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Abstract

In chapter 1, we develop a novel two-dimensional wavelet decomposition to decom-

pose spatial surfaces into different frequencies without imposing any restrictions on the

form of the spatial surface. We illustrate the effectiveness of the proposed decomposi-

tion on satellite based PM2.5 data, which is available on a 1km by 1km grid across Mas-

sachusetts. We then apply our proposed decomposition to study how different frequen-

cies of the PM2.5 surface adversely impact birth weights in Massachusetts.

In chapter 2, we study the impact of monitor locations on two stage health effect

studies in air pollution epidemiology. Typically in these studies, estimates of air pollution

exposure are obtained from a first stage model that utilizes monitoring data, and then a

second stage outcome model is fit using this estimated exposure. The location of the

monitoring sites is usually not random and their locations can drastically impact inference

in health effect studies. We take an in-depth look at the specific case where the location of

monitors depends on the locations of the subjects in the second stage model and show that

inference can be greatly improved in this setting relative to completely random allocation

of monitors.

In chapter 3, we introduce a Bayesian data augmentation method to control for con-

founding in large administrative databases when additional data is available on con-

founders in a validation study. Large administrative databases are becoming increasingly

available, and they have the power to address many questions that we otherwise couldn’t

answer. Most of these databases, while large in size, do not have sufficient information

on confounders to validly estimate causal effects. However, in many cases a smaller, val-

idation data set is available with a richer set of confounders. We propose a method that
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uses information from the validation data to impute missing confounders in the main

data and select only those confounders which are necessary for confounding adjustment.

We illustrate the effectiveness of our method in a simulation study, and analyze the effect

of surgical resection on 30 day survival in brain tumor patients from Medicare.
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1.1 Introduction

The epidemiologic literature investigating the health effects of air pollution has become

vast, as countless studies have found associations between ambient levels of air pollu-

tion and a variety of adverse health outcomes (Dockery et al. (1993); Samet et al. (2000);

Dominici et al. (2006) and a review of the literature is provided by Dominici et al. (2003);

Pope III (2007); Breysse et al. (2013)). Despite the large number of studies investigating

the relationship between air pollution exposures and human health, there still exist criti-

cal and unanswered questions that need to be addressed for the establishment of new reg-

ulations. Currently the EPA regulates total PM2.5 levels, however, PM2.5 is comprised of

many different components and sources of pollution . An important question is the extent

to which various sources of pollution adversely affect health, knowledge of which could

lead to more effective targeted regulations. Establishing the extent to which fine scale,

local pollution or long range regional transport pollution is associated with health effects

would be very useful in planning future air regulations on lowering air pollution stan-

dards. Furthermore, isolating different sources of air pollution would allow researchers

to gain valuable information regarding the chemical composition of PM2.5 in different

regions, and potentially quantify the health impacts of these separate components.

There have been very few attempts to jointly model the health effects of long range pol-

lution and local pollution sources such as traffic, though it remains a crucial question in

air pollution epidemiology. Maynard et al. (2007) used a variety of atmospheric, weather,

and land use variables to predict black carbon levels for individuals in the Boston area.

Black carbon (BC) is known to be highly associated with local traffic pollution. Sulfates

are known to be spatially homogenous and represent long range pollution sources such

as coal fired power plants, and the investigators examined the joint health effects of these

two exposures. Other articles have decomposed air pollution into local and regional

sources without subsequently examining their respective effects on health. Moreno et al.

(2009) examined the differences in hourly fluctuations of traffic and urban background

components of PM10 in Santander, Spain. Brochu et al. (2011) used quantile regression

to estimate the regional and local components of BC in Boston and investigated how the
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sources of BC changed both across the year and within a given day.

Due to recent advancements in PM2.5 exposure estimation, we no longer need to rely

solely on PM2.5 monitors, as remote sensing satellite data can now yield reliable PM2.5

estimates on a 1km by 1km grid (Kloog et al., 2014). These new estimates of PM2.5 are on

a scale fine enough to allow novel approaches to spatial decomposition based on image

analysis techniques. We show such decompositions of PM2.5 can yield insights into the

sources of pollution most associated with health effect estimates. A variety of methods

have been proposed to decompose surfaces into different spatial scales, two of the most

common such techniques are wavelet decompositions and Fourier decompositions. For

the remainder of the manuscript we focus discussion on wavelets. Due to the existence

of point and line sources of pollution, such as interstates and other roadways, the surface

of PM2.5 will contain many spikes. Wavelets are well known to be a useful basis func-

tion for preserving sharp features of data (Petrosian and Meyer, 2013), and many spike

detection algorithms are based on wavelet transforms (Hulata et al., 2002; Nenadic and

Burdick, 2005). One of the main goals of the study is to characterize the impact of traffic

pollution sources on health and therefore it is important to adequately capture, and not

over smooth, these spikes in the data. Moreover, wavelets decompose a spatial surface

into multiple spatial scales that are orthogonal, which allows us to avoid multicolinearity

and the resulting instability of effect estimates in a health effects model.

Standard two-dimensional Wavelet decompositions typically require that the surface be-

ing decomposed is rectangular and the points are uniformly spaced. An additional re-

quirement of standard wavelet analysis is that the points are dyadic, meaning that the

number of points on the surface grid is 2l where l is some positive integer, although

”padding” the practice of adding points to the surface can be used to satisfy this require-

ment. Our interest focuses on decomposing a spatial surface of PM2.5, a setting in which

none of these conditions are met. The coastline of the U.S is far from rectangular. There

is no reason to think our data would be dyadic, and the satellite data yielding the PM2.5

estimates is not on a perfectly uniform grid. Previous work has avoided the dyadic as-

sumption as well as the uniform grid assumption through a variety of techniques such as

the lifting scheme and interpolation (Sweldens, 1998; Xiong et al., 2006; Pollock and Cas-
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cio, 2007; Gupta et al., 2010). Others have generalized Wavelet theory using radial basis

functions, which are not constrained to lie on a uniform grid (Buhmann, 1995; Chui et al.,

1996). To the best of our knowledge, however, none of these have provided a practical

way of decomposing a surface that is not rectangular. In this paper we develop a two-

dimensional extension to work originally proposed in Wand et al. (2011), which relaxes

these assumptions of a standard wavelet analysis. The advantages of this method include

its simple application, its ability to scale to large spatial surfaces, and its ability to avoid

restrictive assumptions about the nature of our surface.

In this paper we will use the proposed wavelet based method to decompose daily sur-

faces of PM2.5 across New England and use the components of the resulting decomposed

surface as covariates in a health effects model relating birth weight in Massachusetts to

scale-specific PM2.5. Section 1.2 introduces the pollution data and motivating scientific

problem. Section 1.3 introduces the proposed method for performing 2d wavelet decom-

positions on irregular grids. Section 1.4 illustrates the decomposition in the PM2.5 data.

Section 1.5 applies the method to analyze the association between scale-specific PM2.5 and

birthweights in Massachusetts, and Section 1.6 concludes with further discussion.

1.2 PM2.5 and Birthweights in Massachusetts

1.2.1 Exposure data

Typically PM2.5 is measured at monitoring stations, which are located sporadically across

the United States. In early health effect studies, conditional on the monitoring values

exposure to PM2.5 was assigned to be the value from the nearest monitor or a weighted

average of monitors within a pre-defined range. In recent years monitoring data has been

augmented with geographical and remote sensing information to yield individual, resi-

dence specific estimates of PM2.5 levels. Specifically, in previous work we have combined

ideas from land use regression and mixed models, and incorporated satellite aerosol op-

tical depth (AOD) measurements to obtain widespread estimates of PM2.5 at a 1 x 1 km

resolution (Kloog et al., 2014). Satellite AOD is a measure of light attenuation in the atmo-

spheric column that is affected by ambient conditions and can be used to help estimate
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PM2.5. Satellite estimates of PM2.5 on a 1km grid are available daily from 2003 to 2011

for the Northeastern United States and they give an accurate estimate of the surface of

PM2.5 in this area. Kloog et al. (2014) showed the R2 values between predictions and true

values observed at monitors is around 0.9 indicating high predictive accuracy, although

this only applies to areas with monitors and therefore doesn’t give much insight into the

performance of the predictions in rural areas. Despite potential drawbacks of the surfaces

being estimated, the fine scale nature of the exposure surface allows us to apply our pro-

posed decomposition method and examine the effects of air pollution at a wide range of

spatial scales.

1.2.2 Birth weights

Many epidemiological studies have established relationships between PM2.5 and adverse

birth outcomes. Glinianaia et al. (2004); Dadvand et al. (2013) provide a review of the lit-

erature. In Massachusetts, Kloog et al. (2012) reported an association between PM2.5 and

birth weights using Satellite AOD based PM2.5 estimates on a 10km by 10km grid. We ex-

tend this work by using the finer scale, 1km satellite based PM2.5 estimates as well as esti-

mating associations between birthweight and specific spatial-scales of variation of PM2.5

exposure. Kloog et al. (2012) provided specific details of the birthweight data. Briefly,

the study population includes all singleton live births from the Massachusetts Birth Reg-

istry from January 1st, 2000 to December 31st, 2008. We restrict attention to births after

October 1st, 2003 as the satellite based PM2.5 data is only available from 2003 onwards.

The data set contains 332,717 singleton births and the geocoded address of each mother

at the time of birth. This data combined with the satellite data described above and our

proposed Wavelet decomposition as described in section 1.3 should provide insight into

the different health impacts of local and regional sources of PM2.5.
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1.3 Wavelet decomposition for irregular grids

1.3.1 Standard wavelet analysis

To motivate our approach and establish notation, we begin with a standard one-

dimensional Wavelet decomposition. We will then extend the standard Wavelet decom-

positions to that seen in Wand et al. (2011) which removes the issue of the data lying on a

uniform grid. Finally, we will extend this approach to the two dimensional setting as our

approach is a two-dimensional extension from that seen in Wand et al. (2011). For now,

imagine that we have data, y, which is a function of x, dyadic, and equally spaced on the

interval [0,1). In this case we have R = 2L equally spaced data points, which leads to K

= R − 1 basis functions. We are trying to represent our data in the following form as the

sum of Wavelet basis functions

y = f(x)

= θ0 +
K∑
k=1

θkz
u
k (x), (1.1)

where y is our data, and zk are wavelet basis functions. Wavelet coefficients have a nice

interpretation in terms of scale and location of the function they are trying to represent. At

level l there are 2l−1 basis functions, which move from left to right in terms of the support

of each function. The lower level basis functions represent low frequency changes in our

function, while the higher level basis functions represent the higher frequency changes

in the function. Going back to our motivating example of PM2.5 this means that the

lower level functions will capture smooth, regionally varying trends in pollution, while

the higher level functions will capture local PM2.5 changes such as interstates. Therefore

our basis functions are zu1 () which is the 1 function and represents level 1, zu2 () and zu3 ()

which represent level 2, and so on for levels 3 to L. The above formulation can be rewritten

as

y = Wθ, (1.2)
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where row i of the W matrix takes the following form

[
1 zu1 (

i− 1

R
) ... zuR−1(

i− 1

R
)

]
. (1.3)

In this case, determination of θ is trivial since the orthogonality of W leads to

θ = W Ty. (1.4)

A variety of standard wavelet basis functions can be used and for this paper we will stick

to the family of Debauchies wavelets, however, this choice is not of crucial importance for

illustrating the method.

1.3.2 One dimensional penalized wavelets

Now that we have introduced some preliminary notation and the standard setup for this

problem we can move to the case where the data is not on a regular grid. What this means

is that we now have data, yifori = 1...n observed at locations xifori = 1..nwhere we have

imposed no restrictions about the location and dimension of y. We can define a new set

of basis coefficients as

zk(x) = zuk (
x− a
b− a

), k = 1...K, (1.5)

where a and b are the minimum and maximum of x respectively, so we are essentially

normalizing our data to lie in the interval [0,1). Now the problem lies in estimating zuk () at

arbitrary points within the unit interval, since standard Wavelet basis functions using the

discrete wavelet transform can only be evaluated via a recursive algorithm on a dyadic

grid. The trick to doing this proposed by Wand et al. (2011) is to define a very fine grid

of points on the unit interval, with the number of points in our grid being a multiple of

2. We are able to evaluate the basis functions on this grid and we will pick this grid to

include a large number of points such as R=16,384 so that any of our data points will lie
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very closely between two grid points. We could then calculate the value of zuk () at any

point in the interval as a linear interpolation of the two nearest grid points as

zuk (x) ≈ {1− (xR− bxRc)} zuk
(
bxRc
R

)
+ (xR− bxRc)zuk

(
bxRc+ 1

R

)
, (1.6)

and using this we can define a matrix Z as

Z =


1 z1(x1) . . . zK(x1)
1 z1(x2) . . . zK(x2)
...

...
...

1 z1(xn) . . . zK(xn)

 (1.7)

Now that we have defined wavelet basis functions and how to evaluate them at arbitrary

locations, we simply need to estimate the coefficients corresponding to our basis func-

tions. This can be done very easily in any standard regression framework, since we are in

the following linear model situation

y = Zθ + ε, (1.8)

where ε is a mean zero vector of noise. The term ’penalized wavelets’ refers to the sit-

uation where we find the wavelet basis coefficients using a penalized regression frame-

work such as LASSO or ridge regression. For now we will estimate the parameters using

LASSO as this turns out to be a better penalty for our pollution example in section 5. Our

estimate of θ is defined by

θ̂ = arg min

{
n∑
i=1

(yi − Ziθ)2
}

subject to
∑
j

|θj| < c, (1.9)

where c is a tuning parameter that controls the amount of penalization (Tibshirani, 1996).

Now we’ve shown how to represent a function with wavelet basis functions on any grid

and any number of data points. Using this we can decompose a function to investigate

how a function changes at different frequencies, by only looking at the elements of θ
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that correspond to the scale we are interested in. Our motivating example, however, is

the surface of air pollution in New England and therefore requires a two dimensional

wavelet decomposition, which we detail in the following sections.

1.3.3 Standard two dimensional wavelets

Again let us assume we are in the standard framework for wavelets where we have

dyadic data on a uniform grid, however, now our data lies on a two dimensional sur-

face. Our data, y, now takes the form of a 2L by 2L matrix and we wish to decompose

it into different frequencies. Performing a two dimensional wavelet decomposition of

this data is analogous to performing a one dimensional wavelet transform on the rows

of y and then performing another one dimensional wavelet transform on the columns of

the resulting matrix. Intuitively in a two dimensional plane this is like doing a wavelet

transform in one direction (x1) and then doing it in the second direction (x2). This can be

written out as

y = W x1θTW x2T , (1.10)

where in this setting, W x1 = W x2 and both are defined in the same manner as our W

matrix from the one dimensional section. We keep the two matrices separated by x1 and

x2 at the moment for generalizability and to maintain notation in the following section

when we introduce two dimensional wavelets for non dyadic and irregular data patterns.

One thing to note is any row a and column b of y can be written as

yab =
2L∑
i=1

2L∑
j=1

W x1
ai θijW

x2
bj , (1.11)

and this is important because it shows that the data is linear in θ and quadratic in the W

matrices, suggesting that we could potentially fit this in a linear model framework just as

in the one dimensional case. What we mean by that is if we write y as a vector instead of

a matrix, we can write any element a of the vector y as
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ya =
2L∑
i=1

2L∑
j=1

θijAij, (1.12)

where Aij is the corresponding quadratic function of elements of the W matrices. This is

important because we can now write the data in the usual regression framework

y = W ∗θ, (1.13)

where W ∗ is a design matrix with the appropriate elements, Aij , and then we can solve

for the wavelet coefficients using regression techniques. We will now show in the fol-

lowing section how we can extend our ideas from the one dimensional setting to the two

dimensional setting to perform a Wavelet decomposition for irregular data by the same

logic.

1.3.4 Two dimensional penalized wavelets

In the one dimensional setting when we were on an irregular grid we came up with a new

basis function by defining

zk(x) = zuk (
x− a
b− a

), k = 1...K, (1.14)

and then linearly interpolating on a fine grid to calculate the value of this function for any

arbitrary point. Imagine now that we again have n data points, y∗i , i = 1...n, which lie

on a two dimensional space with the locations defined by x1i and x2i. In the motivating

example, y would be PM2.5 levels and x1 and x2 would be longitude and latitude respec-

tively. We can perform the one dimensional wavelet transform on an irregular grid in

both the x1 and x2 directions. We can define analogous functions for both directions as

zx1k (x1) = zuk (
x1 − a1
b1 − a1

), k = 1...K (1.15)

zx2k (x2) = zuk (
x2 − a2
b2 − a2

), k = 1...K, (1.16)
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where a1 and b1 define the range of x1, and a2 and b2 the range of x2. Using these we

can define matrices that are analogous to the Z matrix we defined in the one dimensional

setting

Zx1 =


1 zx11 (x11) . . . zx1K (x11)
1 zx11 (x12) . . . zx1K (x12)
...

