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Non-backtracking random walks and a weighted Ihara’s theorem

Mark Kempton∗

Abstract

We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking
walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency
matrix of a graph to a matrix related to non-backtracking walks on the directed edges. We prove a
weighted version of Ihara’s Theorem which relates the transition probability matrix of a non-backtracking
walk to the transition matrix for the usual random walk. This allows us to determine the spectrum of
the transition probability matrix of a non-backtracking random walk in the case of regular graphs and
biregular graphs. As a corollary, we obtain a result of Alon et. al. in [1] that in most cases, a non-
backtracking random walk on a regular graph has a faster mixing rate than the usual random walk. In
addition, we obtain an analogous result for biregular graphs.

1 Introduction

A random walk on a graph G is a random process on the vertices of G in which, at each step in the walk, we
choose uniformly at random among the neighbors of the current vertex. Random walks have been studied
extensively, and are used in a variety of algorithms involving graphs. For a comprehensive survey on random
walks on graphs, see [13], and for applications of spectral techniques to random walk theory, see [5]. Random
walks on graphs have the useful property that given any initial distribution on the vertex set, the random
walk converges to a unique stationary distribution as long as the graph is connected and not bipartite. The
speed at which this convergence takes place is referred to as the mixing rate of the random walk. In a graph
where a random walk has a fast mixing rate, vertices can be sampled quickly using this random process,
making this a useful tool in theoretical computer science.

A non-backtracking random walk on a graph is a random walk with the added condition that, on a
given step, we are not allowed to return to the vertex visited on the previous step. Viewed as a walk on
vertices, a non-backtracking random walk loses the property of being a Markov chain, making its analysis
somewhat more difficult. However, their study has received increased interest in recent years. Recently,
Angel, Friedman, and Hoory [2] studied non-backtracking walks on the universal cover of a graph. Fitzner
and Hofstad [7] studied the convergence of non-backtracking random walks on lattices and tori. Krzakala
et. al. [11] use a matrix related to non-backtracking walks to study spectral clustering algorithms. Most
pertinent to the current paper, Alon, Benjamini, Lubetzky, and Sodin [1] studied the mixing rate of a
non-backtracking walk for regular graphs. In particular, they prove that in most cases, a non-backtracking
random walk on a regular graph has a faster mixing rate than a random walk allowing backtracking.

In this paper, we study the mixing rate for a non-backtracking random walk, with the goal of removing
the condition of regularity needed in the results of Alon et. al. in [1]. We take a different approach than Alon
et. al. by looking at the non-backtracking walk as a walk along directed edges of a graph, as is done in [2].
This allows us to turn the non-backtracking random walk into a Markov chain, but on a larger state space,
which in turn allows us to determine the stationary distribution to which a non-backtracking walk converges
for a general graph, whether or not it is regular. In the case of regular graphs, our approach allows us to
compute the spectrum of the transition probability matrix for a non-backtracking random walk, expressed
in terms of the eigenvalues of the adjacency matrix. This allows for easy comparison of the mixing rates of
a non-backtracking random walk, and an ordinary random walk. As a corollary, this gives us an alternate
proof of the result in [1] for regular graphs. Our approach gives more information than the approach in [1],
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in that the full spectrum of the transition probability matrix is given. In addition, we are able to compute
the spectrum of the non-backtracking transition probability matrix for biregular graphs. As a corollary, we
generalize the result in [1] for regular graphs to an analogous result for biregular graphs.

A key component in our proof is a weighted version of a result known as Ihara’s Theorem, also called
the Ihara zeta identity, which relates an operator indexed by the directed edge set of a graph to an operator
indexed by the vertex set of the graph. Ihara’s Theorem was first considered in the study of number theoretic
zeta functions on graphs, and was first proved for regular graphs by Ihara in 1966 (see [9]). Numerous other
proofs have been given since, along with generalizations to irregular graphs, by Hashimoto ([8], 1989), Bass
([3], 1992), Stark and Terras ([15], 1996), Kotani and Sunada ([10], 2000), and others. We will give an
elementary proof of Ihara’s Theorem that, to our knowledge, is original. In addition, we follow ideas similar
to those in [10] to obtain a version of Ihara’s Theorem with weights that allows us to study the relevant
transition probability matrices for random walks.

The remainder of this paper is organized as follows. In section 2, we give the necessary background and
preliminary information on random walks, and develop the corresponding theory for non-backtracking walks,
including the convergence of a non-backtracking walk to a stationary distribution for a general graph. We
accomplish this via walks on the directed edges of a graph. We also investigate bounds obtained from the
normalized Laplacian for a directed graph. We also give the relevant background on Ihara’s Theorem, and
a new elementary proof. In section 3, we prove our weighted version of Ihara’s formula. Finally, in section
4, we use this formula to obtain the spectrum of the transition probability matrix for a non-backtracking
random walk for regular and biregular graphs. This gives a new proof of the result of Alon et. al. concerning
the mixing rate of a non-backtracking random walk on a regular graph, and generalizes this result to the
class of biregular graphs.

2 Preliminaries

2.1 Random walks

Throughout this paper, we will let G = (V,E) denote a graph with vertex set V and (undirected) edge set
E, and we will let n = |V | and m = |E|. A random walk on a graph is a sequence (v0, v1, ..., vk) of vertices
vi ∈ V where vi is chosen uniformly at random among the neighbors of vi−1. Random walks on graphs are
well-studied, and considerable literature exists about them. See in particular [5] and [13] for good surveys,
especially in the use of spectral techniques in studying random walks on graphs.

