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Abstract

A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as
proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed,
the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is
buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only
facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an
automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information
from both databases containing manually annotated, structured information and automatic information extraction of
unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein
interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway
relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure,
named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships.
Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We
designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate
hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate
plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also
provide guidance for experimental designs.
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Introduction

Relationships among bio-entities, such as proteins, genes,

diseases, biological pathways and gene ontology (GO) terms,

constitute a significant part of our biological knowledge. Protein-

protein interactions, for example, play central roles in almost all

biological processes and are indispensable for our understanding of

the mechanisms of biological processes and for development of

drugs[1]. Manual annotation has been used to extract such

information from scientific literature and deposit it into databases

as structured form[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19].

However, manual annotation is quite time and resource consuming

and it has become more and more difficult to keep pace with the

ever increasing publications in biomedical science. In recent years,

computational methods have been developed to automatically

extract molecular interaction information and other bio-entity

relationships from literature and been used to assist the human

annotators in building databases[20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41]. When information is located

at different places, it is not convenient to conduct research that

requires integration of separated pieces of information. Ideally, one

would like to have heterogeneous information integrated into

structured forms that allow both convenient retrieval and more

complicated computations on such information. Studies have been

initialized toward such goals for some important types of biological

information. For instance, the National Center for Biological

Information (NCBI) has built databases such as Entrez Gene[42],

which stores information from both curation and automated

integration of data from NCBI’s Reference Sequence project

(RefSeq)[43] and other databases. Gene Ontology database[44],

which documents biological terms such as molecular functions,

biological processes, and cellular locations, has also been linked with

proteins that are related to the corresponding terms[26,45].

Integration of information is critical to understanding biology at

system level and accelerating scientific discoveries to keep up with

the rapidly increasing rate of new biological information being

produced.

Integration of information from different sources/domains

makes it possible to discovery new knowledge through automatic

hypothesis generation. Knowledge discovery has been an active

topic[22,23] since Swanson’s pioneer work more than 30 years

ago[46]. The concept is rather simple: If there are relationships

between A and B, and B and C, then one can hypothesize a

possible relationship between A and C. However, when the two

known relationships are published at different places, it can be

difficult to identify them and make the connection. Some

literature-based discovery (LBD) systems have been developed in

the past based on this idea such as BITOLA[47], iridescent[48],
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Manjal[49], LitLinker[50] and CoPub Discovery[51]. They aim to

find the hidden relationships automatically through information

extraction and integration. There are several drawbacks for the

previous systems to be used in inferring biological relationships,

especially molecular interaction information, which plays a central

role in these relationships. Firstly, they did not integrate manually

annotated and structured (MAS) information in publically

accessible databases such as protein interaction databases[5,

11,13]. A knowledge discovery system should distinguish what

has been known from what may be new. In fact, some of the

information discovered by these early systems may have already

been deposited as MAS information in databases. In addition,

these systems likely miss some MAS information for a given query,

which would have been easily found by searching a database.

Integrating MAS information can also greatly help knowledge

discovery. For example, when inferring relationship between A

and C (relationship R1) using two relationships A and B (R2), and

B and C (R3), the probability of R1 can be more accurately

inferred if R2 and R3 are true. Secondly, those previous knowledge

discovery methods use co-occurrence of terms in abstracts to infer

their relationships. Such approach is not effective for inferring

molecular interaction information since it has been shown that

even using co-occurrence in the same sentence, the false positive

rate can be very high[38]. This is because many molecule names

co-occur in the same sentence but do not interact with each other.

Thirdly, the earlier systems do not explicitly consider the type of

relationship between two bio-entities. For instance, words like

inhibit, activate, and phosphorylate express different types of interaction

information. Without incorporating the information on the type of

interactions, a knowledge discovery system tends to return a large

number of false positives (see an example in Result, case study 3).

Several difficulties need to be overcome to make automatic

knowledge discovery systems effective tools in biomedical research.

Firstly, information from different sources/domains needs to be

integrated in a structured way. This is highly nontrivial due to the

difference in data organizations and discrepancy in information

from different databases caused by inevitable annotation errors or

inherent ambiguity/uncertainty of certain information. Secondly,

relationship information needs to be well annotated to allow for

effective information flow from one bio-entity to another. For

example, in protein-protein interaction databases, how proteins

interact with other proteins, such as inhibit, regulate, phosphorylate etc,

is usually not well documented. Other information such as the

directionality of the interaction[36], the cellular location of the

interactions and the function of the interactions are seldom

provided despite that such information can be very important for

the understanding and use of the interaction information in

research. Thirdly, with large volumes of information, false

positives will be a major issue for automatically generated

hypotheses. Ranking the hypotheses or providing confidence

levels would be very critical to make knowledge discovery systems

practically useful.