...
...

1 zx11 (x1n) . . . zx1K (x1n)

Zx2 =


1 zx21 (x21) . . . zx2K (x21)
1 zx21 (x22) . . . zx2K (x22)
...

...
...

1 zx21 (x2n) . . . zx2K (x2n)

 (1.17)

and now that we have defined these matrices as such, we can plug them into 1.12 to obtain

the following representation of our data

y∗a =
K∑
i=1

K∑
j=1

Zx1
ai θijZ

x2
aj a = 1...n. (1.18)

If we think about how we solved for the wavelet coefficients in the one dimensional set-

ting using penalized regression we can start to see how we can solve for the estimated

coefficients in this case as well. If we define a design matrix as

Z∗ =


Zx1

11Z
x2
11 Zx1

11Z
x2
12 . . . Zx1

1KZ
x2
1K

Zx1
21Z

x2
21 Zx1

21Z
x2
22 . . . Zx1

2KZ
x2
2K

...
...

...
Zx1
n1Z

x2
n1 Zx1

n1Z
x2
n2 . . . Zx1

nKZ
x2
nK

 (1.19)

then we are now essentially in the standard regression setup of

y∗ = Z∗θ + ε, (1.20)

and as before we can solve for θ̂ using

θ̂ = arg min

{
n∑
i=1

(y∗i − Z∗i θ)
2

}
subject to

∑
j

|θj| < c. (1.21)

Note that because of the way we defined our wavelet basis functions we have not im-

posed any restrictions on the dimension or shape of the two dimensional surface we are
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representing. Once the Z∗ matrix is defined the method is trivial to implement and we

can examine particular values of θ to determine how the surface changes at certain fre-

quencies or scales.

1.4 Application to satellite PM2.5 data

Now we will apply our method for two dimensional wavelet decompositions on each

day of PM2.5 data in New England. We will restrict attention to a subset of New Eng-

land that surrounds Massachusetts as this will be the area of interest in the analysis of

birth weights. The goal of the method is to separate different sources of pollution, which

vary at different spatial frequencies. Previous work in air pollution exposure assessment

has established that pollution separates into three different sources that vary at different

spatial distances: Large scale regional pollution, pollution sources contributing to urban

background, and sources of localized pollution such as traffic. Within the study region, re-

gional sources of pollution will not vary spatially very much within a given day, though

can vary greatly from day to day. This suggests that regional pollution sources will be

represented by temporal variation in PM2.5, while the urban and local traffic sources will

be represented by spatial variability. Urban pollution sources should be represented by

lower level Wavelet coefficients as they vary over longer distances. These are represented

by differences in pollution between cities and rural areas. Local pollution sources, repre-

sented by the higher level Wavelet coefficients, are those that vary quickly across space as

they are caused by things such as interstates, and quickly fade away across space.

Figure 1.1 illustrates the average of our Wavelet decompositions across each day in 2006

for New England. We are able to see how the pollution surface breaks into two separate

components, representing different spatial frequencies at which pollution changes. To

create the lower frequency component seen in figure 1.1 we create a new vector of co-

efficients θ̃ which is equal to θ̂ with the exception that the coefficients corresponding to

higher frequency basis functions are set to zero. We can then obtain a predicted lower

frequency component via Z∗θ̃. To obtain a high frequency component as seen in figure

1.1 we could apply the same process, where instead we set the coefficients correspond-

12



Figure 1.1: Illustration of average wavelet decomposition averaged over the satellite data
for 2006. The left panel shows the true surface, the middle panel is the high frequency
component from our Wavelet decomposition, and the right panel is the low frequency
component from our Wavelet decomposition.

ing to low frequency basis functions to zero. Alternatively, we could just take difference

between the true surface and the lower frequency component as the higher frequency

component.

One issue with separating the pollution surface into two different components, is the se-

lection of a cutoff for what is deemed to be low frequency. In figure 1.1 we considered ba-

sis functions to be low frequency if they represented levels 1 through 3 in either direction

(latitude or longitude). Alternatively we could have considered basis functions that rep-

resented levels 1 through 2 in each direction as representing low frequency changes, and

this would have led to a slightly smoother surface for both the low and high frequency

surfaces. For the analysis of birth weights we will use basis function levels 1 through 3 to

represent low frequency changes in pollution. We decided upon this threshold both by vi-

sual inspection as the decomposed surfaces appear to represent changes of interest to the

air pollution epidemiology literature, and by examining the physical distances associated

with each wavelet basis functions support. Note that while this decision is subjective, it is

not of great importance as we will examine the effect of all spatial scales simultaneously

regardless of their status as ”low” or ”high” frequency.
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1.5 Analysis of birth weight data

We applied our proposed decomposition to examine the impact of PM2.5 at different spa-

tial scales on birth weights in Massachusetts for the period 2003-2008. We perform the

Wavelet decomposition for each day in the study period to obtain pollution surfaces rep-

resenting different spatial scales.

1.5.1 Low vs High frequency components

First we examine the extent to which low and high frequency sources of pollution impact

birth weight. We define the low frequency PM2.5 component to be represented by scales 1

through 3, and the high frequency component to be scales 4 through 7. When looking at

birth weights as an outcome our exposure can be defined either in terms of the mother’s

full gestation period, a given trimester, or the last 30 days of the gestation period, though

for the purposes of this paper we will restrict attention to the individual trimesters. This

leads to a temporal component in the exposure as well as a spatial component, because we

are looking at exposures averaged across time. Due to this we split our exposure surface

for each day into three separate components: A mean component that is simply the mean

PM2.5 for Massachusetts on the day of interest, a low frequency spatial component, and

a high frequency spatial component. For a particular mother in the study, these three

exposure components computed for each day are then averaged across the trimester of

interest. The idea in separating out the mean component from the surface is that it will

capture temporal variation in PM2.5 levels and allow the low and high frequency scales

to solely represent spatial variability.

We will examine the effects of PM2.5 at different scales using one of two models. The first

model is defined as follows:

BWij = (β0 + β0j) + β1PM2.5ij + βcCij + εij, (1.22)

where the subscript ij represents subject i in census tract j. PM2.5ij is the overall PM2.5

value for mother i in census tract j. We have included a random intercept for census tract
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to control for any correlation among mothers in similar neighborhoods. The vector Cij

represents all potential confounders we have included. εij is a mean zero, normal error

component. Details of the model choice and confounder selection can be found in Kloog

et al. (2012). This model does not use any of the spatially decomposed PM2.5 exposures,

and therefore β1 represents the combined effect of all PM2.5 spatial scales.

To examine how different spatial scales of PM2.5 affect birth weight we will also examine

the following model:

BWij = (β∗0 + β∗0j) + β∗1Meanij + β∗2Lowij + β∗3Highij + β∗
cCij + εij, (1.23)

where everything is the same as in the previous model, except now we have split our

PM2.5 exposure into it’s three components. The magnitude and direction of β∗1 , β∗2 , β∗3

should give valuable insight into how the various components of PM2.5 are impacting

birth weights. Figure 1.2 shows the results from the aforementioned models for the full

gestation period, and each of the trimesters.

The results indicate that the effects are fairly similar across trimesters in terms of mag-

nitude, direction, and relationship between sources of PM2.5. Both the low and high

frequency components of PM2.5 have large, significantly negative associations on birth

weight suggesting that increased levels of either of these sources adversely affects birth

weight. Interestingly the mean component has very small effects, and in the case of

trimesters 1 and 2, even slightly positive effects. This would suggest that mothers who

gave births during time periods when PM2.5 was elevated had healthier babies in terms

of birth weight. One potential explanation for this effect is that the mean component is

confounded by time. We know that this source of PM2.5 represents temporal variation

in exposure. We also know that both PM2.5 and birth weights are decreasing during the

study period, which could explain the slightly positive effect we see. To test this we fit

the same model as in 1.23 but included a smooth term for time into the vector of poten-

tial confounders, Cij . After applying this model the effect of the mean component drops

down to around -2. By separating out this scale from the low and high frequency scales,

we have reduced the possibility of temporal confounding influencing our remaining ef-
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Figure 1.2: Parameter estimates and corresponding 95% confidence intervals from PM2.5

models for each time period. Black line is the estimate of β1 from model 1.22 and the
remaining lines are the estimates of β∗1 , β∗2 , β∗3 from model 1.23

fect estimates as they represent only spatial variability in PM2.5. The effect sizes that we

see for the low and high frequency component are both larger than the overall pollution

effect, β1, and this is likely because we have removed the temporal sources of variation

that have smaller effects via the mean component. The effect from the low frequency

component seems to be somewhat larger than the high frequency component, though the

difference between the two gets smaller across trimesters.

1.5.2 Removing high level information

It is of scientific interest to understand specifically which spatial scales of PM2.5 are driv-

ing changes in birth weight as this will be important in targeting future environmental

regulations. With that in mind, we repeatedly fit the model with overall pollution, but

successively removed high frequency scales from the pollution surface to see how the

parameter estimates change. We also keep the mean component separated as the results
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from the previous section indicate that it could be temporally confounded, and leaving it

in the term for PM2.5 would dilute the signal that we are seeing from the low and high

frequency components. For a given trimester, the model of interest is now

BWij = (β̃0 + β̃0j) + β̃1Meanij + β̃2PMR
2.5ij + β̃cCij + εij, (1.24)

noting a couple changes from model 1.22. First we have included the mean component

into the model to control for potential sources of temporal confounding. We also have

defined a new variable PMR
2.5ij , which represents the total pollution with certain spatial

scales removed. PMR
2.5ij Always will be missing the mean component for the reasons

above, and we will further remove the high frequency scales one at at time to see how the

effect changes. Figure 1.3 shows the estimates and 95 % confidence intervals from model

1.24 as we remove more and more high frequency information.

The effects show a similar pattern and magnitude among the three different trimesters.

We see that removing the highest 1st or 2nd scales from the PM2.5 surface actually in-

creases the magnitude of the effect of PM2.5 on birth weights as the effect goes from -10.0

to -13.2 for the 3rd trimester, with similar jumps in the other trimesters. This suggests that

the effects at these very high frequency scales are much smaller in magnitude than their

lower frequency counterparts. It is even plausible that these levels could have no effect on

birth weight in which case they would represent measurement error and removing them

would be a useful feature of our Wavelet decomposition. Looking at the remaining scales

we see that there is a decline in effect size as we remove more and more levels, with a

large change occurring at scale 4. For trimester 3 the effect drops in magnitude from -12.2

to -8.5 when we exclude the fourth scale from the overall effect. This is a rather large

change compared with the other scales and indicates that a source of pollution occurring

at that scale has a large impact on birth weights. Overall though the biggest impact seems

to occur simply by including the 1st level into the model. The coefficient when we only in-

clude the 1st level into the model is -6.23 for trimester 3, and as high as -9.7 for trimesters

1 and 2, indicating that there is a large effect at this scale.
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Figure 1.3: Parameter estimates and corresponding 95 % confidence intervals from model
1.24 when we remove high frequency spatial scales for each trimester. Within each panel
from right to left we successively remove more and more of the higher frequency scales

1.5.3 Modeling each scale separately

The previous sections lend intuition for which scales are driving the adverse impact of

PM2.5 on birth weights, but we can also model each individual level separately instead of

clustering them together into a joint exposure. We now fit the following model

BWij = (β̆0 + β̆0j) + β̆1Meanij + β̆2Level1 + ...+ β̆8Level7 + β̆cCij + εij, (1.25)

where we are now including each scale as a separate predictor in the model. The mag-

nitude and direction of the coefficients from this model should lend insight into exactly

which scales are driving the effects of PM2.5, conditional on the levels of the other scales.

Table 1.1 shows the effect estimates from this model as well as the estimates standard-

ized by their standard errors to show the approximate level of significance for each scale.

The results generally agree with those seen in figure 1.3 and show a couple of interesting

results.

For any trimester, we again see that there is little to no effect of the highest two frequency

scales. This further explains why we saw an increase in the magnitude of the overall effect

when we removed these scales. Surprisingly, scale 3 seems to have a very small impact on

birth weights despite the fact that levels 1, 2, 4, and 5 all have significant impacts on birth

weight. The scales are increasing in terms of spatial frequency or the distance at which
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Trimester 1 Trimester 2 Trimester 3
β̂ β̂

SE(β)
β̂ β̂

SE(β)
β̂ β̂

SE(β)

Mean 1.00 1.61 1.49 2.47 -1.03 -1.56
Scale 1 -16.73 -8.81 -16.58 -8.78 -12.86 -6.73
Scale 2 -14.68 -10.29 -13.90 -9.43 -14.16 -9.24
Scale 3 -2.02 -0.74 -2.53 -0.93 -2.57 -0.90
Scale 4 -17.39 -7.55 -18.04 -7.69 -20.38 -8.50
Scale 5 -16.40 -6.03 -15.63 -5.66 -15.82 -5.60
Scale 6 -1.67 -0.80 -0.82 -0.37 -2.89 -1.23
Scale 7 -1.80 -0.99 -2.80 -1.49 -1.80 -0.90

Table 1.1: Effect estimates from model 1.25

PM2.5 changes, so it’s strange to see a spike at one level, and it merits further investigation.

Overall the largest effects of PM2.5 are seen in the first two scales, with significant effects

at scales 4 and 5 as well.

1.5.4 Examination of scales

Due to some interesting results seen in previous sections regarding specific scales of PM2.5

it is of interest to examine these scales further and to be able to translate information from

spatial scales to distance, which is more useful to policymakers. We know from sections

1.5.1 - 1.5.3 that scales 1-5 all have significant effects on birth weight with the exception

of scale 3, and that the largest such effect sizes seem to come from scales 1, 2, and 4.

With this in mind it will be useful to look specifically at these scales and determine what

they represent in terms of the PM2.5 surface. Figure 1.4 shows the average surface from

each spatial scale taken by performing our Wavelet decomposition on each day of data

in 2006 and averaging them over the 365 days in the year. Visual inspection of these

figures coupled with our knowledge of the Massachusetts area allows us to gain intuition

as to which sources of pollution each scale is picking up. The first scale seems to pick

up some regional transport pollution that is known move from west to east across lower

Massachusetts, while the second scale picks up on some slightly noisier effects including

the urban background from Boston. The remaining levels are less obvious from the figure,

though it does seem that both the 6th and 7th scales are just random noise as postulated

from our modeling results as they don’t seem to correlate spatially in any way. We noticed
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earlier that the 3rd scale didn’t seem to have an effect on birth weight and while it is

unclear what sources of pollution are driving this scale, it does seem that most of the

signal at scale 3 lies in areas where very few people live. This could be what is keeping

this scale from having an effect on birth weight.

Figure 1.4: Illustration of average wavelet decomposition averaged over satellite data for
2006. From left to right and top to bottom are the individual scales taken from our wavelet
decomposition for each day then averaged over the entire year. The final panel is the sum
of all the levels.

It is also of interest to assign a physical distance to each spatial scale as this could be

more useful when using these results to consider future air quality regulations. Wavelets

in their simplest form, the Haar Wavelet, have a very simple interpretation in terms of

distance. The support of the Haar Wavelet at scale 1 is the support of the data, at scale

2 the support is half the length of the data, and this continues as each scale represents a

fraction of the data that is half the distance as the previous scale. The Haar Wavelet at

any given scale will pickup on features of the function that vary at a level around half of

the support of that scale, since the Haar Wavelet is positive for half of it’s support and

negative for the other half. While we use the smoother Debauchies family of Wavelet’s

that do not have a support that is strictly a fraction of the data, the majority of the support

for each scale of the Debauchies Wavelet is splitting up the data into halves. With this in
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mind we can assign to each scale a ’rough’ measure of distance representing the distances

at which PM2.5 varies that the particular scale will be accounting for. Since our data

is 302km by 302km, we know that scale 1 represents changes that occur at a distance

of around 151km, scale 2 changes at around 75.5, etc. This information along with our

results on the impact that each scale has on birth weight could be used in conjunction with

scientific expertise to determine what sources of pollution are leading to large, adverse

effects on birth weight.