The adjacency matrix A of G is the n× n matrix with rows and columns indexed by V given by

A(u, v) =

{
1 if u ∼ v
0 otherwise.

It is a well-known fact that the (u, v) entry of Ak is the number of walks of length k starting at vertex u and
ending at vertex v. Define D to be the n × n diagonal matrix with rows and columns indexed by V with
D(v, v) = dv, where dv denotes the degree of vertex v. A random walk on a graph G is a Markov process
with transition probability matrix P = D−1A, so

P (u, v) =

{
1
du

if u ∼ v
0 otherwise.

Given any starting probability distribution f0 on the vertex set V , the resulting expected distribution fk
after applying k random walk steps is given by fk = f0P

k. Here we are considering f0 and fk as row vectors
in Rn.

Note that, in general, P is not symmetric for an irregular graph, but is similar to the symmetric matrix
D−1/2AD−1/2. Thus, the eigenvalues of P are real, and if we order them as µ1 ≥ µ2 ≥ · · · ≥ µn, then it is
easy to see that µ1 = 1 with eigenvector 1, and µn ≥ −1. By Perron-Frobenius theory, if the matrix P is
irreducible, then we have that µ2 < 1, and if P is aperiodic, then µn > −1. The matrix P being irreducible
and aperiodic corresponds to the graph G being connected and non-bipartite.
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The stationary distribution for a random walk on G is given by

π(v) =
dv

vol(G)
.

The stationary distribution has the important property the πP = π, so that a random walk with initial
distribution π will stay at π at each step. An important fact about the stationary distribution is that if G
is a connected graph that is not bipartite, then for any initial distribution f0 on V (G), we have

lim
t→∞

(f0P
t)(v) = π(v)

for all v (see [13]).
Knowing that a random walk will converge to some stationary distribution, a fundamental question to

consider is to determine how quickly the random walk approaches the stationary distribution, or in other
words, to determine the mixing rate. In order to make this question precise, we need to consider how to
measure the distance between two distribution vectors.

Several measures for defining the mixing rate of a random walk have been given (see [5]). Classically, the
mixing rate is defined in terms of the pointwise distance (see [13]). That is, the mixing rate is

ρ = lim sup
t→∞

max
u,v

∣∣P t(u, v)− π(v)
∣∣1/t .

Note that a small mixing rate corresponds to fast mixing. Alternatively, the mixing rate can be considered
in terms of the standard L2 (Euclidean) norm, the relative pointwise distance, the total variation distance, or
the χ-squared distance. In general, these measures can yield different distances, but spectral bounds on the
mixing rate are essentially the same for each. See [5] for a detailed comparison of each. For our purposes,
we will primarily be concerned with the χ-squared distance, which will be defined below.

The mixing rate of a random walk is directly related to the eigenvalues of P .

Theorem 1 (Corollary 5.2 of [13]). Let G be a connected non-bipartite graph with transition probability
matrix P , and let the eigenvalues of P be 1 = µ1 > µ2 ≥ · · · ≥ µn > −1. Then the mixing rate is
max{µ2, |µn|}.

Thus, the smaller the eigenvalues of P , the faster the random walk converges to its stationary distribution.

2.2 Non-backtracking random walks

A non-backtracking random walk on G is a sequence (v0, v1, ..., vk) of vertices vi ∈ V where vi+1 is chosen
randomly among the neighbors of vi such that vi+1 6= vi−1 for i = 1, ..., k − 1. In other words, a non-
backtracking random walk is a random walk in which a step is not allowed to go back to the immediately
previous state. A non-backtracking random walk on a graph is not a Markov chain since, in any given state,
we need to remember the previous step in order to take the next step. In order for this to be well-defined,
we assume throughout the remainder of the paper that the minimim degree of G is at least 2.

Define P (k) to be the n× n transition probability matrix for a k-step non-backtracking random walk on
the vertices. That is P (k)(u, v) is the probability that a non-backtracking random walk starting at vertex
u ends up at vertex v after k steps. Note that P (1) = P , where P = D−1A is the transition matrix for an
ordinary random walk on G. However, P (k) is not simply P k since a non-backtracking random walk is not
a Markov chain.

This process can be turned into a Markov chain, however, by changing the state space from the vertices
of the graph to the directed edges of the graph. That is, replace each edge in E with two directed edges (one
in each direction). Then the non-backtracking random walk is a sequence of directed edges (e1, e2, · · · , ek)
where if ei = (vj , vk), and ei+1 = (vr, vs) then vk = vr and vs 6= vj . That is, the non-backtracking condition
restricts the walk from moving from an edge to the edge going in the opposite direction. Denote the set of

directed edges by
−→
E . The transition probability matrix for this process we will call P̃ . Observe that

P̃ ((u, v), (x, y)) =

{
1

dv−1 if v = x and y 6= u

0 otherwise.
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Note that P̃ is a 2m× 2m matrix. Note also that P̃ k is the transition matrix for a walk with k steps on the
directed edges.

Lemma 1. Given any graph G, the matrix P̃ as defined above is doubly stochastic.

