threshold.

Next, we characterize the FT state, which starts with solving for the compression-free stress
field in the tension-field theory (addressing the singular limit ε = 0) for a given τ (Coman 2007;
Davidovitch et al. 2011). To do this, we introduce a parameter LFT (τ) that defines the annular
region Rin < r < LFT (τ) where σθθ = 0. To find the (non-zero) hoop stress for r > LFT , we take
(15) with Rin → LFT and Tin − Tout → TinRin

LFT
− Tout, yielding (Piñeirua 2011; Davidovitch et al.

2011)

σθθ =
−ToutR2

out +
(
τRin
LFT

)
ToutL

2
FT

L2
FT −R2

out

+

−Tout +
(
τRin
LFT

)
Tout

L2
FT −R2

out

 L2
FTR

2
out

r2
. (18)

Then, to find LFT , we set the hoop stress to zero, yielding (Piñeirua 2011)

LFT =
Rout
τ

[
Rout
Rin

−

√
R2
out

R2
in

− τ2

]
. (19)

We note that LFT 6= LNT , i.e., the extent of the wrinkles in the two regimes is different. Using
tools of singular perturbation theory (Davidovitch et al. 2012; Qiu et al. 2014, in preparation), the
scaling law of the wrinkle number can be derived, also exhibiting sharp difference from the NT
analysis:

mFT ∼ ε−1/4. (20)

In addition, the profile of the wrinkles f(r) away from their tip is given by (Davidovitch et al. 2012)

1

4
f(r)2m2 =

RinTout
Y

τrln

[
τRin

2r

]
. (21)

This expression indicates a cusp at the wrinkle’s tip, which was found to be smoothed out through a
boundary layer (see Figure 2b in Davidovitch et al. 2012) whose width vanishes very slowly, as ε1/6,
and consequently clearly affects our simulations. A recent work (Qiu et al. 2014, in preparation),
employed asymptotic matching techniques to describe the boundary layer, yielding a unified analytic
expression for the whole wrinkle profile, which we use for comparison with our numerical results
(more details can be found in Appendix A).

Inspection of Eqs. (16)-(20) yields a profound feature of the wrinkle pattern, which is valid,
in the singular limit ε → 0, at both NT and FT regime: The macroscale (location) feature of the
wrinkle pattern is determined by the confinement parameter τ , which depends only on the exerted
loads; the bending modulus affects only the microscale (structure) feature of the pattern, through
the bendability parameter ε−1. When the loads ratio τ is gradually increased, the transition between
the NT and FT regimes (Eqs. 17 and 20) has been studied numerically using the FvK equation
((Davidovitch et al. 2012; Qiu et al. 2014 in preparation). That study also yields the numerical
prefactor in Eq. (20), which we use to compare with our simulation results (see Appendix A).
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4.1. Numerical setup

In this section, we provide the details of our numerical simulations of the Lamé problem. We
consider the annular sheet to be made of silicone rubber with a Young’s Modulus of 1MPa, a Poisson
ratio of 0.5, and a mass density of 1000 kg

m3 . The outer radius is 5cm and the inner radius is 5mm.
Sheet thickness and loading were allowed to vary to accommodate various values of bendability and
confinement, but we assured that Tin, Tout � Y so that all deformations considered are properly
described by a Hookean response.

4.1.1. Finite elements

For all finite element simulations in this work, we use a mesh of S4R elements totaling 55,816
nodes biased such that the outer and inner boundaries comprise 400 nodes circumferentially. As
a result, more elements are located near the inner boundary relative to the outer boundary. A
mesh refinement study showed that this mesh density provided a good balance between precision
and computational time. In addition, a Neo-Hookean material model is used for the membrane
strains. Although the considered deformations are linearly elastic, a Neo-Hookean model was found
to be more stable numerically than Hooke’s Law. Due to the difficulty in obtaining solutions using
the finite element method (discussed below), we focus these simulations primarily on the case
where τ = 4. Varying the sheet’s bendability within this confinement facilitates exploring the NT,
intermediate, and FT regimes (see Figure 2).