1.6 Discussion

In this article we have proposed a two-dimensional wavelet decomposition that is flex-

ible, easy to implement, and scalable to large spatial surfaces. By extending ideas from

Wand et al. (2011) we have created a decomposition that does not rely on many of the as-

sumptions of standard wavelet theory that are overly restrictive for many analyses, and

places the decomposition in a regression framework which simplifies it’s implementation

and estimation of wavelet coefficients. Our proposed method will allow researchers to

perform multiresolution analyses on spatial data regardless of the structure and scale of

their data. Much of the wavelet literature relies on complicated algorithms to perform

analyses, but in this paper we simplified wavelet analyses by showing that they are sim-

ply basis functions and therefore can be applied in much the same way as any other basis

function used to represent a function. We showed in section 1.3 that once we have de-

fined and evaluated the wavelet basis functions and placed them in their appropriate

design matrix, then estimation is trivial and no different than any other basis function

placed in a regression framework. We have found that the proposed method scales quite

well as the surfaces of PM2.5 we examined contained approximately 70,000 grid points.

Using 7 wavelet levels we are left with 214 = 16, 348 basis functions and therefore the

only computational challenge is in fitting a regression model with a design matrix whose

dimensions are 70,000 by 16,384. If the dimensions get too large, we suggest doing an

approximation to our method that is based on the fact that the wavelet levels are orthog-

onal. One could fit the same regression model, but only include the first 4 to 5 levels
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instead of 7 levels, making the model much faster to calculate. Then the residuals from

this model can be regressed against the remaining levels to obtain an approximation to

the full wavelet decomposition.

We illustrated our method on a 1km by 1km grid of PM2.5 data and then examined how

these different spatial scales impacted birth weight in Massachusetts. We noticed that the

temporal component of PM2.5 was positive or close to zero for each trimester, which is

unexpected as we expect PM2.5 to have a negative effect on birth weight. One potential

explanation for this is confounding by time as both PM2.5 and birth weights are decreasing

over time, and therefore leaving time out of the model could lead to misleading effects.

We ran further models that included a smooth function of time to eliminate any potential

confounding by time and found that the effects of the mean component decreased to

negative levels that were expected a priori. We also saw the effect of the low frequency

pollution component is larger than the high frequency, though this difference decreases

later on in the pregnancy. It is clear though that both have large, negative impacts on

birth weight. We also examined the effect of each spatial scale by removing one scale at

a time from PM2.5 and seeing how the effect estimate changed. We noticed that the very

high frequency component, which was represented by the 6th and 7th scales, seems to be

just noise and is actually attenuating the effect towards zero. It is believed that there is

some noise in the AOD measurements that are used to model PM2.5 on the 1km grid and

it is possible that the top levels of the wavelet decomposition are picking up solely on this

noise. Wavelets have been used to de-noise signals and this de-noising property might

be increasing the magnitude of our effects because it is eliminating measurement error

which would attenuate the effect to zero. We also noticed that the majority of the effect

of PM2.5 is driven by scales 1 through 5 and with the largest effects coming from scales 1

and 4. These results could be very important for future regulations as they can be used to

target sources of pollution that operate on those spatial scales.

One limitation of the results from the study of birth weights is that we are ignoring the

fact that the PM2.5 measurements are estimated and therefore come with some uncer-

tainty. The confidence intervals placed on our model estimates are under the assumption

that PM2.5 is a fixed, known quantity and therefore these intervals are likely to be slightly
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anti-conservative. While we are not attempting to make causal statements or statements

of significance, rather simply trying to learn about the general magnitude and direction of

effects, it would still be ideal to be able to account for this increase in uncertainty. Resam-

pling methods could in theory be used to solve this problem, however, that would require

resampling and re-fitting of the models used to estimate the exposure and this would not

be feasible in this study. A related limitation is that because we are using estimates of

PM2.5 there might be measurement error biasing the results of our study. While we hy-

pothesized that we were removing some of the effects of measurement error when we

removed the highest two frequency wavelet scales, it’s possible that measurement error

is still systematically degrading our model estimates. Future work could focus on ap-

plying well developed measurement error correction techniques to examine if the effect

estimates are drastically impacted.

As this is one of the first papers trying to separate the effects of different sources of air

pollution, there are a vast number of possibilities for future research. One such idea is to

use the wavelet decompositions of PM2.5 to learn more about specific chemicals that make

up PM2.5. Data is available at monitoring sites about the specific components that PM2.5 is

comprised of, which means that we can perform canonical correlation analysis between

our 1km decompositions and the component monitoring data to learn about what type

of sources each component comes from. This could also lead to information about which

components of pollution are negatively impacting health outcomes. It would also be of

interest to apply these decompositions to a wide variety of health outcomes to identify if

there are any outcomes in which only the local or regional sources of pollution have an

effect. It is also of interest to apply more meaningful definitions to each scale. Wavelet

scales themselves are not very interpretable, but we can potentially assign to each wavelet

level a distance corresponding to the frequency of that level. This would be a much more

meaningful interpretation to researchers in environmental health looking to relate these

results back to their analyses.
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2.1 Introduction

In the past few decades, numerous epidemiological studies have investigated the health

effects of air pollution. Many studies have found statistically significant associations be-

tween ambient levels of air pollution and a variety of adverse health outcomes. Examples

of such studies can be found in Dockery et al. (1993); Samet et al. (2000); Dominici et al.

(2006) and a review of the literature can be seen in Dominici et al. (2003); Pope III (2007);

Breysse et al. (2013). Difficulty in these studies arises due to spatial misalignment of the

data as the locations of the subjects does not coincide with the locations at which we can

observe air pollution levels. Most studies rely on monitoring data such as the IMPROVE

network or the EPA’s Air Quality System, which are only available at a fixed set of lo-

cations. Then, conditional on the monitors, investigators predict values of air pollution

using nearest neighbor, kriging, or land use regression approaches (Oliver and Webster,

1990; Madsen et al., 2008; Kloog et al., 2012). In many instances the locations of these

monitors are chosen for a specific reason such as measuring areas of high pollution levels

or areas of high pollution density. Chow et al. (2002) discuss different designs by which

monitoring sites can be chosen and potential objectives for monitor selection, many of

which depend on the nature of the pollution itself. Kanaroglou et al. (2005) develop a for-

mal method for selecting monitor locations that takes into account the spatial variability

of the surface to be estimated, and the population being exposed to pollution. Matte et al.

(2013) discuss the how monitor placement in New York City was designed to capture

intra-urban spatial variability of air pollution. These are among the many of instances

just in exposure estimation where monitors were placed in areas with regard to the lev-

els of pollution and therefore is a relevant issue when utilizing these networks in health

effect studies.

Numerous papers have been published regarding two stage analyses in environmental

applications. The first stage consists of estimating parameters of an exposure model us-

ing monitoring data. The second stage then conditions on the exposure estimates from the

first stage and uses this estimated exposure to investigate the association between expo-

sure and an outcome. This leads to a complex form of measurement error, which does not
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fall specifically into the category of either classical or berkson measurement error. Kim

et al. (2009) looked at the impact of various predicted exposures on health effect estima-

tion in air pollution studies. A variety of methods have been proposed to correct for this

measurement error. Gryparis et al. (2009) examined the effectiveness of a variety of stan-

dard correction methods via simulation and gave intuition for when these measurement

error corrections will work. More recently, Szpiro et al. (2011b) show that the measure-

ment error can be decomposed into two components: A classical like and a berkson like

component. They further came up with a computationally efficient form of the paramet-

ric bootstrap to correct for measurement error in two stage analyses. Szpiro and Paciorek

(2013) take an in depth look at the impact of these two components of measurement error,

and derive asymptotic results about the bias and variance of health effect estimates.

In this paper our focus will be the preferential sampling of monitors in two stage analyses,

and the subsequent impact on measurement error and health effect estimation. Preferen-

tial sampling as defined by Diggle et al. (2010) is the scenario where the location of the

monitors is dependent on the values of the spatial process they are measuring. In air pol-

lution studies this would amount to monitors being placed in locations due to the amount

of air pollution in those locations. Diggle et al. (2010) show that variogram estimates are

biased under preferential sampling and come up with a method to control for preferen-

tial sampling in geostatistical inference. Gelfand et al. (2012) showed that preferential

sampling can perform drastically worse with respect to estimating a spatial surface than

sampling under complete spatial randomness (CSR). Interestingly, Szpiro et al. (2011a)

show that better exposure prediction doesn’t always lead to improved health effect infer-

ence, though in general we expect that improving exposure prediction will lead to better

inference overall. Lee et al. (2015) examine the impacts of preferential sampling on health

effect estimation in environmental epidemiology and find that the locations of monitors

can drastically impact inference in second stage analyses. They also illustrate in a sim-

ulation study how inference in the second stage is improved under CSR compared with

preferential sampling.

It is clear from the literature that from a strictly geostatistical perspective, preferential

sampling can lead to poorer inference and must be accounted for in the exposure model-
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ing process. The aim of this paper, however, is to show that if interest lies in the second

stage health effect estimates then preferential sampling can lead to improved inference in

many scenarios. The main reason for this and the key difference in our paper with previ-

ous studies regarding preferential sampling is that we will be emphasizing the relation-

ship that population density plays when thinking about potential locations of monitors.

Our results will illustrate the claim made in Szpiro and Paciorek (2013) that the densi-

ties governing the location of the subjects and the monitors should be the same. We will

show that when taking population density into account, preferential sampling can lead

to drastically improved inference in air pollution studies. The outline of our paper is as

follows: Section 2.2 will introduce the motivating example of PM2.5 in New England, Sec-

tion 2.3 introduces notation and the modeling framework, in section 2.4 we derive some

mathematical results regarding inference under two stage sampling designs, section 2.5

presents an illuminating simulation study to shed light on different aspects of the esti-

mation procedure, section 2.6 highlights these results in the context of PM2.5 monitoring

locations in New England, and section 2.7 concludes with a discussion.

2.2 Motivating example

The majority of the preceding discussion and previous work on measurement error in

environmental two stage analyses has been motivated by studying the adverse health ef-

fects of PM2.5. PM2.5 is a pollutant defined as the combination of all fine particles less

than 2.5 micrometers in diameter. Nearly all research to date on the associations between

PM2.5 and health outcomes has been contingent on monitors to estimate exposure, with

the lone exception being recent studies that have used aerosol optical depth (AOD) to

estimate PM2.5 on a finer grid (Kloog et al., 2012). Generally exposure is estimated condi-

tional on monitoring data, and little attention is paid to the location of the monitors. The

left panel in figure 2.1 shows a map of the EPA AQS monitor locations over New England

as well as a map of estimated PM2.5 across New England. The estimated PM2.5 for New

England is taken from the aforementioned models that use AOD to estimate exposure on

a fine grid, which in this case is 1km by 1km. Looking at figure 2.1 helps to show the mo-
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tivation for this work as it seems from the figure that there are more monitors in areas of

higher pollution. It should also be noted that these areas of higher pollution correspond

to higher population densities, for instance the right side of the map represents elevated

pollution in the greater Boston metropolitan area. The right panel of figure 2.1 further

illustrates that the monitor locations are in fact concentrated in more populated areas. As

a measure of population density we use the number of census tracts within 0.3 degrees

latitude or longitude of a location, and the monitor locations generally have more census

tracts nearby than New England as a whole.

Although not definitive, it seems plausible that the location of monitors in New Eng-

land follows a non-random sampling scheme, which meets our criteria for preferential

sampling. If we are able to gain intuition about the impact of preferential sampling, we

should also gain knowledge on how inference is impacted in studies of PM2.5 that use the

EPA AQS monitoring system.

Figure 2.1: The left hand panel shows the average predicted PM2.5 surface in New Eng-
land for the year 2003, with the black points representing the location of the EPA AQS
monitoring system. The right hand panel shows a histogram of the number of census
tracts within 0.3 degrees of each grid point in New England, along with the histogram of
the number of census tracts within 0.3 degrees of the EPA monitoring sites
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2.3 General setup

2.3.1 Notation and model

For convenience, we adopt similar notation to Gryparis et al. (2009); Szpiro et al. (2011b);

Lee et al. (2015). Throughout we will have n subjects in the study (second stage of anal-

ysis), and n∗ monitors at which we observe exposure (first stage of analysis). We define

X to be the true exposure at the n subject locations, and X∗ to be the exposure at the n∗

monitor locations. In general we will allow the following to hold:

(
X
X∗

)
∼ N

{(
µX(α)
µX∗(α)

)
,

(
ΣX,X(φ) ΣX,X∗(φ)
ΣX∗,X(φ) ΣX∗,X∗(φ)

)}
(2.1)

Where µX(α) represents the mean of the exposure surface, and is a linear function of a

set of covariates dictated by a parameter vector, α. The covariance matrix of this Normal

distribution is dictated by a parameter vector, φ, which includes standard parameters

such as the range, smoothness parameter, etc. This framework is general and allows for a

broad class of exposure models for predicting exposure at new locations such as kriging

and land use regression. We now define our outcome model as

Y = β0 +Xβ1 + ε (2.2)

Where ε is a vector of i.i.d random noise. In general this model can include a vector

of covariates, though we keep it simple here to simplify results about the parameter of

interest, β1. In any realistic scenario, we will not observe X and therefore must estimate X

with W defined as

W = E(X|X∗, α̂, φ̂) (2.3)

In this situation above, this expectation is easily written out using properties of Normal

distributions as

W = µX(α̂) + ΣX,X∗(φ̂)ΣX∗,X∗(φ̂)−1(X∗ − µX∗(α̂)) (2.4)
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and the remainder of this paper will examine the impact of using W in place of X in the

outcome model, more specifically the impact of that measurement error under different

sampling schemes for monitoring locations.

2.3.2 Definition of preferential sampling

In Diggle et al. (2010) preferential sampling is defined as any dependence between the

values of the underlying spatial process (X∗ in our setting) and the locations at which we

observe the process (the monitors in our setting). Mathematically this can be written as

p(X∗, S∗) 6= p(X∗)p(S∗), (2.5)

where S∗ is a random variable to denote the locations at which we observe X∗. An ex-

ample of this would be a network of monitors that are placed to measure high levels

of a given process. Most geostatistical procedures assume independence between these

two quantities and therefore likelihood based inference in the presence of preferential

sampling can lead to bias as the likelihood is misspecified and estimates are no longer

assured to be consistent. In their paper they introduce preferential sampling by allow-

ing their locations to be drawn from an inhomogeneous Poisson process of the following

form

λ(S∗) = exp(γ0 + γ1X
∗), (2.6)

where preferential sampling is the scenario when γ1 6= 0. Lee et al. (2015) also introduce

preferential sampling of monitors in their simulations by drawing locations from an in-

homogeneous Poisson process whose intensity function depends on observed covariates

and unobserved spatial features of the process. We will define preferential sampling in a

related, though slightly different way, which we feel is illuminating for studies involving

predicted air pollution from monitors. We will investigate scenarios in which sampling

depends on the population density with which subjects in the second stage model are

drawn from. This can be written as
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P (S, S∗) 6= P (S)P (S∗) (2.7)

where S now denotes the locations at which we observe subjects from the second stage

analysis. This does not strictly imply preferential sampling as defined in equation 2.5,

though it will meet that criteria for preferential sampling if the population density is as-

sociated with the exposure surface. We saw in section 2.2 that the location of monitors

appeared non-random and it seemed that there were more monitors in areas that have

both a higher population density and higher pollution levels. The reason for defining

preferential sampling in this paper as being related to population density is that this sce-

nario commonly occurs in air pollution epidemiology and the extent to which it affects

inference is unclear. Previous studies have shown the negative impact that preferential

sampling can have on estimation of variograms or other features of the process, however,

the main interest in air pollution epidemiology is the second stage outcome model that

uses predictions of the process from the first stage modeling.

2.4 Understanding bias and variance of β̂1

We now take a step back to provide mathematical justification for our claim that prefer-

ential sampling can improve estimation in two stage analyses of air pollution. We will

focus on results regarding β1 as this is the parameter of interest in most environmental

epidemiology studies examining the effect of PM2.5 on a health outcome. We will use the

same notation as before and define Ci to be the vector of covariates for subject i, and C∗j to

be the vector of covariates for monitor j. As a simplifying assumption we assume that the

joint distribution of all the necessary quantities (Y, X, X∗, C, C∗) follows a multivariate

normal distribution, as this will simplify some of the algebraic operations. We further

impose the following models:

Y = β0 +Xβ1 + ε (2.8)

X = Cα + εx (2.9)
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X∗ = C∗α + ε∗x (2.10)

Where ε is a mean zero vector of i.i.d noise, and εx and εx∗ are mean zero vectors of noise.