Proof. Observe first that the rows of the matrix P̃ sum to 1, as it is a transition probability matrix. In
addition, the columns of P̃ sum to 1. To see this, consider the column indexed by the directed edge (u, v).
The entry of this column corresponding to the row indexed by (x, y) is 1

dy−1 if y = u and if v 6= x. Since

y = u this is equal to 1
du−1 . Otherwise, the entry is 0. Thus the column sum is

∑
x∼u
x 6=v

1

du − 1
=
du − 1

du − 1
= 1

as claimed.

Define the distribution π̃ :
−→
E → R by

π̃ =
1

vol(G)

where 1 is the vector of length 2m with each entry equal to 1.

Lemma 2. Let f̃0 :
−→
E → R be any distribution on the directed edges of G. If the matrix P̃ is irreducible

and aperiodic, then
f̃0P̃

k −→ π̃

as k →∞.

Proof. It follows from Lemma 1 that π̃ is a stationary distribution for P̃ . This follows because, since the
columns of P̃ sum to 1, we have

π̃P̃ = π̃.

Therefore, if the sequence f̃0P̃
k converges, it must converge to π̃. Now, P̃ being irreducible and aperiodic

are precisely the conditions for this to converge.

Let f be a probability distribution on the vertices of G. Then f can be turned into a distribution f̃ on−→
E as follows. Define

f̃((u, v)) =
1

du
f(u).

Conversely, given a distribution g̃ on
−→
E , define a distribution g on the vertices by

g(u) =
∑

(u,v)∈
−→
E

g̃(u, v).

Thus, given any starting distribution f0 : V → R on the vertex set of G, we can compute the distribution
after k non-backtracking random walk steps fk : V → R as follows. First compute the distribution f̃0 on the
directed edges as above, then compute f̃k = f̃0P̃

k, then fk is given by fk(u) =
∑
v∼u f̃k(u, v). The following

proposition tells us that this converges to the same stationary distribution as an ordinary random walk on
a graph.

Theorem 2. Given a graph G and a starting distribution f0 : V → R on the vertices of G, define fk = f0P
(k)

to be the distribution on the vertices after k non-backtracking random walk steps. Define the distribution
π : V → R by π(v) = dv

vol(G) (note that this is the stationary distribution for an ordinary random walk on G).

Then if the matrix P̃ is irreducible and aperiodic, then for any starting distribution f0 on V , we have

fk −→ π as k →∞.
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Proof. As described above, take the distribution f0 on vertices to the corresponding distribution f̃0 on
directed edges. Then define f̃k = f̃0P̃

k. Then by Lemma 2, f̃k converges to π̃. Now π̃ = 1

volG , and observe
that

π(u) =
du

vol(G)
=
∑
v∼u

1

vol(G)
=
∑
v∼u

π̃((u, v)).

So pulling the distribution π̃ on directed edges back to a distribution on the vertices yields π. Thus the
result follows.

Definition 1. The χ-squared distance for measuring convergence of a random walk is defined by

∆′(t) = max
y∈V (G)

 ∑
x∈V (G)

(P̃ t(y, x)− π̃(x))2

π̃(x)

1/2

.

Notice that since π̃ = 1/ vol(G),

∆′(t)2 = max
y

1

2m
‖(χyP̃ t − π̃)‖2

= max
y

1

2m
‖(χy − π̃)P̃ t‖2

Theorem 3. Let µ1 = 1, µ2, · · · , µ2m be the eigenvalues of P̃ . Then the convergence rate for the non-
backtracking random walk with respect to the χ-squared distance is bounded above by maxi 6=1 |µi|.

Proof. We have

∆′(t)2 = max
y

1

2m
‖(χy − π̃)P̃ t‖2.

Observe that χu − π̃ is orthogonal π̃, which is the eigenvector for µ1, so we see that

∆′(t) ≤ 1

2m
max
i6=1
|µi|t.

Therefore,
lim
t→∞

(∆′(t))1/t ≤ max
i 6=1
|µi|.

2.3 Non-backtracking Walks as Walks on a Directed Graph

The transition probability matrix P̃ for the walk on directed edges can be thought of as a transition matrix
for a random walk on a directed line graph of the graph G. In this way, theory for random walks on directed
graphs can be applied to analyze non-backtracking random walks. Random walks on directed graphs have
been studied by Chung in [4] by way of a directed version of the normalized graph Laplacian matrix. In
[4], the Laplacian for a directed graph is defined as follows. Let P be the transition probability matrix
for a random walk on the directed graph, and let φ be its Perron vector, that is, φP = φ. Then let Φ be
the diagonal matrix with the entries of φ along the diagonal. Then the Laplacian for the directed graph is
defined as

L = I − Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
.

This produces a symmetric matrix that thus has real eigenvalues. Those eigenvalues are then related to the
convergence rate of a random walk on the directed graph. In particular, the convergence rate is bounded
above by 2λ−11 (− log minx φ(x)), where λ1 is the second smallest eigenvalue of L (see Theorem 7 of [4]).

Applying this now to non-backtracking random walks, define P̃ as before. Then as seen above, φ is the
constant vector with φ(v) = 1/ vol(G) for all v. Then the directed Laplacian for a non-backtracking walk
becomes

L̃ = I2m =
P̃ + P̃ ∗

2
.
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Then Theorem 1 of [4], applied to the matrix L̃ as defined, gives the Rayleigh quotient for a function

f :
−→
E → C by

R̃(f) =
f∗L̃f
f∗f

=
1

2

∑
(u,v)∈

−→
E (G)

∑
(v,w)
w 6=u

(f(u, v)− f(v, w))
2
P̃ ((u, v), (v, w))

∑
(u,v)∈

−→
E (G)

f(u, v)2
.