All of the results shown in this study were obtained using eigenmodes as imperfections. We
also attempted to use imperfections not based on the buckling modes. In particular, we tried
imperfections of the type given in Eqns (22) and (23) below. However, these either led to simulations
that failed to converge or led to solutions with no predicted wrinkling and the wrong stress field.

We finally note that the simulations performed in this study are under force control. This
is in contrast to the majority of previous research, which has focused on displacement controlled
deformations (Zheng 2009; Wong and Pellegrino 2006c; Nayyar et al. 2011; Healey et al. 2013).

Finite Elements: Buckling. For the finite element simulations, two different values of thickness
were considered: 2.0×10−6m and 2.9×10−6m to achieve the desired bendabilities while remaining
in the linear elastic regime. For both values of thickness, we computed the first 100 eigenmodes
using Abaqus’ built-in Lanczos solver. The differences in the modes obtained in either case are
negligibly small.

In all of our analyses, buckling modes come in pairs (e.g., mode 1 and 2, 3 and 4, 5 and 6,
etc.) with each member of the pair sharing a nearly identical critical load and having a shape that
differs only by a small rigid rotation. The general trend is for the number of wrinkles to increase
with increasing critical load; however, modes 1 and 2 have three wrinkles, while modes 3 and 4
have two.

The mode shapes used as imperfections in the post-buckling analyses are shown in Figure 3.
Many other combinations of modes were studied, but modes 6, 20, and 50 were found to lead to
successful simulations across the widest range of bendabilities. The critical loads for modes 6, 20,
and 50 are Tin = 3.04 × 10−6N/m, 1.27 × 10−5N/m, and 5.95 × 10−5N/m, respectively. We also
note that the eigenvalues computed by Abaqus are not normalized. The amplitudes for the three
modes as returned by Abaqus are 1.25× 10−3m, 4.54× 10−4m, and 1.89× 10−4m for modes 6, 20,
and 50, respectively.

Finite Elements: Static. Solutions using the general static analysis were very difficult to obtain.
This is perhaps not surprising given that this case study is load controlled. The primary ”dials”
with which to obtain a good stable solution are the number of modes used as an imperfection, the
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amplitude of the imperfection, and the stabilization factor. All were varied as part of a parameter
study and it was found that the ability of Abaqus to determine a solution was highly sensitive
to the imperfection. The stabilization factor was not observed to make a significant difference in
the range of 1 × 10−8 (used by Zheng 2009; Wong and Pellegrino 2006c) to 2 × 10−4 (Abaqus
default). The most consistently good results were found using a stabilization factor of 1 × 10−8

and an imperfection mode scaling factor of 7.5 × 10−4 (applied to the non-normalized eigenmode
amplitudes).

As we discuss below, we found that wrinkled solutions can only be obtained if the chosen mode
used as an imperfection represents a configuration very close to the equilibrium wrinkle pattern.
That is, information about the solution needs to be known before using a static analysis.

Figure 3: Schematic of buckling modes used as imperfections in this analysis. In (a), the entire annulus is shown
with dashed box indicating the regions shown in (b), (c), and (d). Eigenmodes 6, 20, and 50 are shown in (b), (c),
and (d), respectively and colored based on normalized out-of-plane displacement (f).

Finite Elements: Riks. For this particular problem, the Riks method was more successful in finding
solutions to the Lamé problem; however, solutions were still difficult to obtain and very sensitive
to input parameters. A frequently encountered problem was one where Abaqus would flip the signs
of both Tin and Tout putting the entire annulus into radial compression. This is understandable as
Riks is a method to obtain solutions for global buckling exactly of the type generated by putting the
annulus in radial compression. Nonetheless, it is still possible for Abaqus to return good solutions
provided the imperfection and Riks parameters are chosen very carefully.