Notice that we do not impose any independence assumptions about εx and εx∗ allowing

for spatial structure in the residuals. Conditional on the estimates α̂ and φ̂ from the first

stage analysis, we estimate exposure via equation 2.4. Our interest lies in the distribution

of β̂1, the estimate of β1 we get in the second stage of the model when we use W instead

of X.

2.4.1 Bias of β̂1

To examine the bias we can look at the conditional distribution of Y given W. Since we

defined everything to be jointly normal, the joint distribution of Y and W can we written

as

(
Y
W

)
∼ N

{(
µy
µw

)
,

(
σ2
y σyw

σyw σ2
w

)}
(2.11)

Which leads to

Y |W ∼ N

(
µy +

σyw
σ2
w

(W − µw), σ2
y −

σyw
σ2
w

)
(2.12)

The coefficient of interest is the one that lies in front of W in the mean component of the

above conditional distribution. Using this fact and defining θ = [α, φ] we can say that

E(β̂1) =
σyw
σ2
w

= β1
cov(X,W )

V ar(W )

= f(θ̂) (2.13)

and details of this derivation as well as the exact expression for f(θ̂) can be found in the

appendix. One important thing to note is that when θ̂ = θ then f(θ̂) = β1 and there exists

no bias. This shows that the small sample bias in estimating β1 is a function of α̂ and φ̂, so
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if we knew the true parameters from the exposure model then we would get an unbiased

estimate of β1 in the outcome model. To gain more intuition into this bias we can perform

a taylor series expansion of f(θ̂) around f(θ).

f(θ̂)− f(θ) ≈ ∂f(θ)

∂θ
(θ̂ − θ) +

1

2
(θ̂ − θ)T ∂

2f(θ)

∂θ∂θT
(θ̂ − θ) (2.14)

and now we can take the expectation on both sides with respect to the distribution gov-

erning the monitoring locations. Denoting these expectations by ES∗() we see that

ES∗

(
f(θ̂)− f(θ)

)
= ES∗(β̂1 − β1)

≈ ∂f(θ)

∂θ
ES∗(θ̂ − θ) +

1

2
Tr

(
∂2f(θ)

∂θ∂θT
V arS∗(θ̂ − θ)

)
+

1

2
ES∗(θ̂ − θ)T ∂

2f(θ)

∂θ∂θT
ES∗(θ̂ − θ) (2.15)

So we’ve shown that the unconditional bias (no longer conditional on an estimate of θ) is

a function of the bias and variance of θ̂.

2.4.2 Variance of β̂1

To gain intuition into the variance of β̂1 we can look at var(X −W ), the variance of the

measurement error. While this does not translate directly into the variance of β̂1, it is well

understood that increasing the amount of measurement error in an exposure will lead to

increased variance in the effect of that exposure on the outcome, regardless of the form of

the measurement error. To better understand this quantity we can assume that we know

the true model parameters and without loss of generality that the mean of the exposure

is zero. We will also write our estimated exposure in a somewhat more general way as

W =
∑n∗

i=1wiX
∗
i , where the weights wi are a function of the distance between X and X∗i

and sum to one. We can write the variance as

var(X −W ) = var(X −
n∗∑
i=1

wiX
∗
i )
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= var(X) +
n∗∑
i=1

n∗∑
j=1

wjwkcov(X∗j , X
∗
k)− 2

n∗∑
i=1

wicov(X,X∗i )

= var(X) +
n∗∑
i=1

n∗∑
j=1

wjwkcov(X∗j , X
∗
k)− 2

n∗∑
i=1

n∗∑
j=1

wiwjcov(X,X∗i )

= var(X) +
n∗∑
i=1

n∗∑
j=1

wjwk
(
cov(X∗j , X

∗
k)− 2cov(X,X∗i )

)
(2.16)

and it is of interest for us to examine how this quantity changes across different sam-

pling schemes. We’re interested in the behavior of Epref (var(X − W )) compared with

Eunif (var(X −W )), where the two expectations are taken with respect the to the distri-

bution of the monitors under a preferential and uniform sampling scheme respectively. If

we take the expectation on both sides of equation 2.17 we see that

ES∗(var(X −W )) = ES∗(var(X)) +
n∗∑
i=1

n∗∑
j=1

ES∗
[
wjwk

(
cov(X∗j , X

∗
k)− 2cov(X,X∗i )

)]
(2.17)

The first term on the right hand side of the equation does not change across monitoring

schemes so it is not of interest to us when comparing uniform and preferential sampling.

The other terms are where we see changes under preferential sampling. The term in-

volving ES∗(wjwkcov(X,X∗i )) goes up under preferential sampling since we place mon-

itors closer on average to the location where we are trying to estimate X. This term go-

ing up leads the overall measurement error variance to go down. However, The term

ES∗(wjwkcov(X∗j , X
∗
k)) also goes up under preferential sampling, since monitors are now

closer together on average and this leads the overall measurement error variance to rise.

This illustrates the trade-off that comes with preferential sampling. On one hand we

should preferentially sample monitors so that their exposure value is more correlated

with the subject specific exposure values, while on the other hand we can’t preferentially

sample too much as the monitors will be too close to each other. We show how this trade-

off also manifests for var(β̂1) under some simplifying assumptions in the appendix.
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2.5 Simulation study

We will now illustrate the impact of preferential sampling with a simulation study. To

simplify visualizations and interpretation of results we restrict attention to the one-

dimensional setting on the unit interval though we expect these results to hold in the

two-dimensional setting seen in environmental studies. We can let s represent location

and treat values of s between 0.6 and 0.9 as being ’urban’ by defining population den-

sity to be higher in these locations, with the highest population between 0.7 and 0.8. We

simulate exposure using equation 2.1 where the mean component of the model is a linear

function of covariates and the covariance is defined by an exponential covariance func-

tion. The exponential covariance takes the following form:

C(d) = exp(−d/φ) (2.18)

and we set φ = 0.05. The mean component of the model is defined byCαwhere C consists

of an intercept, 1(0.7 < s < 0.8), (s− 0.6) ∗ 1(0.6 < s ≤ 0.7), and (s− 0.9) ∗ 1(0.8 ≤ s < 0.9)

. The first covariate is simply an indicator of being in the high density area while the

other two are linear functions of s that allow exposure to linearly decrease away from the

high density area. We set α = [5, 3, 3,−3]. An illustration of the population density and a

subsequent realization of the exposure surface can be found in figure 2.2.

We simulate our outcome from

Y = β0 + β1X + ε (2.19)

with β0 = 100, β1 = 5, and ε is an i.i.d vector of mean zero Normal errors with variance 9.

The only thing left to define is the sampling scheme we use to draw monitoring locations.

We use a simple, interpretable scheme where we draw monitors at given locations with

probabilities proportional to population density raised to a variety of powers. If we let D

represent population density at a location, then we sample monitoring sites proportional

to Dp and we vary p across a range of values. p has a nice interpretation in terms of
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Exposure and population surface

Location

0.0 0.2 0.4 0.6 0.8 1.0

Exposure
Population

Figure 2.2: Illustration of population and exposure across area of interest

preferential sampling. p = 0 represents sampling under CSR, while p > 0 represents

sampling areas of higher population densities. We sample n∗ = 30, 40, 50 monitors to see

the impact that the number of monitors plays in the performance of various sampling

schemes. In all situations we simulate 10000 data sets, and exclude simulations where

monitors are not placed in each of the three elevated areas of population density to ensure

convergence of parameters.

2.5.1 Impact on exposure estimation

In light of our analytic results that show bias is a function of the bias and variance of

the exposure model parameter estimates we can look at the impact that varying p has on

estimating θ. Table 2.1 shows the estimates of the exposure model parameters across the

simulations for a variety of preferential sampling parameters and number of monitors.

Both α and φ are estimated with little to no bias under any sampling scheme. The biggest

differences seen between values of p is in the standard errors of the parameter estimates.

The standard errors for the range parameter do not seem to differ for different values of

p, though the standard errors of the mean parameters vary significantly across values of
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p. The intercept standard errors grow slightly as we increase p, though the differences are

fairly small. The values of the parameters representing differences between high and low

population areas have drastically lower standard errors under preferential sampling. For

instance under n∗ = 30 the standard error of α̂2 drops from 0.85 under CSR to 0.69 under

p=1. Similar results are seen for α̂3 as the standard error goes from 0.89 to 0.67.

p α̂0 α̂1 α̂2 α̂3 φ̂
n∗ = 30 0.0 5.00 (0.19) 3.00 (0.47) 3.00 (0.85) - 3.01 (0.89) 0.05 (0.06)

0.5 5.00 (0.19) 3.00 (0.44) 2.98 (0.76) -3.00 (0.75) 0.05 (0.06)
1.0 5.00 (0.20) 3.00 (0.42) 3.01 (0.69) -3.02 (0.71) 0.05 (0.06)
1.5 5.00 (0.22) 3.00 (0.44) 3.00 (0.69) -3.00 (0.67) 0.05 (0.06)
2.0 5.00 (0.25) 3.01 (0.44) 3.00 (0.68) -3.00 (0.67) 0.04 (0.07)

n∗ = 40 0.0 5.00 (0.18) 3.00 (0.45) 2.99 (0.74) -3.00 (0.75) 0.05 (0.05)
0.5 5.00 (0.18) 3.00 (0.42) 3.00 (0.65) -3.00 (0.66) 0.05 (0.05)
1.0 5.00 (0.19) 3.00 (0.41) 3.00 (0.60) -3.00 (0.60) 0.04 (0.04)
1.5 5.00 (0.20) 3.01 (0.42) 3.01 (0.59) -3.02 (0.57) 0.04 (0.05)
2.0 5.00 (0.23) 3.00 (0.43) 3.00 (0.59) -2.99 (0.60) 0.04 (0.05)

n∗ = 50 0.0 5.00 (0.18) 2.99 (0.43) 2.99 (0.66) -2.99 (0.68) 0.04 (0.03)
0.5 5.00 (0.18) 3.00 (0.41) 2.99 (0.60) -2.99 (0.60) 0.04 (0.03)
1.0 5.00 (0.19) 3.00 (0.42) 3.00 (0.55) -2.99 (0.56) 0.04 (0.04)
1.5 5.00 (0.20) 3.00 (0.41) 3.00 (0.54) -3.00 (0.54) 0.04 (0.03)
2.0 5.00 (0.21) 3.01 (0.42) 3.01 (0.54) -3.01 (0.54) 0.04 (0.04)

Table 2.1: Mean of estimated exposure model parameters across 10000 simulations. Em-
pirical standard errors are in parentheses

We can also look at the variance of the estimated exposure itself. Figure 2.3 shows the

variance of (X −W ) for a variety of preferential sampling parameters, p, and number of

monitors, n∗. This represents the magnitude of the measurement error induced by using

monitors to estimate exposure. We discussed in section 2.4 the trade-off that occurs un-

der preferential sampling between placing monitors too close together, and placing them

near the locations of the subjects in the second stage of the model. We see that the overall

variance is lowest under preferential sampling, around p = 1, indicating that the gain

from placing monitors near the subjects is outweighing the loss induced by putting mon-

itors close together when monitors are preferentially sampled. To gain further intuition

into this trade-off we separate the measurement error variance into a rural and urban

component.
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Figure 2.3: The empirical measurement error variance across 10000 simulations for a va-
riety of values for p

The urban components enjoys significantly smaller variation under preferential sampling,

which is to be expected as we are placing more monitors in these locations when p > 0.

The rural component on the other hand suffers from more variation under preferential

sampling, which is intuitive because we placed less monitors in those areas. More subjects

live in the urban areas, therefore the overall variance is driven by the urban variance, and

the ideal trade-off between reducing variance for urban locations and increasing it for

rural locations seems to occur around p = 1.

2.5.2 Impact on outcome model estimation

To fully understand the impact that preferential sampling plays on the estimates of the

second stage outcome model we fit three different outcome models: 1) A model that re-

gresses Y on W; 2) A model that regresses Y on the estimated exposure we would get if

we knew the true values of θ; and 3) A model that regresses Y on the exposure we would

get if we misspecify the exposure model and do not include population into the set of

covariates, C. The first situation is what is done in practice, the second model will show

us if and how preferential sampling improves estimation beyond any improvements in

exposure model estimation, and the third model is a realistic scenario in which we mis-

specify how population enters into the exposure model. This is arguably the worst type of

misspecification as we are leaving it out completely, but it should lend intuition into what

happens when the exposure model is incorrect. We will restrict attention to the estimation
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of β1 as this is the effect of interest.

Figure 2.4 shows the absolute bias of the outcome model parameters under the three

models and a variety of values of p.
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Figure 2.4: The bias of outcome model estimates across 10000 simulations for a variety of
values for p

We see that under any of the three models, preferential sampling outperforms CSR with

respect to bias, although it should be noted that the magnitude of the bias relative to

the true effect size is not substantial under any of the models, with the exception of the

misspecified model. The black line in the plots shows that what little bias does exist under

p = 0 decreases as we increase p. The red line shows that there is no bias for any value of p

when we know the true model parameters and this highlights our result from section 2.4

that says the bias is a function of the bias and variance of the exposure model parameters.

The most interesting of the lines, is the green line, which shows that when we misspecify

the model, p = 1 leads to the smallest amount of bias.

Figure 2.5 shows the empirical variance across the 10000 simulations of β̂1, and we see a

similar U-shape trend in all three models with varying degrees of magnitude. The greatest

gains from preferential sampling occur in both the misspecified model and the model in

which we estimate the exposure model parameters. For N∗ = 30 the variance drops from

0.21 at p = 0 to 0.13 at p = 1 for the model that estimates all parameters, and it drops from

0.19 to 0.12 for the misspecified model. The gains are not as large when we know the true

model parameters beforehand, but even then the variance drops from 0.12 to 0.10 when

we go from p = 0 to p = 1. Not surprisingly, the variance tends back upwards after p = 1
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as we approach p = 2 illustrating the trade-off that occurs under preferential sampling.

Similar results are found for n∗ = 40, 50 as the variance drops under p = 1, but increases

as we preferentially sample too far.
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Figure 2.5: The empirical variance of outcome model estimates across 10000 simulations
for a variety of values for p

2.6 AQS monitoring system

Now that we have gained insight into the effects of preferential sampling of monitors it

is of interest to relate these results back to the motivating example. Figure 2.1 shows the

location of the EPA’s AQS monitoring system across New England. Data from these mon-

itoring sites is publicly available and has been used in a vast number of environmental

studies relating PM2.5 to various health outcomes.

2.6.1 One parameter preferential sampling model

To relate the locations of the EPA monitors back to the results we have seen we can impose

a simple model for the locations of the monitors. We can split New England into a very

fine grid that consists of K grid cells. For each grid cell define Dk to be a measure of

population density in grid cell k. We will define Dk to be the number of census tracts

within 0.3 degrees of the center of grid k. Now further define

Zk =

{
1 grid cell k has a monitor
0 grid cell k does not have a monitor (2.20)
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Where
∑

k Zk = n∗, so the number of monitors is fixed. Then the joint distribution of

z = [z1...zK ] can be decomposed into successive conditionals and written out as

P (Z = z) = P (Z1) P (Z2|Z1 = z1) ... P (ZK |Z1 = z1...ZK−1 = zK−1)

=
n∗∏
i=1

categorical(w1, ..., wK) (2.21)

and we define the vector w as follows:

wk =

{
0 grid cell k already has a monitor
Dp
k grid cell k does not have a monitor (2.22)

We have now defined a joint probability model for the location of the monitors that de-

pends on a single parameter, p. We can use this model and the location of the EPA

monitors to estimate p̂ via maximum likelihood, which will provide a measure of how

preferentially chosen with respect to population density the monitors are.