From this it is clear that L̃ is positive semidefinite with smallest eigenvalue λ0 = 0. If 0 = λ0 ≤ λ1 ≤
· · · ≤ λ2m−1 are the eigenvalues of L̃, then Theorem 7 from [4] implies that the convergence rate for the
corresponding random walk is bounded above by

2 log vol(G)

λ1
.

We remark that for an ordinary random walk on an undirected graph G, the convergence rate is also on
the order of 1/λ1(L), where L now denotes the normalized Laplacian of the undirected graph G. Note that

λ1(L) = inf
f :V (G)→R

f⊥D1

R(f)

where R(f) =

∑
uv∈E(G)(f(u)− f(v))2∑

v∈V (G) f(v)2dv
denotes the Rayleigh quotient with respect to L, and

λ1(L̃) = inf
f :
−→
E (G)→R

f⊥1

R̃(f)

with R̃ given above.
The following result shows that the Laplacian bound does not give an improvement for non-backtracking

random walks over ordinary random walks.

Proposition 1. Let G be any graph, and let L be the normalized graph Laplacian and L̃ the non-backtracking
Laplacian defined above. Then we have

λ1(L̃) ≤ λ1(L).

Proof. Let f : V (G) → R be the function orthogonal to D1 that achieves the minimum in the Rayleigh
quotient for L. So ∑

v∈V (G)

f(v)dv = 0 and λ1(L) =

∑
uv∈E(G)(f(u)− f(v))2∑

v∈V (G) f(v)2dv
.

Define f ′ :
−→
E → R by f ′(u, v) = f(u). Observe that∑

(u,v)∈
−→
E (G)

f ′(u, v) =
∑

(u,v)∈
−→
E (G)

f(u) =
∑

u∈V (G)

f(u)du = 0.
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So f ′ is orthogonal to 1. Therefore

λ1(L̃) ≤ R̃(f ′) =
1

2

∑
(u,v)∈

−→
E (G)

∑
(v,w)
w 6=u

(f ′(u, v)− f ′(v, w))
2
P̃ ((u, v), (v, w))

∑
(u,v)∈

−→
E (G)

f ′(u, v)2

=
1

2

∑
(u,v)

∑
(v,w)
w 6=u

(f(u)− f(v))
2 1
dv−1∑

(u,v)

f(u)2

=
1

2

∑
(u,v)

(f(u)− f(v))
2

∑
u∈V (G)

f(u)2du

=

∑
{u,v}∈E(G)

(f(u)− f(v))
2

∑
u∈V (G)

f(u)2du
= R(f) = λ1(L).

2.4 Ihara’s Theorem

The transition probability matrix P̃ defined above is a weighted version of an important matrix that comes
up in the study of zeta functions on finite graphs. We define B to be the 2m × 2m matrix with rows and
columns indexed by the set of directed edges of G as follows.

B((u, v), (x, y)) =

{
1 if v = x and y 6= u

0 otherwise.

The matrix B can be thought of as a non-backtracking edge adjacency matrix, and the entries of Bk

describe the number of non-backtracking walks of length k from one directed edge to another, in the same
way that the entries of powers of the adjacency matrix, Ak, count the number of walks of length k from one
vertex to another. The expression det(I − uB) is closely related to zeta functions on finite graphs which. A
result known as Ihara’s Theorem further relates such zeta functions to a determinant expression involving
the adjacency matrix. While we will not go into zeta functions on finite graphs in this paper, the following
result equivalent to Ihara’s theorem will be of interest to us.

Ihara’s Theorem. For a graph G on n vertices and m edges, let B be the matrix defined above, let A denote
the adjacency matrix, D the diagonal degree matrix, and I the identity. Then

det(I − uB) = (1− u2)m−n det(I − uA+ u2(D − I)).

We remark that the expression det(I − uB) is the characteristic polynomial of B evaluated at 1/u. In
this way the complete spectrum of the matrix B is given by the reciprocals of the roots of the polynomial
(1− u2)m−n det(I − uA+ u2(D − I)). Numerous proofs of this result exist in the literature [9, 8, 3, 15, 10].
For completeness, we will include here an elementary proof that uses only basic linear algebra. To the
knowledge of the author, this proof is original. To begin, we will need a lemma giving a well-known property
of determinants.

Lemma 3. Let M be a k × l matrix, N a l × k matrix, and A an invertible k × k matrix. Then

det(A+MN) = det(A) det(I +NA−1M).

7



Proof. Note that [
I N
0 I

] [
I 0

A−1M A−1(A+MN)

] [
I −N
0 I

]
=

[
I +NA−1M 0

A−1M I

]
.

Taking determinants of both sides gives the result.