For the Lamé problem, we had the best success using an imperfection amplitude scaling of
9.0×10−4 (applied to the non-normalized eigenmode amplitudes). In addition, we used the following
Riks parameters: Initial Arc Increment = 1.0, Min. Arc Increment = 0.5, Max. Arc Increment =
2.0, Total Arc Length = 10.0, and Max. Number of Increments = 100. For simulations aimed at
the NT regime, we consider a target bendability of 5000 (i.e., the bendability for which the load
proportionality factor is 1.0). When we were aiming for simulations in the FT regime, we used a
target bendability of 15000.

In contrast to the static analysis, we found that the imperfections modes used in a Riks analysis
do not need to be as close to the solution pattern. Riks can generate solutions using modes
very far away from the true solutions. However, in these cases, the resulting wrinkle pattern is
often asymmetric as the procedure attempts to add the necessary wrinkles over the course of the
simulation. In this study, we do not show asymmetric results as they are obviously incorrect.

4.1.2. DR Method

The dynamic relaxation method was able to determine solutions at any desired bendability and
confinement. The user only needs to choose the starting imperfection and the virtual mass. A stable
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mass can be found very easily via trial and error–larger values tending to make the simulation more
stable. The DR technique is also relatively insensitive to starting imperfections. For the user then,
the choice of mass and imperfection is done mainly with the goal of promoting as fast a convergence
to equilibrium as possible. To that end, a low mass and a smooth imperfection is desirable.

In this study, we use the following out-of-plane imperfections. The first is a smooth perturbation
of the form,

rt=0
3 = A sin

(
ω
πrt=0

1

2Ro

)
sin

(
πrt=0

2

2Ro

)
, (22)

where A = 10−7m is the amplitude, ω = 5 is a frequency, and Ro = 5cm is the outer radius of the
annulus. The second is a random imperfection of the form,

rt=0
3 = A(2n− 1), (23)

where A is the same amplitude as above and n is a random number between 0 and 1. This random
number is generated anew for each node, thus, each point has a unique initial out-of-plane position.

For all simulations, we used a radial mesh logarithmically biased such that more nodes occur
near the inner boundary. The mesh density was varied from 40,000 (500 nodes distributed circum-
ferentially and 80 radially) nodes for simulations in the NT regime to 200,000 (200 nodes distributed
circumferentially and 100 nodes radially)for those far into the FT regime.

In addition, in all simulations the dynamic relaxation procedure was terminated after 200,000
iterations (i.e., time-steps). While the stresses converge to their equilibrium values quite quickly (on
the order of 10,000 iterations), the wrinkle patterns do not. We find that the finer the distribution
of wrinkles in the equilibrium configuration, the longer the DR procedure takes.

4.2. Numerical Results

In this section, we show results comparing the considered numerical methods with the analytical
predictions given in section 4. To simplify references to specific finite element results, we list the
post-buckling method followed by the mode used as an imperfection in parentheses. For example,
Riks (mode 20) denotes that we are referring to results generated using the Riks method with mode
20 used as the imperfection.

4.2.1. Hoop stress

To begin, we look at hoop stress σθθ as a function of radius for values of bendability across the
NT to FT spectrum (Figs. 4-7) and compare with the analytical predictions given by (15) and (18).
First, we consider a sheet bendability of ε−1 = 15 (thickness = 2.0×10−6m, Tout = 5.42×10−7N/m)
that is in the NT regime. Figure 4a shows the hoop stress and, in this case, all numerical methods
correctly predict the stress as being that of the classical Lamé solution. As expected, no wrinkling
(Fig. 4 b-e) is observed as the bendability is very low.
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Figure 4: Comparison of hoop stress and wrinkle patterns in the case ε−1 = 15. In (a), the normalized hoop stress
stress as a function of radial distance from the inner boundary is compared. In this case, all numerical methods
predict the classical Lamé solution. In (b-e), the out-of-plane displacement (f) is normalized and shown in the region
denoted in Figure 3a. At this low bendability, none of the numerical methods predict wrinkling.