We obtain p̂ = 0.64 for the AQS monitoring system, which tells us that that monitors are

in fact preferentially sampled with respect to population density. In light of our previous

results this suggests that the manner in which monitors are placed at least in the New

England area has led to improved estimation for health effect analyses that rely on an

estimated exposure. Obviously the mechanism by which monitor locations are chosen is

more complex than the one parameter model we have introduced here, but the results

do provide some intuition as to the accuracy of estimates based on this monitoring sys-

tem. This also provides guidance both for future researchers using monitors to estimate

exposure, and for guidance on where to place new monitors. If for instance, in a different

study researchers were to estimate p̂ for their monitoring system and find that it were

near 0 or even negative then additional work would have to be done to correct for bias in

the health effect estimate. It’s possible that an algorithm could be devised which would

take a set of monitors and select which ones to use to achieve a given level of preferential

sampling that would be beneficial for inference.
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2.6.2 Sampling new monitors in New England

The left side of figure 2.1 gives us a realistic view of the true PM2.5 surface across New

England, and we can use this to examine the impact that different monitoring schemes

would have on health effect estimates in epidemiological studies. We can again discretize

New England into a fine grid and then select locations to place monitors under CSR and

a variety of values of p. Using the values, Dk, for a grid cell k, we can sample locations

proportionally to Dp
k and vary p just as we did in our simulation study. The difference

here is that our exposure will be taken from the predicted satellite surface seen in figure

2.1 and will therefore be more realistic to what is actually seen when performing these

studies. Once we have a set of monitors we simulate outcomes from the same model as

in our simulation study

Y = β0 + β1X + ε, (2.23)

where ε is a vector of mean zero noise with variance 9 and β = (100, 5). Then we can

sample n∗ = 83 monitoring sites without replacement, as this is the number of monitors

that exist in the EPA AQS monitoring system. Figure 2.6 shows the corresponding results

across 500 simulations. We see that the 95% confidence bands for β̂1 decrease in width as p

grows larger indicating that the variability in our estimates decreases as we preferentially

sample. The confidence interval for CSR goes from 1.4 to 12.1, while the interval under

p = 1 goes from 3.1 to 7.9. The interval gets even smaller as p grows, although it seems

that it comes with some sort of bias. The right hand panel shows the means across the

500 simulations of β̂1 and we can see that the estimates are roughly unbiased near p = 1

while there is bias under CSR or extreme preferential sampling p = 2.

2.7 Discussion

In this paper, we have illustrated the impact that preferential sampling can have on ex-

posure prediction and outcome model estimation in two stage analyses. We defined pref-

erential sampling in the context of environmental studies when the location of monitors
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Figure 2.6: Estimates of β1 after sampling monitors within New England. Left panel
shows the confidence band representing the 2.5th and 97.5th quantiles of the 500 simula-
tions. The right panel shows the mean across 500 simulations

is likely to be associated with population density. Through analytic arguments and sim-

ulation studies we have shown how inference in two stage analyses that use predicted

exposures varies across different scenarios. Finally, combining our previous results with

a simple probabilistic model for the EPA monitoring locations we have shown that the

EPA monitoring system for PM2.5 is in fact preferentially sampled and that this likely is

a good thing for estimation of the effects of interest. These results are novel in that they

contrast many previous looks into preferential sampling that have shown preferential

sampling to lead to poor inference relative to completely random sampling.

That our results differ from previous literature on preferential sampling is not surprising

as we take a different approach to defining preferential sampling. Defining preferential

sampling with respect to population density is a more specific scenario, and is in fact a

subset of the scenarios proposed in Diggle et al. (2010); Lee et al. (2015). We think that

this is a very important scenario to look at, however, as it is a scenario that we feel is very

likely to occur in practice and we even showed that it does occur when using the EPA’s

AQS monitoring system. The main intuition behind the idea that preferential sampling is
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good for estimation has to do with the fact that while estimation of the exposure surface

might be biased under preferential sampling (Diggle et al., 2010), it is more accurately

estimated in areas where the majority of the population of interest resides. Possibly more

importantly, the standard errors of our exposure estimates are smaller in areas where the

majority of the population lives, which effectively reduces the amount of measurement

error induced by using estimates of exposure. This reduction in measurement error leads

to substantial reductions in the variance of estimates from second stage outcome models,

which are usually of interest in air pollution epidemiology.

Our results can be used to help interpret past and future studies that use monitors to pre-

dict exposure in environmental studies. Our results agree with the claim made by Szpiro

and Paciorek (2013) that the density of the monitor locations should agree with the den-

sity of the subject locations in a two stage analysis. While it is difficult to say whether this

holds exactly in any study, we have proposed a simple method to check for preferential

sampling with respect to population density that can be used to gain intuition to whether

the two densities are close enough to lead to valid inference. This among with our ana-

lytic and simulation results should help to guide further researchers on investigating the

health impacts of air pollutants.

2.8 Appendix

2.8.1 Details of bias calculation from section 2.4

We define the vector (Y,X,X∗, C, C∗) to be jointly normal, and define this distribution as


Y
X
X∗

C
C∗

 ∼ N



µy
µx
µx∗
µc
µc∗

 ,


σ2
y σyx Σyx∗ Σyc Σyc∗

σ2
x Σxx∗ Σxc Σxc∗

Σx∗ Σx∗c Σx∗c∗

Σc Σcc∗

Σc∗




Recall that we also defined our exposure, W as

W = µX(α̂) + ΣX,X∗(φ̂)ΣX∗,X∗(φ̂)−1(X∗ − µX∗(α̂))

= Cα̂ + ΣX,X∗(φ̂)ΣX∗,X∗(φ̂)−1(X∗ − C∗α̂)
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Where the only random variables, C,C∗, and X∗ are normally distributed and therefore

W is normally distributed. We are interested in the coefficients of the model that regresses

Y on W, i.e the conditional distribution of Y given W, which can now be written as

Y |W ∼ N

(
µy +

σyw
σ2
w

(W − µw), σ2
y −

σyw
σ2
w

)
and the coefficient of interest is the one that lies in front of W in the mean component of

the above conditional distribution. Using this we can say that

E(β̂1) =
σyw
σ2
w

=
cov(Y,W )

cov(W,W )

=
cov(Xβ + ε,W )

cov(W,W )

= β1
cov(X,W )

cov(W,W )

= β1

{
A

B

}
Where

A = αΣcα̂ + αΣ̂xx∗Σ̂−1x∗ Σc∗cα− αΣ̂xx∗Σ̂−1x∗ Σc∗cα̂ + Σ̂xx∗Σ̂−1x∗ Σx∗x

B = α̂Σcα̂ + αΣ̂xx∗Σ̂−1x∗ Σc∗Σ̂−1x∗ Σ̂x∗xα + Σ̂xx∗Σ̂−1x∗ Σx∗Σ̂−1x∗ Σ̂x∗x

+ α̂Σ̂xx∗Σ̂−1x∗ Σc∗Σ̂−1x∗ Σ̂x∗xα̂ + 2α̂Σ̂xx∗Σ̂−1x∗ Σc∗cα− 2α̂Σ̂xx∗Σ̂−1x∗ Σc∗cα̂

− 2αΣ̂xx∗Σ̂−1x∗ Σc∗Σ̂−1x∗ Σ̂x∗xα̂

2.8.2 Trade-off for variance of β̂1

Before we illustrated the trade-off that comes with preferential sampling for var(X −W ),

the measurement error variance. We used this to show how preferential sampling could

lead to less measurement error variance and therefore less variance in estimating β1. Here

we illustrate directly how this trade-off manifests in the estimation of β̂1 by making a

couple simplifying assumptions and approximations. Let’s assume that our exposure

surface follows equation 2.10 and that we estimate exposure W via
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Wi = Ciα̂

where Ci represents a single covariate and there is no intercept, because it is centered. The

exposure model parameter, α̂ is estimated using least squares as

α̂ =

∑n∗

j=1C
∗
jX
∗
j∑n∗

j=1C
∗
j
2

Then conditional on our estimates, W , we estimate the parameter of our outcome model,

which again for simplification we assume is centered with no intercept and we estimate

via least squares

β̂1 =

∑n
i=1WiYi∑n
i=1W

2
i

=

∑n
i=1 α̂CiYi∑n
i=1 α̂

2C2
i

=
1

α̂

∑n
i=1CiYi∑n
i=1C

2
i

=
η̂

α̂

where now we have written the estimate of β1 as a ratio of two random variables, one of

which involves the monitor locations and the other involving the subject locations. Now

we take the variance of this ratio and apply a taylor series approximation to the variance

of a ratio

var(β̂1) = var(
η̂

α̂
)

≈
(
E(η̂)

E(α̂)

)2 [
var(η̂)

E(η̂)2
+
var(α̂)

E(α̂)2
− 2

cov(η̂, α̂)

E(α̂)E(η̂)

]
We also assume that E(α̂) = α regardless of the sampling scheme for the location of the

monitors. Since η̂ is not dependent on the monitor locations we can now see that only

two terms in the above equation for the variance of β̂1 depend on the locations of the
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monitors. cov(η̂, α̂) and var(α̂) will both change as a function of the monitors. Writing

these terms out we see that

cov(η̂, α̂) = cov

(∑n
i=1CiYi∑n
i=1C

2
i

,

∑n∗

j=1C
∗
jX
∗
j∑n∗

j=1C
∗
j
2

)

=
β1

(
∑n

i=1C
2
i )(
∑n∗

j=1C
∗
j
2)

n∑
i=1

n∗∑
j=1

CiC
∗
j cov

(
εxi , εx∗j

)
Which will go up under preferential sampling because the locations of the monitors will

be closer to the locations of the subjects. Now we can look at

var(α̂) = cov(α̂, α̂)

= cov

(∑n∗

j=1C
∗
jX
∗
j∑n∗

j=1C
∗
j
2
,

∑n∗

j=1C
∗
j
2X∗j∑n∗

j=1C
∗
j
2

)

=
1

(
∑n∗

j=1C
∗
j
2)2

n∗∑
j=1

n∗∑
k=1

C∗jC
∗
kcov

(
εx∗j , εx∗k

)
Which will also go up under preferential sampling because the monitors will be located

more closely to each other. Now we have illustrated the trade-off that comes with pref-

erential sampling. On one hand the variance of β̂1 will go down under preferential sam-

pling, since the monitors are closer to the subjects and cov(η̂, α̂) goes up leading the over-

all variance to go down. On the other hand preferential sampling makes var(α̂) go up as

well, which increases the variance of β̂1 as monitors get closer together.
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3.1 Introduction

The analysis of large administrative databases is an increasingly important topic as these

databases become more widespread and methods to handle such large data sources be-

come available. In comparative effectiveness research and many other related fields, these

data sources are frequently used to estimate the causal effect of an exposure on a partic-

ular health outcome. While these data sources are very large allowing us to identify a

wide range of potential effects with high statistical power, they typically do not contain a

rich enough set of covariates to properly adjust for confounding bias. In some instances,

without additional data we may not be able to accurately estimate the effects of interest

from administrative health databases. However, in many instances there exists additional

”validation” data, which is either a subset of the original data or very similarly structured

data set from a different population, that contains far richer covariate information on a

much smaller sample. In these instances, researchers can leverage information from the

validation data source to fully adjust for confounding in the main data.

There exist two previous approaches in the literature to control for confounding, when

validation data is available. The first of which is referred to as propensity score calibra-

tion (Stürmer et al., 2005), which builds a ”gold standard” propensity score in the valida-

tion data and relates it to an ”error prone” propensity score that only includes variables

in the main data set. Propensity score calibration is useful in settings where outcome in-

formation is not available in the validation data as it only uses propensity scores to adjust

for confounding. This approach has been shown to work well in some settings (Stürmer

et al., 2007), though it relies on a surrogacy assumption, which states that the error prone

propensity score is independent of the outcome given the gold standard propensity score

and exposure. Another limitation of this method is that it is only applicable to binary

exposures as it relies on propensity score models to adjust for confounding. A second

approach introduces the idea of conditional propensity scores (McCandless et al., 2012),

and takes an approximately Bayesian approach to controlling for confounding using val-

idation data. The main idea behind this approach is to approximate the likelihood of the

data accounting for the missing covariates by integrating over the distribution of the so
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called conditional propensity score. They show theoretically that the conditional propen-

sity score can eliminate confounding bias, and show via simulation that their method

outperforms propensity score calibration. However, this method relies on strong distribu-

tional assumptions for the missing conditional propensity score and similarly to propen-

sity score calibration only works for binary exposures.

In this paper, we develop a new approach, which we will refer to as Guided Bayesian

Adjustment for Confounding (guided BAC), that overcomes the limitations described

above and that is applicable to both binary and continuous exposures. Specifically, our

approach is rooted on the idea of Bayesian data augmentation and extends the work by

Wang et al. (2012) called Bayesian Adjustment for Confounding (BAC) to scenarios with

missing data in the potential confounders. The main idea in Wang et al. (2012) is to ap-

ply ideas of Bayesian model averaging (Raftery et al., 1997; Hoeting et al., 1999) to the

scenario where interest is in the estimation of an effect of an exposure rather than pre-

diction of an outcome. Our proposed approach will treat the main data and validation

data as one combined data set and utilize model averaging to identify which missing

confounders are in fact required for valid estimation of the average causal effect, then

using the validation data impute these values within a fully Bayesian framework. The

proposed approach is appealing for a number of reasons. Typically in similar settings,

a particular set of confounders is chosen and then the remaining analysis is performed

conditional on this given set of confounders without accounting for the uncertainty in

the confounder selection, while our procedure will incorporate uncertainty into the selec-

tion of confounders into the causal effect estimates. Another advantage in the scenario of

missing data is that estimation relies on choosing a model for each potential confounder

that is missing in the main study (Little and Rubin, 2014). It has been noted in some

cases that imputation can be robust to model misspecification (Rubin, 1996). However,

in many cases it can lead to misleading inference, especially if careful consideration isn’t

taken as to what enters the imputation model (Schenker and Taylor, 1996; Meng, 1994).

It is well known that choosing a correct imputation model is a crucially important aspect

of any missing data analysis. Our proposed approach, has the nice feature that relies

on variable selection to identify the key confounders (both in the main study and in the
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validation). This leads to more robust inference with respect to misspecification of the

missing data imputation model, since we are including in the outcome model only the

imputed variables that are necessary for confounding adjustment. This proposed method

also has advantages over the aforementioned existing approaches as it is valid for contin-

uous and binary exposures, whereas previous methods relied on propensity score models

and therefore only can be applied to binary exposures. Finally, performing this analysis

within a fully Bayesian framework is useful as we will be able to account for the uncer-

tainty in confounder selection and variable imputation to obtain valid standard errors for

the average causal effect of the exposure in a straightforward manner.

The remainder of the paper is structured as follows: Section 3.2 will provide details of the

model and prior specification, section 3.3 will highlight the assumptions made in previous

approaches as well as in guided BAC, section 3.4 will introduce a simulation illustrating

the proposed method and compare it to other approaches in the literature, section 3.5

will analyze the effect of surgical resection on cancer patients in Medicare, and we will

conclude in section 3.6 with further discussion.

3.2 Model formulation

3.2.1 With no missing data

We will first present the ideas of model averaging when the goal is valid causal effect

estimation. This will effectively be a review of work from Wang et al. (2012); Lefebvre

et al. (2014); Wang et al. (2015), but is important in understanding how the proposed

approach will be useful in the setting of validation data to control for confounding and

how it can be extended to missing data. We define a model for an exposure X, as well as

a model for an outcome Y with the goal of estimating the causal effect of X on Y. We also

define a set of P fully observed covariates C = (C1...CP ), and we would like to identify

which of these are necessary for controlling for confounding and include those into the

outcome model.

In general, our interest will lie in the average causal effect (ACE), which we will define

as ∆(x1, x2). We will not utilize potential outcomes notation, however, this quantity is
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the difference in potential outcomes under exposure levels x1 and x2. We will always be

assuming that each subject has a positive probability of receiving each level of exposure

and that the potential outcomes are independent of the level of exposure given covariates,

C. Formally the ACE is estimated as

EP [E(Y |X = x1, C)− E(Y |X = x2, C)] , (3.1)

provided that there is no unmeasured confounding and that all necessary confounders

are included in C. Our goal is to average over the uncertainty in selecting confounders

to include in the analysis while assigning as much weight as possible to those sets that

include all necessary confounders. With this in mind we introduce two parameter vectors,

αx ∈ {0, 1}P and αy ∈ {0, 1}P which dictate which covariates are included in the exposure

and outcome models respectively. For example, αxp = 1 indicates that the pth covariate

should be included in the exposure model and vice versa. Conditional on regression

parameters and other unknown parameters, we can write out the models for exposure

and outcome as follows:

f(E(Xi)) = θx0 +
P∑
p=1

αxpθxpCip (3.2)

g(E(Yi)) = θy0 + βXi +
P∑
p=1

αypθypCip (3.3)

where i indexes the sampling unit for i=1,...,N, f() and g() are arbitrary link functions, and

θx and θy are regression parameters for the exposure and outcome models respectively.

We’ve also introduced the parameter of interest, β, the effect of the exposure on the out-

come conditional on covariates, C. In the setting of a continuous outcome we can define

the ACE as

∆(x1, x2) = β(x1 − x2) (3.4)

with β defined as in 3.3. In the setting of non continuous outcomes there is no clear
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expression for the ACE as it depends on the marginal distribution of the covariates, C.