Proof of Ihara’s Theorem. Define S to be the 2m× n matrix

S((u, v), x) =

{
1 if v = x

0 otherwise

so S is the endpoint incidence operator. Define T to be the n× 2m matrix given by

T (x, (u, v)) =

{
1 if u = x

0 otherwise

so T is the starting point incidence operator. We will also define τ to be the 2m × 2m matrix giving the
reversal operator that switches a directed edge with its opposite. That is,

τ((a, b), (c, d)) =

{
1 if b = c, a = d

0 otherwise

Now, a straightforward computation verifies that

B = ST − τ, (1)

A = TS, (2)

and
D = TτS. (3)

Then from Lemma 3 and (1) we obtain

det(I − uB) = det(I − u(ST − τ))

= det(I + uτ − uST )

= det(I + uτ) det(I − uT (I + uτ)−1S)

where u is chosen so that the matrix I + uτ is inverivle.
Observe that τ2 = I, so that (I−uτ)(I+uτ) = (1−u2)I, so (I+uτ)−1 = 1

1−u2 (I−uτ). Thus, applying
(2) and (3), the above becomes

det(I − uB) = det(I + uτ) det(I − u

1− u2
T (I − uτ)S)

= det(I + uτ) det(I − u

1− u2
(TS − uTτS))

= det(I + uτ)
1

(1− u2)n
det((1− u2)I − uA+ u2D)

= (1− u2)m−n det(I − uA+ u2(D − I))

where the last step is obtained by observing that det(I + uτ) = (1 − u2)m. This is the desired equality for
our choice of u. This is a polynomial of finite degree in u, and there are infinitely many u that make I + uτ
invertible, so the equality holds for all u.
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3 A weighted Ihara’s theorem

In this section, we will give a weighted version of Ihara’s Theorem. The proof presented in the previous
section does not lend itself well to generalization to the weighted setting, so we will not follow that strategy.
Rather, we will follow the main ideas of the proof of Ihara’s theorem found in [10] to obtain our weighted
version of this result.

To each vertex x ∈ V (G) we assign a weight w(x) 6= 0, and let W be the n × n diagonal matrix given
by W (x, x) = w(x). Define S and T to be the matrices from the proof of Ihara’s Theorem in the previous
section, and define S̃ = SW and T̃ = WT . So S̃ is the weighted version of the endpoint vertex-edge incidence
operator, and T̃ is the weighted version of the starting point vertex-edge incidence operator. Define τ from
the proof of Ihara’s Theorem, and define τ̃ to be the weighted version of τ , that is

τ̃((a, b), (c, d)) =

{
w(b)2 if b = c, a = d

0 otherwise

Finally, define the 2m× 2m matrix P̃ by

P̃ ((a, b), (c, d)) =

{
w(b)2 if b = c, a 6= d

0 otherwise.
(4)

Then P̃ is the weighted version of the non-backtracking edge adjacency matrix B seen above in Ihara’s
theorem, with w(b)2 the weight on edge (a, b). We remark that if we take w(x) = 1/

√
dx − 1 for each

x ∈ V (G), then P̃ is exactly the transition probability matrix for a non-backtracking random walk on the
directed edges of G defined in Section 2.2. This case is our primary focus, but we note that our computations
apply for any arbitrary positive weights assigned to the vertices.

Now, a straightforward computation verifies that

P̃ = S̃T̃ − τ̃ (5)

and
T̃ S̃ = WAW. (6)

We will define Ã = WAW . Note that Ã(u, v) = w(u)w(v), so this is the adjacency matrix for the weighted
graph with edge weights w(u)w(v). The matrix Ã is similar to W 2A, so when w(x) = 1/

√
dx − 1, this is the

matrix whose entries are the transition probabilities for a single step of a non-backtracking random walk G.
From (5) and (6) we obtain the following equations.

(I − uP̃ )(I − uτ̃) = I − uS̃T̃ + u2S̃T̃ τ̃ − u2τ̃2 (7)

(I − uτ̃)(I − uP̃ ) = I − uS̃T̃ + u2τ̃ S̃T̃ − u2τ̃2 (8)

We define D̃ to be the diagonal n × n matrix D̃(x, x) =
∑
v∼x w(x)2w(v)2 and observe that T̃ τ̃ S̃ = D̃.

It then follows that (
(I − uP̃ )(I − uτ̃) + u2τ̃2

)
S̃ = S̃

(
I − uÃ+ u2D̃

)
(9)

T̃
(

(I − uτ̃)(I − uP̃ ) + u2τ̃2
)

=
(
I − uÃ+ u2D̃

)
T̃ (10)

We remark that in the proof in [10], they use the unweighted versions of each of these matrices, so τ rather
than τ̃ yields τ2 = I. Hence S and T will factor through τ2, so that the u2τ2 term stays on the right hand side
of the above equations. Here we have τ̃2 is a 2m× 2m diagonal matrix with τ̃2((u, v), (u, v)) = w(u)2w(v)2.
Depending on the w(u)’s this matrix might not behave nicely with respect to the action of S and T , hence
the extra terms that need to stay on the left-hand side above. This difference from [10] is one of the primary
difficulties in generalizing this result.

We will now perform a change of basis to see how the operator (I − uP̃ )(I − uτ̃) + u2τ̃2 behaves with

respect to the decomposition of the space of functions f :
−→
E → C as the direct sum of Image S̃ and Ker S̃T .

9



To this end, fix any basis of the subspace Ker S̃T , and let R be the 2m × (2m − n) matrix whose columns
are the vectors of that basis (note that S̃ has rank n). Define M =

[
S̃ R

]
. This will be our change of basis

matrix. To obtain the inverse of M , form the matrix

[
(S̃T S̃)−1S̃T

(RTR)−1RT

]
and observe that[

(S̃T S̃)−1S̃T

(RTR)−1RT

] [
S̃ R

]
=

[
(S̃T S̃)−1S̃T S̃ (S̃T S̃)−1S̃TR

(RTR)−1RT S̃ (RTR)−1RTR

]
=

[
In 0
0 I2m−n

]
.