Next, we explore the intermediate region between the NT and FT regimes. In particular, we are
interested in how the hoop stress evolves from the Lamé solution (15) to that in the FT state (18).
Because of the sensitivity of the finite element approaches to initial imperfection, we focus on results
from the DR method. In Figure 5 the evolution of the hoop stress given by the DR code across a
range of bendabilities. As bendability increases, the stress near the inner boundary collapses from
the NT prediction towards the FT profile. To obtain these distributions, a randomized out-of-plane
imperfection of the form (23) was used. Using the smooth sinusoidal imperfection in (22) led to a
prediction of wrinkling being absent until bendabilities of around 1600, at odds with the analytical
predictions. Our findings suggest that the DR method is somewhat sensitive to imperfections at
low bendabilities, but not very sensitive at higher values. Always using a randomized imperfection
is the best way to avoid these issues. At very high bendabilities, smoother imperfections can be
safely used to speed up convergence.

Figure 5: Comparison of hoop stresses predicted by the DR code for a range of bendabilities. The hoop stress is
shown as a function of radial distance from the inner boundary. As bendability increases, the hoop stress transitions
from the classical Lamé solution (ε−1 < 250) towards the FT limit solution.

In Figure 6a, we show the hoop stress for higher value of bendability that is closer to the FT
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limit, ε−1 = 16200 (thickness = 2.0 × 10−6m, Tout = 5.42 × 10−4N/m). Here, we expect a hoop
stress distribution very close to the one given at the FT limit. This is what we observe for the
results from static (mode 20), Riks (mode 20), and from the DR method. Riks (mode 6) yields a
hoop stress profile that is good away from the hole, but spikes upwards near the inner boundary.
Interestingly, static (mode 6) gives exactly the Lamé hoop stress distribution.

Turning our attention to the wrinkle patterns (Figure 6b-e), we find that wrinkling is predicted
by the Riks (mode 6) and (mode 20), static (mode 20), and the DR code; however, the profiles
are all very different. Interestingly, the number of wrinkles and the profile computed using the
finite element method is the same as the imperfection used but with a much larger amplitude. In
contrast, the DR approach generates a solution very different from the imperfection used, predicting
many more wrinkles at a smaller amplitude. We demonstrate in the following section that the DR
prediction for the number of wrinkles is much closer to the analytical predictions. Finally, we see
that the static post-buckling approach only predicts wrinkles if the imperfection uses a mode with
a number of wrinkles close to that in the true solution.

Figure 6: Comparison of hoop stress and wrinkle patterns in the case ε−1 = 16200. In (a), the normalized hoop
stress stress as a function of radial distance from the inner boundary is compared. The Riks, static (mode 20), and
DR approaches yield solutions near the FT limit (i.e., tension-field) solution as expected. Using mode 6 with Riks
causes a spurious spike in stress near the inner boundary. The general static post-buckling approach using mode 6
incorrectly predicts the Lamé solution. In (b-e), the out-of-plane displacement (f) is normalized and shown in the
region highlighted in Figure 3a. The Riks (b,c) and static (mode 20) (c) methods return the same number of wrinkles
as the initial imperfection, but at a larger magnitude. The DR method (e) predicts many more wrinkles. The general
static approach (mode 6) predicts no wrinkling (d).

Finally, we focus on a sheet with a very high bendability of ε−1 = 60000 (thickness = 2.9×10−6m,
Tout = 6.5×10−3N/m). In Figure 7a, we show the hoop stress for this case. Here, we expect profiles
to be even closer to the predicted FT limit. Riks (mode 20), static (mode 50), and the DR method
are all able to correctly predict the stress in this case. Again, static (mode 6) predicts the Lamé
solution (with no wrinkles, Fig 7c). Attempts to generate a solution with static (mode 20) were
unsuccessful as the simulations failed to converge for a range of imperfection magnitudes, step sizes,
and stabilization factors.