We can write out the posterior distribution of ∆ as

P (∆|X, Y,C) =
∑
αy

P (∆|X, Y,C, αy)P (αy|X, Y,C), (3.5)

where both portions of the right hand side of the equation can be estimated from the

data. We define by αy∗ the minimal model, that is, a model that includes as covariates

the minimal set of confounders. then we can rewrite the above as

P (∆|X, Y,C) =
∑

αy∈αy∗

P (∆|X, Y,C, αy)P (αy|X, Y,C)+∑
αy /∈αy∗

P (∆|X, Y,C, αy)P (αy|X, Y,C) (3.6)

Where the second part of the sum includes models that do not contain the necessary con-

founders and therefore we will be inducing bias in our estimate of ∆. We want to specify

a prior distribution on (αx, αy), so that a posteriori we assign high weight to models αY

that include the minimal model (αy∗) and small or no weight to models that do not in-

clude the minimal model. In Wang et al. (2012, 2015) the authors demonstrated that ∆

has a causal interpretation and therefore does not change for all models that include the

minimal model.

3.2.2 Prior formulation

Wang et al. (2012) introduces a prior distribution to ensure that the posterior distribution,

P (αy|X, Y,C), assigns most of the posterior mass to models αY that include αy∗. The

prior ensures that any covariate that is associated with X, will receive higher weight a

priori for entering into the model for Y. The idea behind this is that a covariate could be

weakly associated with Y, but strongly associated with X and would therefore introduce

confounding bias into our results. This covariate is only weakly associated with Y and

therefore may not enter into the outcome model, but our prior will place larger weight to

this variable making it more likely to be included into the outcome model. The prior for

αy|αx is defined as follows:
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P (αyp = 1|αxp = 1)

P (αyp = 0|αxp = 1)
= ω (3.7)

P (αyp = 1|αxp = 0)

P (αyp = 0|αxp = 0)
= 1 for p=1...P (3.8)

where ω is a tuning parameter, which dictates how much prior weight we place for in-

cluding variables into the outcome model given they are included in the exposure model.

Setting ω = ∞ provides the greatest protection against missing important confounders,

as it forces any variable included in the exposure model into the outcome model. Set-

ting ω = 1 is analagous to implementing BMA on the outcome model as it places a flat

prior on all inclusion probabilities into the outcome model and only utilizes a variable’s

association with Y when deciding if it should be included into the model.

One potential pitfall of this prior specification is in the context of instrumental variables.

Instrumental variables are only associated with X and should not be included into the

outcome model as they will introduce bias in the estimation of the causal effect of X on

Y. One way to approach this issue is to set ω = ω0 where ω0 is some value between 1 and

∞ that balances our desire to include confounders into the model and our apprehension

for including potential instrumental variables into the model. When ω is finite we can

implement a conditional prior on αx|αy in the following manner:

P (αxp = 1|αyp = 1)

P (αxp = 0|αyp = 1)
= 1 (3.9)

P (αxp = 1|αyp = 0)

P (αxp = 0|αyp = 0)
=

1

ω
for p=1...P (3.10)

For ω < ∞ we have the possibility to assign lower probabilities on including variables

into the exposure model that are not associated with the outcome. This should reduce

the possibility of including instrumental variables into the outcome model, while still

increasing the probabilities of including important confounders.

Assuming there is no unmeasured confounding it can be shown that our joint prior on

(αx, αy) leads to an increase in the posterior probability of including all necessary con-

founders into the outcome model. If we let P1(α
y ∈ αy∗|D) be the marginal posterior
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probability that αy contains the minimal model under our joint prior and P2(α
y ∈ αy∗|D)

be the marginal posterior probability under a BMA prior then one can show that

P1(α
y ∈ αy∗|D) ≥ P2(α

y ∈ αy∗|D) (3.11)

Details of the proof are in the appendix. This shows how our conditional prior specifi-

cation assigns more posterior mass to models that contain the true confounder set and

therefore is more likely to adjust for confounding bias.

3.2.3 Extension to missing data

We will now extend these ideas to the setting with missing covariates, motivated in partic-

ular by the validation data setting where we have a validation data set with information

on an additional set of potential confounders that are not measured in the main data. We

have a main data set with N1 subjects and a validation data set with N2 subjects. We can

again define our matrix of covariates as C, though now we introduce U , which represents

the subset of the covariates in C that are missing in the main data but observed in the

validation data. Covariates 1 through M are fully observed for all N1 + N2 = N subjects

in the study, while covariates M+1 through P are only available in the N2 subjects in the

validation data. U represents covariates M+1 through P in the N1 subjects in the main

data set. The quantity of interest is the same as before, but is now defined as

P (∆|X, Y,C) =

∫
P (∆|X, Y,C, U)P (U |X, Y,C)dU

=

∫ ∑
αy

P (∆|X, Y,C, U, αy)P (αy|X, Y,C, U)P (U |X, Y,C)dU (3.12)

where we are now averaging over both the potential models for Y as well as the missing

data U . In practice this will be implemented using MCMC integration where within one

MCMC chain we will update the missing data, the choice of outcome model (denoted by

αy) and then the remaining unknown parameters conditional on a given imputed value

of the missing data and selected model. To do this we must specify regression models for
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variables M+1...P as they are the variables with missing data in this case. Specifically, we

regress each missing covariate (p=M,..P+1) to the set of covariates C1..Cp−1. We can write

out the model for a missing covariate p as follows:

h(E(Cip)) = θp0 +

p−1∑
j=1

θpjCij (3.13)

where i indexes the sampling unit for i=1,...,N1+N2, and h() is an arbitrary link function. It

is important to note that covariate Cp, p = M, .., P + 1 (which is missing in the main study

but observed in the validation data) is being regressed on the M covariates (C1, .., CM)

that are available both in the main and in the validation study, but also on a subset of

the missing covariates, where the subset of missing covariates included depends on the

subscript p.

3.3 MAR, transportability, and other assumptions

Any method attempting to use validation data to control for confounding in a larger data

set needs to make assumptions about the data generating mechanism. The existing ap-

proaches, such as the ones described in the introduction, implicitly make strong assump-

tions about the relationship between the main and validation data. In this section we will

try to clarify these assumptions and relate them to assumptions our proposed procedure

makes.

The propensity score approach of (Stürmer et al., 2005) makes a surrogacy assumption,

which states that the error prone propensity score (PSep) built on only the covariates

observed in the main data is independent of the outcome given the exposure and the

gold standard propensity score (PSgs) built with the larger set of covariates available in

the validation data. Mathematically this assumption is written as

PSep |= Y |X,PSgs (3.14)

Although this assumption seems reasonable, it does place strong restrictions on the direc-

tion of confounding bias. The assumption will not hold when the direction of confound-
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ing bias from the missing covariates (those only observed in the validation data) differs

from the direction of confounding bias from the covariates observed in the main data.

This assumption can not be realistically expected to hold in a wide range of scenarios and

it has been shown that violations of this assumption can actually lead to larger amounts

of bias than simply ignoring the covariates in the validation data (Stürmer et al., 2007).

The conditional propensity score approach of (McCandless et al., 2012) uses similar ideas

in the sense that they use propensity score models to adjust for confounding in the main

data set. Using the validation data they build the following model

log
(

p(Xi = 1)

1− p(Xi = 1)

)
= γ1Ci + γ2Ui, (3.15)

where i indexes the sampling unit for i=1...N2 as this model is fit in the validation data

only. They refer to γ2U as the conditional propensity score. They estimate the distribution

of γ2U in the validation data and then approximate the full data likelihood by integrating

over this distribution in the main data set. Although not explicitly mentioned in the

paper, this makes some strong assumptions about the relationships between variables

in the main and validation data. The first assumption they make is that the conditional

propensity score is normally distributed. They allow the mean of this distribution to

depend on the covariates observed in the main data set via

γ2Ui|Ci ∼ N(γ̃Ci, τ̃
2) (3.16)

where i=1...N1 + N2 and γ̃ and τ̃ 2 are estimated from the validation data. This doesn’t,

however, include information on the exposure or outcome. This is making assumptions

about the missingness mechanism of the data as they do not allow the missing quantities

to vary due to differences in X or Y. This is a weaker assumption than MCAR, because

they allow the missing quantity to depend on C, though stronger than MAR because the

missing quantity can not depend on X or Y.

Our approach does not make any assumptions analogous to the surrogacy assumption of

propensity score calibration as we are not using any form of regression calibration. We
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also do not make as strong of assumptions about the missingness mechanism as the con-

ditional propensity score approach. While we build imputation models conditional only

on the observed and missing covariates, information on the exposure and outcome enters

into the posterior distribution of the missing data imputations. This means that we are

making the assumption that our data is missing at random (MAR), which is a standard

assumption made in missing data problems. Both our approach and the other 2 propen-

sity score approaches make the assumption of transportability, which has been discussed

in detail in the measurement error literature (Carroll et al., 2006). For our approach this

assumption states that

Pmain(Y |X,C, U) = Pval(Y |X,C, U) (3.17)

Pmain(X|C,U) = Pval(X|C,U) (3.18)

Pmain(U |C) = Pval(U |C) (3.19)

The assumptions above are are required because these distributions from the validation

data are used to impute potential confounders in the main data set. Misspecification of

these distributions would lead to incorrect imputations in the main data set, and our

ability to adjust for confounding would be compromised. The extent to which differences

in these distributions affects inference in our setting is unknown and a subject of further

study.

3.4 Simulation

We simulated data with a binary exposure generated from a probit model. In general our

proposed method will work for binary or continuous exposures, but we restrict attention

to the former, to be able to compare our method with those relying on propensity scores.

We simulate our outcome to be either binary from a probit model or continuous from a

normal distribution with σ2
y = 5. We simulated M independent covariates to be observed

in the main data set and a subset of these are important confounders. The P-M covariates

missing in the main data set were further assumed to be independent of each other and
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of the M fully observed covariates, and a subset of these were chosen to be confounders.

The coefficients of the models were set to reflect the level of confounding desired in each

scenario. Scenarios 1-3 were designed in very similar manners as N1 + N2 = 2000 in all

three of these scenarios, and we varied N2 the number of subjects in the validation data

from 100 to 1000. Scenario 4 is intended to more accurately reflect the data generating

mechanism seen in our data analysis in section 3.5 and the sample sizes are chosen to

mimic those seen in SEER-Medicare. To study the effectiveness of all the approaches in

the simulation study we then varied the number of total covariates (P), the number of

missing covariates (P-M), the number of true confounders, the type of covariate missing

(binary or continuous), the prevalence of exposure and each of the binary covariates, and

the missingness mechanism (MAR or MCAR). Table 3.1 describes the data generating

mechanism for each simulation scenario.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
missingness MCAR MAR MCAR MCAR

# Observed covariates (M) 5 5 5 25
# Missing covariates (P-M) 5 5 5 9

# Observed confounders 2 2 2 6
# Missing confounders 2 2 2 2

# Total covariates 10 10 10 34
# Total confounders 4 4 4 8

Outcome type Continuous Continuous Continuous Binary
True ACE 5 5 5 0.025

% Confounding bias 30% 30% 20% 30%
Observed covariate type Continuous Continuous Continuous Binary

Missing Covariate type Continuous Continuous Binary Binary
Covariate prevalence NA NA 11% Varying
Exposure prevalence 20% 20% 8% 34%

Table 3.1: Description of simulation scenarios

To analyze the data sets we fit a variety of approaches aimed at obtaining the causal effect

of X on Y. It is important to note that propensity score approaches are aimed at obtaining

an unconfounded estimate, not at capturing the true data generating mechanism. Our ap-

proach is fitting the correct model and will therefore be more efficient than corresponding

propensity score approaches, which fit misspecified models. In scenarios 1-3 we are deal-

59



ing with a continuous outcome and binary exposure so the effect of interest, the ACE is

defined as

∆(1, 0) = β (3.20)

where β is the coefficient for the effect of X on Y in all of the outcome regression models

that include the minimal model. In scenario 4 we have a binary outcome and the ACE

is calculated using the regression coefficients from our outcome model and the empirical

distribution of the covariates in the data to obtain the marginal risk difference. We fit the

following approaches to estimating ∆(1, 0)

1. Naive approach that fits a regression model that only includes all covariates avail-

able for the main data set

2. Gold standard approach which pretends we observe U and fits the regression model

in the full data set that includes all covariates

3. Validation only approach which fits the regression model with all covariates, but

only in the validation data

4. Propensity score calibration approach of Stürmer et al. (2005)

5. Conditional propensity score approach of McCandless et al. (2012)

6. Our proposed approach, which imputes all the covariates missing in the main study,

but is ”guided” is the sense that only the covariates that are highly likely to be true

confounders are included into the outcome model

To examine the performance of the various methods in estimating the ACE we look at

three operating characteristics: Bias, mean squared error, and 95% interval coverage. For

Bayesian analyses, non informative priors were used for all regression coefficients, and

IG(0.001, 0.001) priors were used for all variance parameters.
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3.4.1 Scenario 1

Here we present the results when the validation data is a random sample of the full data

set (MCAR). Figure 3.1 shows the bias, mean squared error (MSE), and 95% interval cov-

erage of the estimated average causal effect (β from equation 3.3). We see that under this

scenario, all of the approaches show little to no bias for any validation sample size, with

the exception of propensity score calibration. When the validation data sample size is

only 100 our guided BAC approach suffers from a small amount of bias, though it is small

relative to the true effect size. This bias likely stems from the fact that the inclusion prob-

abilities (not shown) for the true confounders are not 100% at low sample sizes so we are

averaging over some models, which do not include the minimal confounder set. Looking

at the MSE we see that guided BAC and conditional propensity score approaches perform

the best among all models other than the gold standard, which no model should outper-

form. The conditional propensity score has a smaller MSE in N2 = 100, and the guided

BAC approach has the smallest MSE for the other sample sizes, though the difference is

quite small. Importantly, guided BAC outperforms the ”validation data only” approach

suggesting that imputing the data is improving efficiency of estimates. Looking at the

95% interval coverages we see that as expected, both the validation data only and gold

standard approaches always achieve the desired coverage probabilities. Guided BAC

achieves the desired coverage at nearly all sample sizes with the exception of N2 = 100,

when it only slightly underperforms with a coverage of 0.90. The conditional propen-

sity score approach does not achieve the desired coverage at any sample size though it is

attenuating to 0.95 as the validation sample size grows.

3.4.2 Scenario 2

We generated data under the exact same setup as in scenario 1, but the missing covariates

in the main study are missing at random and not missing completely at random. Specifi-

cally, we selected the subjects in the validation data to be a subset of the main data where

they were chosen with probabilities that depended on both the exposure and outcome. If

we let I be an indicator of missingness then we use equation 3.21 to select the validation
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Figure 3.1: Bias, MSE, and 95% interval coverage of estimate of β across 1000 simulations
under scenario 1

sample.

log

(
P (I = 1)

1− P (I = 1)

)
∝ 0.25X + 0.5(Y > Ȳ ) (3.21)

We’ve now introduced missingness into the data in such a manner that subjects with

higher exposure and higher outcome values are less likely to be in the validation sample.

Note that the probabilities are proportional to and not equal to, as the exact probabili-

ties depend on how large of a validation sample we select. Figure 3.2 shows the results

under this simulation setup. One key difference from previous results under MCAR is

that using the validation data only will give a biased causal effect, which is expected

because ignoring all observations with missing data only works under the MCAR as-

sumption. We hypothesized in section 3.3 that the conditional propensity score approach

relied on similar MCAR assumptions and this becomes evident in the simulation as this

method suffers from bias even under fairly large validation sample sizes. The guided

BAC approach seems to handle the missing mechanism better than the other proposed

approaches as it reaches unbiasedness at N2 = 400. While it does tend towards unbiased-

ness, guided BAC is still biased at small sample sizes, N2, of the validation data. This

suggests that more information is required from the validation data to properly handle

the missingness mechanism compared with scenario 1. Results in terms of MSE show

very similar results as in scenario 1 as we see that the conditional propensity score has
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the lowest MSE of all methods for N2 = 100, while guided BAC has the lowest MSE for

all other values of N2, although this difference is not substantial at most validation sam-

ple sizes. We do, however, see about a 20% decrease in MSE for guided BAC compared

with the conditional propensity score at N2 = 300. Coverage probabilities are lower for

the conditional propensity score than in scenario 1, likely due to the increase in bias. The

validation data has coverage probabilities between 0.8 and 0.9, which is less than desired,

and this is likely due to the increase in bias seen due to the missingness mechanism.