Therefore we have that M−1 =

[
(S̃T S̃)−1S̃T

(RTR)−1RT

]
.

Applying this change of basis, direct computation, applying (7) and (9), yields[
(S̃T S̃)−1S̃T

(RTR)−1RT

](
(I − uP̃ )(I − uτ̃) + u2τ̃2

) [
S̃ R

]
=

[
I − uÃ+ u2D̃ −uT̃R+ u2T̃ τ̃R

0 I

]
. (11)

Therefore, the matrix (I−uP̃ )(I−uτ̃)+u2τ̃2 is similar to the matrix

[
I − uÃ+ u2D̃ −uT̃R+ u2T̃ τ̃R

0 I

]
,

so they have the same determinant. Thus, we have proven a weighted version of Ihara’s Theorem, which we
state as the following.

Theorem 4. Let G be a graph on n vertices and m edges, and assign an arbitrary positive weight w(x) > 0
assigned to each vertex x. Let P̃ be the 2m× 2m weighted non-backtracking edge adjacency matrix with edge
weight w(v)2 assigned to edge (u, v) as defined in (4). Let Ã be the weighted n × n adjacency matrix with
edge weight w(u)w(v) assigned to each edge. Let τ̃ be the weighted reversal operator defined above, and D̃
the n× n diagonal matrix with D̃(x, x) =

∑
v∼x w(x)2w(v)2 as defined above. Then we have

det
(

(I − uP̃ )(I − uτ̃) + u2τ̃2
)

= det(I − uÃ+ u2D̃).

As a corollary to the decomposition in equation (11), if we take w(x) = 1 for all x, then τ̃2 = I, and the
usual unweighted Ihara’s Theorem falls out immediately.

If we take w(x) = 1√
dx−1

, then P̃ becomes the transition probability matrix for the non-backtracking

walk on directed edges, and Ã(u, v) = 1√
(du−1)(dv−1)

. This is clearly similar to the matrix (D − I)−1A. So

in this case Ã is similar to the matrix whose entries are the transition probabilities for a single step in a
non-backtracking random walk. (Note, however, that (D − I)−1A is not the transition probability matrix
for a non-backtracking random walk.)

4 The mixing rate of non-backtracking random walks

4.1 An alternate proof for regular graphs

Applying the results of the previous section to regular graphs yields a different proof of the results from [1]
on the mixing rate of non-backtracking random walks on regular graphs.

Let G be a regular graph where each vertex has degree d. Then choosing w(x) = 1/
√
d− 1 for all x yields

gives us that P̃ is the transition probability matrix for the non-backtracking random walk on G. We remark
that, from the previous section, we have τ̃ = 1

d−1τ , τ̃2 = 1
(d−1)2 I, Ã = 1

d−1A, and D̃ = d
(d−1)2 I. Therefore,

the decomposition in (11) becomes

(I − uP̃ )(I − uτ̃) ∼

[
I − u

d−1A+ u2

d−1I ∗
0

(
1− u2

(d−1)2

)
I

]
.

Noting that τ̃ can be thought of as block diagonal with m blocks of the form

[
0 1/(d− 1)

1/(d− 1) 0

]
,

then taking determinants, we find that

det(I − uP̃ )

(
1− u2

(d− 1)2

)m
=

(
1− u2

(d− 1)2

)2m−n

det

(
I − u

d− 1
A+

u2

d− 1
I

)

10



and hence

det(I − uP̃ ) =

(
1−

(
u

d− 1

)2
)m−n n∏

i=1

(
1− λi

d− 1
u+

1

d− 1
u2
)

where the product ranges over all the eigenvalues λi of the adjacency matrix A for i = 1, · · · , n. As remarked
previously, the left hand side det(I − uP̃ ) is the characteristic polynomial of P̃ evaluated at 1/u, so from
this we obtain the spectrum of P̃ .

Theorem 5. Let G be a d-regular graph with m edges and n vertices, and let P̃ be the 2m× 2m transition
probability matrix for a non-backtracking random walk as defined above. Then the eigenvalues of P̃ are

± 1

d− 1
,
λi ±

√
λ2i − 4(d− 1)

2(d− 1)
, (i = 1, · · · , n)

where λi ranges over the eigenvalues of the adjacency matrix A, and ±1/(d−1) each have multiplicity m−n.

From this we obtain the result from [1].

Corollary 1. Let G be a non-bipartite, connected d-regular graph on n vertices for d ≥ 3, and let ρ and ρ̃
denote the mixing rates of simple and non-backtracking random walk on G, respectively. Let λ be the second
largest eigenvalue of the adjacency matrix of G in absolute value.

If λ ≥ 2
√
d− 1, then

d

2(d− 1)
≤ ρ̃

ρ
≤ 1.

If λ < 2
√
d− 1 and d = no(1), then

ρ̃

ρ
=

d

2(d− 1)
+ o(1).

Proof. We remark that the expression
λ+
√
λ2−4(d−1)
2(d−1) is precisely the expression derived by Alon et al. in

[1] for the mixing rate of a non-backtracking random walk on a regular graph, and we may proceed with
the analysis of the convergence rate in the same way they do. The convergence rate is given by the second
largest eigenvalue of P̃ , which will be obtained setting λ to be the second largest eigenvalue of A. Let µ be
this eigenvalue.