Focusing on the wrinkle patterns, we observe that static (mode 50) is able to generate a wrinkled
solution (Fig. 7d). Although, even then, the solution has the same number of wrinkles as the
imperfection. Similarly, the Riks (mode 20) solution (Fig. 7b) has the same number of wrinkles
as the imperfection. Further, we note that converged wrinkled solutions can be obtained for Riks
(mode 6) and Riks (mode 20). While they both correctly predict the hoop stress field, they both
predict asymmetric wrinkle patterns and we have omitted these results. As in the previous case,
the DR method generates a wrinkle pattern(Fig. 7e) significantly different from the imperfection
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used and, as we demonstrate in the following sections, very close to the analytical predictions.
In summary, our numerical results indicate that both static and Riks finite element analyses

are highly sensitive to initial imperfections, while the DR method can generate solutions for all
bendabilities without requiring knowledge of the equilibrium configuration beforehand.

Figure 7: Comparison of hoop stress and wrinkle patterns in the case ε−1 = 60, 000. In (a), the normalized hoop
stress stress as a function of radial distance from the inner boundary is compared. The Riks, static (mode 50), and
DR approaches yield solutions at the FT limit (i.e., tension-field) solution as expected. The general static post-
buckling approach (mode 6) incorrectly predicts the Lamé solution. In (b-e), the out-of-plane displacement is (f) is
normalized and shown in the region highlighted in Figure 3a. When using mode 20 (b), the Riks method returns the
same number of wrinkles as the initial imperfection, but at a larger magnitude. Similar behavior is observed using
mode 50 in the static analysis (d). The DR method (e) predicts many more wrinkles. The general static approach
(mode 6) predicts no wrinkling (c).

4.2.2. Number of wrinkles

Next, we look at the predictions of the number of wrinkles as a function of bendability (Figure
8) and compare with the analytical prediction (A.2). Here, we focus on Riks (mode 20) and the
DR methods due to the difficulty in obtaining solutions with static. In a given Riks simulation,
solutions at many bendabilities are provided due to the changing load proportionality factor. We
see that the DR results are slightly higher than the FT limit values, which is to be expected since
the analytical predictions show that the limit is approached from above (see Fig. 3 in Davidovitch
et al. (2012)). It is also possible that at 200,000 iterations, the simulations are not completely
converged and that at higher iterations the number of wrinkles will decrease to values closer to the
FT prediction.

The Riks results under-predict the number of wrinkles and do not change as the bendability
increases (mRiks = 11). This is because the mode represented has fewer wrinkles than the equilib-
rium solutions have. To get the proper number of wrinkles, the analyst would have to make sure to
include the correct mode shape (i.e., know what it is ahead of time) as an imperfection. Alterna-
tively, the analyst could run many simulations each with a different initial imperfection, compute
the elastic energy of the converged equilibrium state in each case, and minimize over those energies
to extract the energetically-favorable mode. This state of affairs is undesirable even in a simple
problem like the one considered here.
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Figure 8: Comparison of number of wrinkles as a function of bendability. The DR code yields results very close to the
predicted FT limit across a range of bendabilities, while approaching the limit from above. The number of wrinkles
in the Riks result is fixed at the number of wrinkles in the imperfection mode (mRiks = 11).

4.2.3. Wrinkle profiles

In Figure 9 we show the out-of-plane profile of the wrinkles predicted in the case of a bendability
of ε−1 = 60000. In all cases, the numerically obtained profiles have been averaged across all the
wrinkles distributed circumferentially. In addition, the analytical result (given by (A.3)) has been
scaled to account for the fact that the number of wrinkles predicted in all of the numerical results
is different from the analytical prediction. The analytical prediction for the number of wrinkles in
this case is 30; the DR code predicts 31, static (mode 50) predicts 26, and Riks (mode 20) predicts
11 (see Figure 7b,d,e). In Figure 9c, we see that the DR code predicts a wrinkle pattern nearly
identical to the analytical prediction. Riks (mode 20) (Figure 9a) and static (mode 50) are also
quite close to the predicted profile shape. We expect the agreement to be even better with a more
refined mesh. Therefore, these results suggest that both static and Riks could generate the correct
profile shape and amplitude provided the correct mode is chosen as the imperfection.