Guided BAC again obtains the desired 0.95 coverage probabilities for all N2 greater than

200. In the lowest validation sample sizes, guided BAC is somewhat biased leading to

small decreases in coverage probabilities as we see a probability of 0.8 for N2 = 100 and

0.9 for N2 = 200.
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Figure 3.2: Bias, MSE, and 95% interval coverage of estimate of β across 1000 simulations
under scenario 2, where the missingness mechanism is MAR

3.4.3 Scenario 3

We now simulate under the scenario where all the missing covariates are binary. We

simulate each binary confounder to have a prevalence near 11% and use regression co-

efficients that induce 20% bias in the effect of interest when all are left out of the model.

The exposure in this scenario is also fairly rare with a prevalence near 8% on average.

Figure 3.3 shows the performance of the various approaches under this simulation sce-

nario. We see that all of the approaches are biased in estimating β, with the exception of

guided BAC and the validation only approaches. The propensity score approaches suffer
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from bias even at large validation sample sizes of N2 = 1000. Guided BAC on the other

hand handles these types of covariates very well, as the imputation works very well when

there exists strong, binary confounders. This is evident when looking at MSE, as we see

that guided BAC achieves an MSE almost as small as the gold standard. Propensity score

methods on the other hand suffer from substantial amounts of error, as their MSE is larger

than the validation only approach. This is likely due to the fact that the prevalence of both

the covariates and exposure is quite small and the propensity score models that the other

methods rely on are extremely noisy, especially at small validation sample sizes. The 95%

interval coverages lead to similar conclusions as the bias from estimating β leads to small

coverage probabilities for all of the methods except guided BAC and the validation only

approach.
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Figure 3.3: Bias, MSE, and 95% interval coverage of estimate of β across 1000 simulations
under scenario 3, where covariates are binary and have low prevalences

3.4.4 Scenario 4

We generate data using a similar structure as the available SEER-Medicare. We set M=25

and P=34. Of the 25 fully observed covariates we set 6 of them to be confounders, while

2 of the missing 9 covariates are true confounders. We fit a probit regression model in

SEER-Medicare regressing 30 day survival against surgical resection and all available

covariates, as well as a probit exposure model regressing surgical resection against all

available covarisates. We use these estimated coefficients to generate data under probit

regression models. To simulate the potential confounders we calculated the prevalence
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of each covariate in SEER-Medicare and simulated independent bernoulli variables with

the same prevalences. The main data sample size in SEER-Medicare is 26,559 with a

validation sample size of N2 = 4, 428. We simulate data under this same sample size,

however, we also vary the values of N1 and N2 such that the ratio, N2

N1+N2
stays the same

but the sample size decreases by factors of 2. In this setup N2 will take the values (277,

544, 1107, 2214, 4428) and N1 + N2 will take the values (1660, 3320, 6640, 13280, 26559).

This gives us a good idea of how the various methods perform under the sample size

from SEER-Medicare, but also gives intuition as to whether the overall magnitude of N2

is what drives our ability to control for confounding, or if it’s the ratio of the sample sizes

that matters more. We see that at small values of N2 each method suffers from some bias

with the exception of the gold standard. When N2 = 1107, both the guided BAC and

validation only approaches attenuate back towards unbiasedness. In terms of MSE, we

see that the propensity score approaches suffer from large increases in MSE relative to the

gold standard MSE. Guided BAC on the other hand, has a relatively good MSE compared

to the gold standard even at low values ofN2. WhenN2 = 277 the ratio of the guided BAC

MSE to the gold standard MSE is only 1.4 while it is 22.7 for the conditional propensity

score method. When N2 = 4428, the sample size of the SEER-Medicare validation data

set, both the conditional propensity score and guided BAC perform well relative to the

gold standard, however, guided BAC is still better than the conditional propensity score

in terms of MSE. In terms of interval coverage, as in previous simulations, guided BAC

obtains interval coverages near the desired level while the conditional propensity score

does poorly except in large validation sample sizes. The results of this simulation suggest

that the magnitude of N2 and not the ratio, N2

N1+N2
is more important in determining how

well the various methods work.

3.5 Analysis of SEER-Medicare data

We apply the methods proposed in this paper, to estimate the causal effect of resection

versus biopsy on 30 day survival for Medicare beneficiaries ages 65 and older, diagnosed

with malignant neoplasm of the brain between 1999 and 2007. We use the Medicare
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Figure 3.4: Bias, MSE, and 95% interval coverage of estimate of β across 1000 simulations
under scenario 4, which emulates the SEER-Medicare data set

dataset as our main study, and the SEER-Medicare dataset as our validation study. We

focus on the subset of the Medicare population that had no previous history of cancer

that underwent surgical resection or biopsy. The sample size of the SEER-Medicare (e.g.

the validation sample) is N2 = 4428 and the sample size of the Medicare sample (e.g.

the main study) is N1 = 22, 131 leading to an overall sample size of 26559. The SEER-

Medicare data set contains subjects from only a subset of the states in the US, while the

full Medicare data set is not restricted in this way. It is also known that patients in SEER

tend to be healthier than those in the broader Medicare population. This leads us to ques-

tion the MCAR assumption as it is possible that the SEER-Medicare data set is comprised

of people who are different with respect to survival time, exposure, or some observed

covariates.

There are 25 covariates that are fully observed in the main sample including age, sex, race,

dual eligibility to Medicaid status, as well as a variety of comorbid conditions. The covari-

ates available only in the validation data include marital status, MRI status, glioblastoma,

income, CT scan status, and various covariates regarding the severity and location of the

tumors. Many of these covariates are likely to be important confounders of the average

causal effect of surgical resection on survival. This shows the need for a method that

takes into account the missing confounders in the main data set. For the analysis we used

a binary indicator of 30 day survival as our outcome and, our exposure is a binary in-

dicator of surgical resection vs. biopsy. We also set ω = 20, which assigns more weight
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to covariates to be included in the outcome model if they’re found to be associated with

exposure, though still allows for them to be excluded if the data strongly suggests these

covariates are only associated with the exposure and therefore should not be included

into the outcome model. We use non informative priors for all regression coefficients and

IG(0.001, 0.001) priors for all variance parameters. Convergence was assessed via visual

inspection of trace plots and calculation of the potential scale reduction factor (Gelman

et al., 2014). We fit our proposed method as well as the previous approaches that were

included in the simulation study: Propensity score calibration, Conditional propensity

scores, and the validation only approach.

3.5.1 Main data analysis

Table 3.2 shows descriptive statistics of all the covariates (the fully observed and the miss-

ing ones) as well as posterior inclusion probabilities into the exposure and outcome mod-

els under our proposed approach. We see that of the variables which are available in the

full data set, very few appear to be confounders. Age is included in both models 100% of

the time indicating it is a confounder. Of the comorbidities, pneumonia and protein calo-

rie malnutrition are the only ones that are all included in both models with high probabil-

ity. Of the missing covariates only CT scan status and stage of tumor (localized vs. other)

appear to be confounders as both are included in both the exposure and outcome models

at least 90% of the time with CT scan status being included in both models 100% of the

time. Other covariates such as glioblastoma, MRI status, tumor size, and tumor location

all seem like they could be potential confounders as they are included in both models

with some regularity, though much less than 100% of the time indicating uncertainty in

the data about whether they are associated with either the exposure or outcome. Overall

this suggests that a naive analysis based on the full data alone would likely lead to biased

estimates of the causal effect of surgical resection on 30 day survival. Due to the large

sample size in the validation data one might be inclined to simply analyze this data alone

and ignore the remaining Medicare information. We have no reason to believe, however,

that the SEER-Medicare registry is a random sample of the full Medicare database and

therefore using the validation data only could also lead to biased estimation.
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Figure 3.5 shows the resulting estimates of the average causal effect of surgical resec-

tion on the probability of 30 day survival for various models. In all cases we see similar

substantive results to those seen in Chaichana et al. (2011), though there is substantial

variability in the estimates across models. Ignoring the covariates only available in SEER

and analyzing the entire N1 +N2 subjects leads to a naive estimate of 0.054 (0.046, 0.061),

which we expect to be biased as table 3.2 indicates that many of these missing covariates

are potentially confounders. Analyzing the validation data alone leads to a causal effect

estimate of 0.016 (0.002, 0.030). This is far different than the naive estimator, though this

difference should not be solely attributed to confounding as the SEER population could

be different than the entire Medicare population. The guided BAC approach, which in-

corporates both sources of information leads to an estimate of 0.042 (0.031, 0.053). The

conditional propensity score gives a similar estimate of 0.045 (0.034, 0.056), while the

propensity score calibration gives a much smaller estimate of 0.018 (-0.010, 0.046). Obvi-

ously there is no way of knowing which, if any, of these models are close to accurately

estimating the effect of surgical resection on survival. Our scientific knowledge com-

bined with table 3.2 leads us to disregard the naive approach. Our guided BAC approach

should give correct estimates conditional on specifying the exposure, outcome, and im-

putation models correctly. As mentioned earlier, the binary nature of all of the missing

covariates leads us to worry less about correct specification of the exposure and outcome

models, though interaction terms could still lead to misspecification. We also reduced the

possibility of model misspecification by performing variable selection to remove unneces-

sary imputed variables from entering into the models. It is possible that we misspecified

the imputation models, but again these models are regressing the missing covariates on

the other covariates, which are binary reducing the possibility of model misspecification.

The validity of the validation only, conditional PS, and PSC approaches is contingent on

stronger assumptions than those made for the guided BAC approach and a breach of

these assumptions could explain any differences between the estimates.
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Biopsy Resection P (αxj = 1|D) P (αyj = 1|D)
Main data 75 < Age < 85 3853 (0.4) 5647 (0.33) 1.00 1.00
+ validation Age > 85 842 (0.09) 882 (0.05) 1.00 1.00
(N1 + N2 = 26,559) Female 4689 (0.49) 7817 (0.46) 0.01 0.65

White 8878 (0.92) 15643 (0.92) 0.00 0.02
Head CT scan done 793 (0.08) 1011 (0.06) 0.02 0.02
Brain MRI done 906 (0.09) 1812 (0.11) 0.01 1.00
Dual eligible 734 (0.08) 1231 (0.07) 0.00 0.01
Chronic Atherosclerosis 2089 (0.22) 3180 (0.19) 0.01 0.17
Substance abuse 695 (0.07) 1329 (0.08) 0.00 0.00
Hypertension 5936 (0.62) 10151 (0.6) 0.03 0.01
Cerebrovascular disease 386 (0.04) 556 (0.03) 0.00 0.02
COPD 1029 (0.11) 1938 (0.11) 0.26 1.00
Pneumonia 280 (0.03) 583 (0.03) 0.99 1.00
Protein calorie malnutrition 135 (0.01) 294 (0.02) 0.57 1.00
Dementia 1052 (0.11) 1504 (0.09) 0.01 1.00
Functional disability 346 (0.04) 460 (0.03) 0.00 0.01
Trauma in past year 398 (0.04) 618 (0.04) 0.00 0.03
Parkinson’s/Huntington’s 110 (0.01) 159 (0.01) 0.03 1.00
Chronic fibrosis 115 (0.01) 198 (0.01) 0.00 0.01
Depression 736 (0.08) 1098 (0.06) 0.01 0.02
Seizure disorder 1999 (0.21) 3487 (0.21) 0.00 0.02
Asthma 276 (0.03) 484 (0.03) 0.00 0.01
Hypertensive heart disease 122 (0.01) 211 (0.01) 0.00 0.00
Valvular and rheumatic heart disease 583 (0.06) 866 (0.05) 0.00 0.01
Diabetes 1827 (0.19) 3067 (0.18) 0.01 0.11

Validation only Married 830 (0.6) 1967 (0.65) 0.00 0.02
(N2 = 4,428) MRI done 896 (0.65) 2256 (0.74) 1.00 0.28

GBM 946 (0.69) 2633 (0.86) 1.00 0.31
One primary tumor 1220 (0.88) 2713 (0.89) 0.00 0.03
Supratentorial tumor 931 (0.67) 2453 (0.81) 1.00 0.34
Tumor > 3cm 703 (0.51) 1879 (0.62) 0.98 0.45
CT scan done 1143 (0.83) 2233 (0.73) 1.00 1.00
Income 507 (0.37) 1009 (0.33) 0.00 0.02
Localized tumor 926 (0.67) 2549 (0.84) 1.00 0.93

Table 3.2: Patient characteristics and posterior inclusion probabilities for covariates into
the exposure and outcome models. Binary variables are reported as number of patients
(percentage), and continuous covariates are reported as mean (standard deviation)

3.5.2 Examining effectiveness of guided BAC

To further validate our approach compared to alternatives in the context of the real data

analysis we use cross-validation. Within the validation data we can artificially create

missingness in a subset of the variables for a subset of the data. Given this new data

source in which we know the true missing values we can compare all the existing ap-

proaches to estimating the average causal effect to see which one comes nearest to the

gold standard approach estimate, which includes all of the covariates. To do this we al-

low 1500 randomly chosen subjects to maintain their full covariate information while the

remaining subjects from the validation data have information on certain covariates re-

moved. To maintain similarity to the main data analysis we induced missingness in the
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Figure 3.5: Estimates and confidence intervals for the causal effect of surgical resection on
the probability of 30 day survival

variables which are truly missing in the main Medicare data as detailed in table 3.2. We

repeated this process K times and kept track of the effect estimates for each of the pro-

posed approaches at each iteration. We look at the average absolute relative difference of

the estimator and the gold standard estimate to assess how well the various approaches

perform when data is missing. Define β̂k to represent the estimate of β from a given

method and β̂g to represent the gold standard estimate of β that exists if we have no

missing information. Then the quantity we look at is

1. L1 = 1
K

∑K
k=1 100 ∗

∣∣∣ β̂k−β̂g
β̂g

∣∣∣
Table 3.3 shows the results from performing cross validation on the validation sample.

We see that on average, the guided BAC approach is closer to the gold standard approach

with respect to absolute relative difference. This suggests that the guided BAC approach

tends to perform the best under the data generating mechanism that dictates the SEER

data set. While there is no guarantee that this data generating mechanism and therefore
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these results would extend to the larger Medicare population, it provides us with further

intuition that our approach is useful in analyzing this data.

Method L1

Naive 40.98
PSC 67.20
Guided BAC 19.42
Conditional PS 34.32

Table 3.3: Results from cross validation analyses of validation data

In analyses with a binary exposure, it is of interest to check for covariate balance, and this

is typically done via propensity scores. While our approach does not utilize propensity

scores to control for confounding, we can build a propensity score model at every iter-

ation of the MCMC using the most recent updates for the missing covariates. Once we

have this propensity score model we can create a matched data set via propensity score

matching and examine the extent to which this new propensity score balanced the miss-

ing covariates by looking at standardized differences of the missing variables between the

two matched sets. Since we do this at every iteration of the MCMC we can take the aver-

age across posterior draws of the standardized differences to obtain an idea of how well

the imputed covariates are able to balance the true missing covariates. To check this bal-

ance we need the true missing values, so just as before with cross validation we must do

this in the SEER data only and induce missingness in the covariates artificially. One key

difference here is we are not repeating this process K times, we are simply doing this for

one data set to get an idea of how well the covariates are balanced. Figure 3.6 shows the

mean across posterior draws of the balance of the missing covariates as well as the balance

when the propensity score is built using only the fully observed covariates. We see that

for each variable with a large imbalance in the covariate distribution, the imputed covari-

ate propensity score significantly improves the standardized difference between treated

and controls. This suggests that the naive analysis that only looks at the fully observed

covariates is less likely to give a valid estimate of the causal effect than the guided BAC

analysis, which imputes these covariates. While the imputed covariate propensity score

is never quite able to reach the gold standard propensity score balance, it does do well for
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the variables that our data are suggesting could be confounders. Looking at the posterior

inclusion probabilities on the Y-axis we see that the variables which are closer to the gold

standard than the naive balance such as CT scan status and whether a tumor is supraten-

torial are those that have high inclusion probabilities into both the X and Y models. This

indicates that the imputed covariates are good at achieving balance for those covariates

for which balance is crucial to estimating a valid causal effect.