For 2
√
d− 1 ≤ λ ≤ d we have

λ

2(d− 1)
<
λ+

√
λ2 − 4(d− 1)

2(d− 1)
≤ λ

d
.

So λ
2(d−1) ≤ µ ≤ λ

d . Since λ
d is the second largest eigenvalue of the transition probability matrix P for the

usual walk, the first case follows.
For λ < 2

√
d− 1, µ is complex, and we obtain

|µ|2 =

∣∣∣∣∣λ+
√
λ2 − 4(d− 1)

2(d− 1)

∣∣∣∣∣
2

=

(
λ

2(d− 1)

)2

+

(√
4(d− 1)− λ2

2(d− 1)

)2

=
1

d− 1

so |µ| = 1√
d−1 .

We remark that in this case that λ < 2
√
d− 1, a classic result of Nilli ([14]) related to the Alon-Boppana

Theorem implies that we are never too far below this bound. Indeed, the result states that if G is d-regular

with diameter at least 2(k + 1), then λ ≥ 2
√
d− 1− 2

√
d−1−1
k+1 . With the restriction that d = no(1), then the

diameter is at least (1− o(1)) logd−1 n, and so λ > (1− o(1))2
√
d− 1, and the second case follows.
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4.2 Biregular graphs

A graph G is called (c, d)-biregular if it is bipartite and each vertex in one part of the bipartition has degree c,
and each vertex of the other part has degree d. In the weighted Ihara’s Theorem, we have τ̃2((u, v), (u, v) =

1
(du−1)(dv−1) , so in the case where G is (c, d)-biregular, then we have τ̃2 = 1

(c−1)(d−1)I. So since τ̃2 is a

multiple of the identity, as with regular graphs, in the decomposition (11), the u2τ̃2 term can be taken to the
other side of the equation. Note that D̃ is diagonal with D̃(u, u) =

∑
v∼u

1
(du−1)(dv−1) = c

(c−1)(d−1) if u has

degree c, or d
(c−1)(d−1) if u has degree d. Then D̃ − τ̃2 is diagonal with entry c

(c−1)(d−1) −
1

(c−1)(d−1) = 1
d−1

or d
(c−1))(d−1) −

1
(c−1)(d−1) = 1

c−1 . Hence the decomposition (11) becomes

(I − uP̃ )(I − uτ̃) ∼

I − u
[

0 1
c−1M

1
d−1M

T 0

]
+ u2

[ 1
d−1I 0

0 1
c−1I

]
∗

0
(

1− u2

(c−1)(d−1)

)
I


where A =

[
0 M
MT 0

]
is the adjacency matrix of G.

Note that τ̃ is similar to a block diagonal matrix with blocks of the form

[
0 1/(c− 1)

1/(d− 1) 0

]
, so

taking the determinant above we obtain

det(I − uP̃ )

(
1− u2

(c− 1)(d− 1)

)m
=(

1− u2

(c− 1)(d− 1)

)2m−n

det

(
I − u

[
0 1

c−1M
1
d−1M

T 0

]
+ u2

[ 1
d−1I 0

0 1
c−1I

])
so

det(I − uP̃ ) =

(
1 +

u2

(c− 1)(d− 1)

)m−n
det

(1 + u2

d−1

)
I u

c−1M

u
d−1M

T
(

1− u2

c−1

)
I


We will look at the matrix

(1 + u2

d−1

)
I u

c−1M

u
d−1M

T
(

1 + u2

c−1

)
I

. Suppose the first part in the bipartition of G has

size r, and the second part has size s, where without loss of generality, r > s. By row reduction, this has
the same determinant as the matrix

(
1 + u2

d−1

)
I u

c−1M

0
(

1− u2

c−1

)
I − 1

1+ u2

d−1

u2

(c−1)(d−1)M
TM


which is (

1 +
u2

d− 1

)r
det

((
1 +

u2

c− 1

)
I − 1

1 + u2

d−1

1

(c− 1)(d− 1)
MTM

)

=

(
1 +

u2

d− 1

)r−s
det

((
1 +

u2

c− 1

)(
1 +

u2

d− 1

)
I − u2

(c− 1)(d− 1)
MTM

)
.

Now, the above determinant is given by the product of the eigenvalues of the matrix. Observe that if λ
is an eigenvalue of the adjacency matrix A, then λ2 is an eigenvalue of MTM . Therefore, in all we have

det(I − uP̃ ) =

(
1− u2

(c− 1)(d− 1)

)m−n(
1 +

u2

d− 1

)r−s
×

s∏
i=1

((
1 +

u2

c− 1

)(
1 +

u2

d− 1

)
− λ2iu

2

(c− 1)(d− 1)

)
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where the product ranges over the s largest eigenvalues of A (or in other words, λ2i ranges of the s eigenvalues
of MTM). Therefore the characteristic polynomial is given by

det(uI − P̃ ) =

(
u2 − 1

(c− 1)(d− 1)

)m−n(
u2 +

1

d− 1

)r−s
×

s∏
i=1

((
u2 +

1

c− 1

)(
u2 +

1

d− 1

)
− λ2iu

2

(c− 1)(d− 1)

)
.

Thus we can explicitly obtain the eigenvalues of P̃ .