Figure 9: Comparison of averaged wrinkle profiles for (ε−1 = 60, 000). All profiles shown as a function of radial
distance from the inner boundary. Riks (mode 20) (a), static (mode 50) (b), and the DR code (c) all give profiles
close the analytical FT solution (for a particular number of wrinkles) but all predict different amplitudes

4.2.4. Extent of wrinkles

Finally, in Figure 10, we show the prediction of wrinkle extent, L, as a function of confinement
for the DR method at a bendability of 60000 in comparison with the NT and FT limits predicted in
(16) and (19) (since finite element results are very sensitive to imperfection, here we only consider
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the DR method). The wrinkle extent was obtained by measuring at what radial value the hoop
stress went to zero. Our results clearly indicate that the DR method predicts a wrinkle extent very
close to the that predicted in the FT limit over a wide range of confinement values.

Figure 10: Comparison of wrinkle extent predicted by DR code for a range of confinements and (ε−1 = 60, 000). As
confinement increases, the extent of wrinkles increases. At high bendabilities, the solution is expected to approach
the FT limit from below and the DR results bear this out.

5. Conclusion

In this work, we have compared several numerical simulation methods for solving equilibrium
problems involving loaded thin sheets where wrinkling is a prominent feature. In particular, we
have applied these methods to the solution of the classical Lamé annulus problem, which has
been characterized extensively. While the numerical methods considered are all based (at least in
bending) upon Koiter’s shell theory, they differ in how those shell equations are solved. We find
that the method of dynamic relaxation seems to yield the best results across the spectrum from
bending dominance (’Near Threshold’, NT) to membrane dominance (’Far From Threshold’, FT)
in capturing stress and detailed wrinkling features in comparison to analytical predictions. The
DR results appear to be dependent upon the imperfection only in the NT regime. Problems can
be avoided by using a randomized imperfection in all cases.

Results based on the finite element method are much more strongly dependent on initial im-
perfection, when they are able to be obtained at all. The Riks method appears to be superior
to the static post-buckling method since its dependence on imperfection is less severe. However,
neither static nor Riks is able to adequately capture the wrinkle morphology unless the appropriate
buckling mode is known a priori and used as the imperfection. For most real applications, this
requirement is much too restrictive.

In conclusion, numerical study of the Lamé set-up, where analytic predictions are available, re-
veals the power and the limitations of the finite element method in characterizing wrinkle patterns.
Both the Riks and static approaches can be used to reliably determine the macro-scale properties
(overall deformation, location of wrinkles, stress field). On the other hand, the micro-scale proper-
ties (wrinkle periodicity and profile) can not be captured reliably. Our findings suggest a dynamic
approach like the DR method can more robustly predict both macro- and micro-scale properties
of wrinkled sheets and demonstrate the special care that must be taken when analyzing numerical
results on wrinkling phenomena.

18



Acknowledgment: MT and KB acknowledge the support of the Harvard Materials Research
Science and Engineering Center under National Science Foundation Award DMR-0820484 and
of startup funds from the School of Engineering and Applied Sciences, Harvard. ZQ and BD
acknowledge the support of NSF CAREER award DMR-11-51780.