Standardized difference

0 10 20 30 40 50 60

One primary tumor (0, 0.07)

Married (0, 0.01)

Income (0.02, 0.06)

CT_scan_done (0.92, 0.93)

MRI_done (0.58, 0.21)

Tumor > 3cm (0.33, 0.12)

Supratentorial tumor (1, 0.55)

Localized tumor (1, 0.33)

GBM (1, 0.46)

Naive PS
Gold Standard PS
Imputed PS

Figure 3.6: Balance of missing covariates using a naive propensity score built only on the
fully observed covariates, from a propensity score that utilizes imputed values of missing
covariates, and from a propensity score built on all of the covariates’ true values. On the
X-axis is standardized difference to measure the amount of imbalance between treated
and controls. The Y-axis shows the covariate names as well as the posterior inclusion
probabilities for the exposure and outcome models respectively in parentheses.
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3.6 Discussion

In this article we have combined ideas of Bayesian model averaging and missing data

imputation to estimate the effect of an exposure on an outcome when there are missing

confounders in the data set, but auxiliary information on the confounders is available

through a validation data set. Our proposed method has advantages in that it requires

less restrictive assumptions than previous approaches in the literature, can handle a wide

variety of data types, can accomodate the situation where the validation data is not a ran-

dom subset of the main study, and can identify necessary confounders for unbiased effect

estimation all while accounting for the uncertainty in confounder selection and variable

imputation. Through simulation we showed that under a wide variety of scenarios our

proposed approach works well and performs comparatively well to or better than existing

approaches to utilizing validation data to control for confounding. Finally, we illustrated

our approach in an analysis of surgical resection on 30 day survival in the SEER-Medicare

data and found that there was likely unmeasured confounding bias from missing covari-

ates in Medicare. Our approach attenuated the naive estimate of the effect of surgical

resection on 30 day survival by 20% indicating that the original estimate may in fact have

been suffering from confounding bias. We examined the validation data more closely to

examine how well our approach can balance covariates and eliminate bias in SEER, and

found that our method performed best in the SEER data relative to other approaches and

improved balance of the missing covariates.

While the results of our simulation study and data analysis suggest that our method is

very useful in controlling for confounding in the validation data setting, there are some

limitations. Our proposed procedure, as well as any variable imputation procedure, re-

lies on correctly specifying the imputation model for a given covariate. Information used

to impute a covariate is not limited to simply the imputation model, as both the expo-

sure and outcome models impact the imputations at every stage of our gibbs sampler as

well. This means that we must correctly specify the manner in which the covariate we

are imputing enters into both the exposure and outcome models as well. For instance, if

our imputation model was correct, but we included the covariate into the outcome model
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linearly when in truth it should be included as a quadratic term then we could induce

bias. Our method, however, is more robust than standard multiple imputation as it only

includes variables deemed necessary for controlling for confounding. Nonetheless the

extent to which various types of model misspecification affect our ability to control for

confounding is unclear and a potential topic of further research. If one does not want to

make these assumptions about the parametric form of the models then propensity score

approaches might be favorable. Our method also relies on a transportabillty assump-

tion stating that the conditional distributions relating our observed variables must be the

same between the main and validation data. While this is not necessarily a drawback of

the method, because any method relying on validation data will be forced to make this

assumption, it could lead to invalid inference and careful thought should be done before

performing an analysis to see if this holds true. We also stress that in any analysis exam-

ining a causal effect, scientific knowledge should be used to exclude any potential instru-

mental variables or collider variables before running any analysis. A data driven method

for selecting confounders such as ours will include these variables into the model, which

can introduce bias, so careful thought and expertise must be stressed before running our

approach.

One advantage of the proposed approach is the ability to not include into the outcome

model covariates that are not confounders. In scenarios where there are lots of potential

confounders, but only a small subset of them are important for valid effect estimation,

variable selection can drastically improve efficiency by eliminating unnecessary variables.

In the case of missing data this could be even more important because we will be exclud-

ing imputed variables, which could be even noisier than their fully observed counterparts

due to the uncertainty in variable imputation. Other variable selection approaches exist in

the literature, however, the majority of these approaches are good at including variables

to predict the outcome, not control for confounding, which is an important distinction be-

tween standard BMA and the prior used in our paper and Wang et al. (2012). Confounder

selection is also very important to protect against model misspecification of the imputa-

tion models. As discussed previously, model misspecification for our imputation model

can lead to bias of the exposure effect we’re interested in, but we will be removing vari-
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ables from the model and reducing the number of imputations which could potentially

be incorrect. To even further reduce model misspecification we could include variable

selection into the imputation models as well in a similar manner as Mitra and Dunson

(2010). This would reduce the possibility of misspecifying the imputation models and

would keep noise out of these models that would increase the mean squared error of our

final effect estimates.

One future direction is extending these ideas to data that is neither continuous nor bi-

nary. Our method in theory can handle any exposure or outcome variable that falls in

the GLM framework, though avoiding Metropolis Hastings updates that require tuning

would require more complicated computational tricks using latent variable representa-

tions to handle count or categorical data. We do not believe this to be a major hurdle, as

these MCMC techniques exist in the literature and simply must be implemented in our

setting. These approaches could also be used to impute categorical missing covariates.

In summary, we have proposed a procedure to control for confounding in the presence

of missing confounders when validation data is available. The proposed procedure uti-

lizes a fully probabilisitic, Bayesian approach, which accounts for the uncertainty in the

selection of confounders and in missing data imputations simultaneously. The procedure

extends previous work on the control of confounding in the presence of missing data

and validation data by allowing for both continuous and and binary exposures and by

alleviating some of the restrictive assumptions necessary for a valid effect estimate.

3.7 Appendix

3.7.1 Details of posterior simulation

Here we show the full posterior and corresponding conditionals for implementing a gibbs

sampler. For simplifying notation we will ignore U and let the matrix C represent all

covariates in the data, while acknowledging that some of these covariates are missing in

a subset of the subjects. First let θy = [θy0, β, θy1, ..., θyp]. Then Letting X∗i , Y ∗i , and C∗ij be

latent variables for Xi, Yi, and Cij respectively the posterior can be written as follows:
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P (θy, θx, θp, σ
2
y , σ

2
x, σ

2
p, α

x, αy, C, C∗, Y ∗, X∗|X, Y )

∝
N∏
i=1

p(Yi|Y ∗i )p(Y ∗i |θy, Xi, Ci, σ
2
y , α

y)

× p(Xi|X∗i )p(X∗i |θx, Ci, σ2
x, α

x)

×
P∏

j=M+1

p(Cij|C∗ij)p(C∗ij|θj, σ2
j , Ci)

×P (θy)P (θx)P (θp)P (σ2
y)P (σ2

x)P (σ2
p)P (αy, αx)

∝
N∏
i=1

p(Yi|Y ∗i )N(Y ∗i ; θy0 + βXi +
P∑
k=1

αykθykCik, σ
2
y)

×
N∏
i=1

p(Xi|X∗i )N(X∗i ; θx0 +
P∑
k=1

αxkθxkCik, σ
2
y)

×
P∏

j=M+1

p(Cij|C∗ij)N(C∗ij; θj0 +

j−1∑
k=1

θjkCik, σ
2
y)

×P (θy)P (θx)P (θp)P (σ2
y)P (σ2

x)P (σ2
p)P (αy, αx)

For each regression coefficient in the model we assign independent, non informative

N(0, K) priors, where K is set to be very large relative to the magnitude of the coeffi-

cients. For each variance parameter in the model we assign an IG(a, b) prior. The prior

distribution P (αy, αx) is implemented as described in the text. Under these priors the full

conditionals take the following form:

P (θx|•) ∼ N

((
W αx

x

T
Wαx

x +
σ2
xI

k

)−1
W αx

x

T
X∗,

(
Wαx

x

T
Wαx

x /σ2
x + I/k

)−1)

P (σ2
x|•) ∼ IG

(
N/2 + a, b+

(X −W αx

x θx)T (X −Wαx

x θx)

2

)
P (θy|•) ∼ N

((
Wαy

y

T
Wαy

y +
σ2
yI

k

)−1
Wαy

y

T
Y ∗,

(
Wαy

y

T
Wαy

y /σ2
y + I/k

)−1)

P (σ2
y|•) ∼ IG

(
N/2 + a, b+

(Y −Wαy

y θy)T (Y −W αy

y θy)

2

)
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where W αy

y represents the design matrix for the outcome model defined by αy, and Wαx

x

represents the design matrix for the exposure model defined by αx. This means that the

dimension of θx and θy are changing as we run through our gibbs sampler. In practice

to implement this algorithm we set θyj = 0 when αyj = 0 for all j, and then update the

remaining values of θy in the manner described above. We also note that if X or Y are

binary then σ2
x = 1 or σ2

y = 1 by definition and no updating of those parameters is nec-

essary. The full conditionals for the parameters of the imputation model for covariate j

where j=M+1...P are as follows:

P (θj|•) ∼ N

((
W T
j Wj +

σ2
j I

k

)−1
W T
j C

∗
j ,
(
W T
j Wj/σ

2
j + I/k

)−1)

P (σ2
j |•) ∼ IG

(
N/2 + a, b+

(Cj −Wjθ
j)T (Cj −Wjθ

j)

2

)

Where if covariate j is binary then by definition σ2
j = 1 and no updating of the variance

parameter is needed. Now we need to update from the full conditional distribution of the

missing covariates. If covariate j is missing and continuous then we will impute from a

Normal distribution:

N(Vijµij, Vij)

Where

µij = αyj
Yi(−j)θyj
σ2
y

+ αxj
Xi(−j)θxj

σ2
x

+
µ̃ij
σ2
j

+
P∑

k=j+1

θkjC
∗
ik(−j)

σ2
k

Vij = αyj
θ2yj
σ2
y

+ αxj
θ2xj
σ2
x

+
1

σ2
j

+
P∑

k=j+1

θ2kj
σ2
k

And

Yi(−j) = Y ∗i − θy0 − βXi −
∑
l 6=j

Cilθyl
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Xi(−j) = X∗i − θx0 −
∑
l 6=j

Cilθxl

µ̃ij = θj0 +

j−1∑
k=1

θjkC
∗
ik

C∗ik(−j) = C∗ik − θk0 −
k−1∑

l 6=j,l=1

WhenCij is binary we will impute it’s corresponding latent variable,C∗ij . IfCij is observed

then we still update it’s full conditional from

C∗ij ∼ CijTN+(Vijµij, Vij) + (1− Cij)TN−(Vijµij, Vij)

Where TN+ represents a truncated normal distribution that only assigns positive proba-

bility to the positive real line, and TN− the same but only assigning mass to the negative

real line.

µij =
µ̃ij
σ2
j

+
P∑

k=j+1

θkjC
∗
ik(−j)

σ2
k

Vij =
1

σ2
j

+
P∑

k=j+1

θ2kj
σ2
k

Where again

µ̃ij = θj0 +

j−1∑
k=1

θjkC
∗
ik

C∗ik(−j) = C∗ik − θk0 −
k−1∑

l 6=j,l=1

For binary variables that are missing, we again get a mixture of truncated normals, though

we replace the binary indicator with the posterior probability that variable is 1 or 0 as

follows:

C∗ij ∼ πijTN+(Vijµij, Vij) + (1− πij)TN−(Vijµij, Vij)

78



With the probability defined as

πij =
Φ(µij)φ(Yi(−j) − θyj)φ(Xi(−j) − θxj)

Φ(µij)φ(Yi(−j) − θyj)φ(Xi(−j) − θxj) + (1− Φ(µij))φ(Xi(−j))φ(Yi(−j))

The only parameters left to sample from are the vector of variable inclusion indicators

(αx, αy) and to do this we can follow the ideas of Wang et al. (2015) utilizing the MC3

technique for searching a model space (Madigan et al., 1994, 1995). We will illustrate

how to sample from P (αy|αx, D), however, the algorithm for sampling from P (αx|αy, D)

is analagous. We can define a neighborhood of αy to be the set of all outcome models

with one covariate either added or removed from the model defined by αy. If we are

at iteration t of our current Markov chain, and we are currently at the values (αy(0), α
x
(0)),

then we randomly draw a model αy(1) from the neighborhood of αy(0) and we accept the

new model with probability

min

{
1,
P (αy(1)|αx(0), D)

P (αy(0)|αx(0), D)
=
P (Y |αy(1), X, C)

P (Y |αy(0), X, C)
∗
P (αy(1)|αx(0))
P (αy(0)|αx(0))

}

Otherwise the chain stays at αy(0). We are easily able to calculate
P (αy

(1)
|αx

(0)
)

P (αy
(0)
|αx

(0)
)

using our condi-

tional prior specification from section 3.2.2. To calculate the ratio of marginal likelihoods

we can use the BIC approximation to the Bayes factor (Raftery, 1995) defined as

P (Y |αy(1), X, C)

P (Y |αy(0), X, C)
≈ exp

{
1

2
(BIC0 − BIC1)

}

3.7.2 Proof that prior increases posterior probability of including min-
imal confounder set

Here we outline why our prior will be useful in controlling for confounding. Let all dis-

tributions with a subscript 1 be distributions associated with using our conditional prior

specification, and all distributions with a subscript 2 be associated with a flat prior on the
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model space similar to BMA. Distributions without a subscript are those that are unaf-

fected by the choice of prior. Then without loss of generality if we assume that the first

m covariates are the ones necessary for controlling for confounding then the following

holds:

P1(α
y ∈ αy∗|D) = P1(α

y
1 = 1, αy2 = 1, ..., αym = 1|D)

= P1(α
y
1 = 1|D) P1(α

y
2 = 1|αy1 = 1, D)...P1(α

y
m = 1|αy1 = 1, ..., αym−1 = 1, D)

= P1(α
y
1 = 1|D) ∗ C1

=
P (D|αy1 = 1)P1(α

y
1 = 1)

P (D)
∗ C1

=
∑
αx
1

P (D|αy1 = 1)P1(α
y
1 = 1, αx1)

P (D)
∗ C1

=
P (D|αy1 = 1) 2ω

3ω+1

P (D)
∗ C1

≥
P (D|αy1 = 1)1

2

P (D)
∗ C1

=
∑
αx
1

P (D|αy1 = 1)P2(α
y
1 = 1, αx1)

P (D)
∗ C1

= P2(α
y
1 = 1|D) ∗ C1

= P2(α
y
1 = 1|D)P1(α

y
2 = 1|αy1 = 1, D)...P1(α

y
m = 1|αy1 = 1, ..., αym−1 = 1, D)

= P1(α
y
2 = 1|αy1 = 1, D) ∗ C2

=
P (D|αy2 = 1, αy1 = 1)P1(α

y
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=
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= P2(α
y
2 = 1|αy1 = 1, D) ∗ C2

= P2(α
y
1 = 1|D)P2(α

y
2 = 1|αy1 = 1, D)

× P1(α
y
3 = 1|αy1 = 1, αy2 = 1, D)...P1(α

y
m = 1|αy1 = 1, ..., αym−1 = 1, D)

And the proof concludes by performing analogous algebraic operations for each of the

remaining conditional posteriors from j=3,...,m. We have now shown how our condi-

tional prior specification assigns more posterior mass to models that contain the true con-

founder set.
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STÜRMER, T., SCHNEEWEISS, S., ROTHMAN, K. J., AVORN, J. and GLYNN, R. J. (2007).

Performance of propensity score calibrationa simulation study. American journal of epi-

demiology 165 1110–1118.

SWELDENS, W. (1998). The lifting scheme: A construction of second generation wavelets.

SIAM Journal on Mathematical Analysis 29 511–546.

SZPIRO, A. A. and PACIOREK, C. J. (2013). Measurement error in two-stage analyses,

with application to air pollution epidemiology. Environmetrics 24 501–517.

SZPIRO, A. A., PACIOREK, C. J. and SHEPPARD, L. (2011a). Does more accurate exposure

prediction necessarily improve health effect estimates? Epidemiology (Cambridge, Mass.)

22 680.

SZPIRO, A. A., SHEPPARD, L. and LUMLEY, T. (2011b). Efficient measurement error cor-

rection with spatially misaligned data. Biostatistics kxq083.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 267–288.

WAND, M., ORMEROD, J. T. ET AL. (2011). Penalized wavelets: Embedding wavelets into

semiparametric regression. Electronic Journal of Statistics 5 1654–1717.

WANG, C., DOMINICI, F., PARMIGIANI, G. and ZIGLER, C. M. (2015). Accounting for

uncertainty in confounder and effect modifier selection when estimating average causal

effects in generalized linear models. Biometrics .

WANG, C., PARMIGIANI, G. and DOMINICI, F. (2012). Bayesian effect estimation account-

ing for adjustment uncertainty. Biometrics 68 661–671.

87



XIONG, R., XU, J. and WU, F. (2006). A lifting-based wavelet transform supporting non-

dyadic spatial scalability. In Image Processing, 2006 IEEE International Conference o=n.

IEEE.

88