Theorem 6. Let G be a (c, d)-biregular graph, let the part with degree c have size r, and the part with degree
d have size s, and assume without loss of generality that r ≥ s. Suppose G has n vertices and m edges. Then
the eigenvalues of the non-backtracking transition probability matrix P̃ defined above are

± 1√
(c− 1)(d− 1)

with multiplicity m− n each , ± 1√
d− 1

i with multiplicity r − s each

as well as the 4 roots of the polynomial

u4 +

(
1

(c− 1)
+

1

(d− 1)
− λ2i

(c− 1)(d− 1)

)
u2 +

1

(c− 1)(d− 1)

for each value of λi ranging over the s positive eigenvalues of the adjacency matrix A. These roots are

±

√
λ2i − (c− 1)− (d− 1)±

√
(λ2i − (c− 1)− (d− 1))2 − 4(c− 1)(d− 1)

2(c− 1)(d− 1)
, (i = 1, · · · , s). (12)

We can now give a version of Corollary 1 for (c, d)-biregular graphs.

Corollary 2. Let G be a (c, d)-biregular graph with c, d ≥ 2. Let ρ = λ2/cd be the square of the second
largest eigenvalue of the transition probability matrix P for a random walk on G, and let ρ̃ = |µ|2 be the
square of the second largest modulus of an eigenvalue of P̃ . Let λ be the second largest eigenvalue of the
adjacency matrix of G. Then we have the following cases.

If λ >
√
c− 1 +

√
d− 1, then

cd

2(c− 1)(d− 1)

(
1− c− 1 + d− 1

c− 1 + 2
√

(c− 1)(d− 1) + d− 1

)
≤ ρ̃

ρ
≤ 1.

If λ <
√
c− 1 +

√
d− 1 and both c and d are no(1), then

ρ̃

ρ
≤ cd

2(c− 1)(d− 1)
+ o(1).

Proof. We need to compare the eigenvalues of P̃ to the eigenvalues of P = D−1A =

[
0 1

cM
1
dM

T 0

]
. Note

that for λ an eigenvalue of A, we have [
0 M
MT 0

] [
x
y

]
= λ

[
x
y

]
which implies My = λx and MTx = λy. Then observe[

0 1
cM

1
dM

T 0

][ 1√
c
x

1√
d
y

]
=

[
1
c
√
d
My

1
d
√
c
MTx

]
=

λ√
cd

[
1√
c
x

1√
d
y

]
,

so the eigenvalues of P are λ/
√
cd where λ ranges over the eigenvalues of A. Note that the largest eigenvalue

of A is
√
cd.
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Let µ equal the expression (12), and consider the following cases.
If
√
c− 1+

√
d− 1 ≤ λ ≤

√
cd, then µ is real. Direct computation verifies that, evaluating the expression

(12) at λ =
√
cd yields µ = 1 = λ/

√
cd and µ < λ/

√
cd for λ in this range. Therefore, in this case the

eigenvalue of P̃ always has smaller absolute value than the corresponding eigenvalue of P , implying ρ̃ ≤ ρ.
The lower bound follows from (12) ignoring the square root inside. Thus the first case follows.

If λ <
√
c− 1 +

√
d− 1, then µ is complex, and direct computation shows

|µ|2 =
1√

(c− 1)(d− 1)
,

so

|µ| = 1

((c− 1)(d− 1))1/4

A version of the Alon-Boppana Theorem exists for (c, d)-biregular graphs as well, proven by Feng and Li
in [6] (see also [12]).

Theorem 7 ([6]). Let G be a (c, d)-biregular graph, and let λ be the second largest eigenvalue of the adjacency
matrix A of G. Then

λ2 ≥
(√

c− 1 +
√
d− 1

)2
−

2
√

(c− 1)(d− 1)− 1

k

where the diameter of G is greater than 2(k + 1).

Observe that certainly the diameter is at least logcd n, so that the condition on the degrees and Theorem
7 imply that

λ2 ≥ 2
√

(c− 1)(d− 1)(1− o(1)).

As |µ|2 = 1√
(c−1)(d−1)

, so this gives the result for the second case.

5 Conclusion

We have looked at non-backtracking random walks from the point of view of walking along directed edges.
For the special cases of regular and biregular graphs, our weighted version of Ihara’s Theorem (Theorem
4) has given us the comlete spectrum of the transition probability matrix for the non-bakctracking walk,
allowing for easy comparison between the non-backracking mixing rate, and the mixing rate of the usual
random walk. Clearly, it would be desirable to extend these reults to more general classes of graphs. The
difficulty in applying Theorem 4 directly is with the term involving τ̃2. As seen in section 3, τ̃2 is a 2m×2m
diagonal matrix with

τ̃2 ((u, v), (u, v)) =
1

(du − 1)(dv − 1)
.

In the case of regular and biregular graphs, this expression is constant (we get 1/(d− 1) and 1/(c− 1)(d− 1)
for the d-regular and (c, d)-biregular cases respectively), making τ̃2 simply a multiple of the identity. This
allows the difficulty to be handled relatively easily. Regular and biragular graphs are in fact the only graphs
for which τ̃2 is a multiple of the identity, suggesting that these exact techniques will not work as nicely on
more general classes of graphs. If a cleaner version of Theorem 4 could be proven, then, aside from being in-
teresting in its own rite, it could potentially be used to extend our results on non-backtracking random walks.
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