Appendix A. Analytic predictions for m and f(r)

In this appendix, we provide the analytic predictions for the number of wrinkles, m, and for
the wrinkle profile, f(r), plotted in black curves in Figures 8 and 9, respectively. These predictions
are obtained by solving, using an asymptotic matching method, the set of nonlinear equations
(4a-4d in Davidovitch et al. (2012)). Assuming that the wrinkle shape corresponds to an out-of-
plane displacement f(r) cos(mθ), it was shown in Davidovitch et al. (2012) that the FvK equations
reduce in the large bendability limit (ε� 1) to this set of nonlinear ordinary differential equations
(ODE’s), which couple f(r) to the in-plane radial displacement ur(r). Importantly, these equations
resolve the unphysical singularity of the derivative f ′(r) at the wrinkle’s tip (r → Rinτ/2), which
is evident in Eq. (21), yielding there a boundary layer, whose width vanishes slowly as ε→ 0. This
nonlinear set of ODE’s was solved numerically in Davidovitch et al. (2012) and the energetically-
favorable wrinkle number m was obtained by computing the elastic energy and minimizing it over
all values of wrinkle number. In Qiu et al. (2014) (in preparation), it was found that this set
of equations can be solved analytically by employing a standard method of singular perturbation
theory, whereby the wrinkle profile f(r) is described by matching the profile f(r) in Eq. (21) to
an appropriate “inner zone” around the wrinkle’s tip, which describes the boundary layer. The
matching procedure is rather cumbersome, and will be described in detail elsewhere (Qiu et al.
2014, in preparation). Here, we only provide the analytic expressions for the profile f(r) and the
wrinkle number m, that were obtained by this method, which we use for plotting the theoretical
predictions in Figs. 8 and 9.

In order to simplify the complicated following expressions, we define the dimensionless r̄ and
f̄(r̄) as follows:

r̄ =
r

Rin
, f̄ =

f√
R2
inTout/Et

, (A.1)

and define the parameter c through:
m ≡ c · ε−1/4 (A.2)

We find that the profile f̄(r̄) is described by the following expression:

1 < r̄ < τ
2 + x · ε1/6 : f̄(r̄) ≈ 2

√
r̄τ
√
ε log( τ

2r̄ )
c2

+ a ·Ai
(
−24/3

(
r̄ − τ

2

)
( c2√

ετ3(1−ν2)
)1/3

)
r̄ > τ

2 + x · ε1/6 : f̄(r̄) ≈ b ·Ai
(

2
(
r̄ − τ

2

)
( c2√

ετ3 )1/3
) (A.3)

where τ , ε, ν are, respectivley, the confinement, inverse bendability, and Poisson ratio (see main
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text), Ai(·) is the Airy function, and the parameters x, a, b are given by:

x =
(0.0232769ν2 − 0.000918511ν − 0.250298)τ

c2/3
(A.4)

a =

(
ν2 − 1

)
ε1/3

(
32c2τx3 + τ4

)
16c3
√
τ (ν2 − 3) (−x)5/2 Ai

(
−24/3(− c2

τ3(ν2−1)
)1/3x

) (A.5)

b =

√
τε1/3

(
64c2x3 + τ3

(
ν2 − 1

))
16c3 (ν2 − 3) (−x)5/2 Ai

(
2( c

2

τ3 )1/3x
) (A.6)

The expression (A.3) is plotted in the black curves in Fig. 9.
Next, the elastic energy is evaluated (see Davidovitch et al. (2012)), yielding an algebraic

equation for the wrinkle number, m(ε, τ), that minimizes the energy for given ε and τ . This
algebraic equation is rather complicated and cannot be solved in a closed analytic form. We give
the implicit expressions for the parameter c(ε, τ) (see (A.2)) for the two values ν = 1/3 and ν = 1/2.
For ν = 1/3:

c4(2− 1.69315τ + τ log(τ)) + 0.0416667τ2(log(ε)− 4 log(c))− 0.861147τ2

−0.125τ2 log2(τ) + 0.673287τ2 log(τ)− 0.25τ2 log(log(τ)− 0.693147) = 0 (A.7)

For ν = 1/4

c4(2− 1.69315τ + τ log(τ)) + 0.0416667τ2(log(ε)− 4 log(c))− 0.866029τ2

−0.125τ2 log2(τ) + 0.673287τ2 log(τ)− 0.25τ2 log(log(τ)− 0.693147) = 0 (A.8)
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