In this study, we collect several important types of bio-entity

relationship information from manually annotated databases and

literature, including protein–protein interactions, protein/gene

regulations, protein–small molecule interactions, protein–GO

term relationships, protein–pathway relationships, pathway–dis-

ease relationships and protein–species relationships. We further

integrate the relationship information in a graph data structure,

called integrated bio-entity network (IBN), where the vertices are

bio-entities and edges are their relationships. Edges in IBN contain

information on the types of the relationships, the directionalities of

the relationships and the probabilities of the relationships. The

rich information in the edges makes IBN a very effective system for

knowledge discovery. To generate hypotheses automatically, we

design graph-theoretic algorithms to extract high probability

indirect relationships between bio-entities in the network. We

show with examples that IBN can be used to generate plausible

hypotheses for a given query, which can help researchers to better

understand biological systems and design experiments.

Results

Data integration from databases and literature
Integration of bio-entity relationship information from

databases. We first collect molecular interaction information

from manually curated databases. For protein–protein interactions,

BioGRID [5], EBI IntAct [11] and NCBI Gene database[42,52] are

used. Protein-small molecule interaction information is obtained

from STITCH II database [13,53], which is a collection of

information from manually curated databases, high throughput

experiments and text mining. Since we also extract protein–small

molecule interaction information from literature using our own

method[38], we filtered out those interactions with low scores in

STITCH II database including those obtained from text mining.

In addition to molecular interaction information, we also

collected other types of bio-entity relationships including protein–

GO terms, protein–pathway, pathway–disease, and protein–

species relationships. There have been some previous studies

aiming to extract some of the above relationships automatically

from literature[1,24,54,55,56,57]. The relationship information

between GO terms and proteins is obtained from Gene Ontology

database[44] and GOA database[26], where such associations

have been manually annotated for many of the GO terms.

Relationships between pathways and proteins are obtained from

pathway interaction database[58] and Reactome[59]. Relation-

ships between diseases and pathways are obtained from KEGG

database [60]. Totally, 30,707 GO terms, 607 pathway names,

and 29,018 disease names are collected. 12,190 GO terms, 369

pathways, and 1,662 diseases are associated with at least one

protein. 326,425 proteins are associated with at least one GO

term. Among all 39,501 human proteins, 16,879 are associated

with at least one GO term and 4,828 are associated with at least

one pathway.

Large scale extraction of protein interaction information

from literature. We performed large scale automatic extrac-

tion of protein-protein interaction information from literature

including both physical interactions and regulatory information

using a Bayesian network approach developed earlier[38]. All

PubMed abstracts with at least one interaction word were

downloaded and split into sentences to obtain triplets (two

molecule names and one interaction word in a sentence

constitute a triplet). Totally, we have 6,734,286 abstracts,

1,991,555 sentences with triplets, and 4,676,329 triplets. Among

the extracted triplets, 652,236 are predicted as describing

interactions, in which 335,176 are unique interactions. If only

40% of these predictions are true cases (estimated based on

manually reading a small number of cases), there will be more

than 130,000 new interactions added to the current 303,093 total

interactions.

To extract protein–small molecule interaction (PSI) informa-

tion, we obtained the small molecule name dictionary from NCBI

PubChem database[61]. We filtered out protein–protein specific

interaction words from the interaction word dictionary, such as

dimerization, phosphorylation etc. Totally, we obtained 2,960,499 PSI

triplets, and 505,060 are predicted as describing interactions using

the BN model trained with protein-protein interactions[38]. We

manually read ,200 randomly selected predicted interaction

Integrated Bio-Entity Network
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triplets, which gave an estimated accuracy of about 35%. This

accuracy is comparable to the best performance of current

methods on general biological texts [62,63] and showed that the

method we developed for protein-protein interaction extraction

can be readily extended to protein-small molecule interaction

extraction.

Bio-entity relationship integration and knowledge
discovery

With the relationships information collected, we would like to

organize them in a structured form so that the power of integrated

data can be harnessed conveniently and efficiently. Since all the

relationships naturally form a network, graph representation is a

compelling choice. We name the network formed by the

relationships among bio-entities as integrated bio-entity network

(IBN). Vertices or nodes in IBN represent bio-entities and edges

represent relationships between bio-entities. Edges can be

information confirmed manually such as those obtained from

databases or extracted automatically from literature. Indirect links

between two bio-entities through more than one edge may be

valuable information that has not been documented in previous

literature. Searching such information in IBN allows scientists to

discover valuable new information. In fact, such practice has been

done routinely by scientists in their research through a

combination of manually reading the literature and performing

searches on multiple databases. IBN thus can serve as a platform

to assist researchers to automatically generate new hypotheses,

which can be further tested through targeted experiments or

literature review. The overview of the system is shown in Fig 1.

The generated hypotheses from IBN can be relationships

between any two types of bio-entities in the network. For example,

a researcher may want to find the effect of a small molecule to

cells. Such effect can be a therapeutic effect of the small molecule

to a disease or can be drug-side effect. To find such effects, the

small molecule can be queried through IBN to retrieve all proteins,

pathways, GO terms and diseases that related to this small

molecule. Another typical question a researcher may ask is

whether there is any relationship between two bio-entities he/she

is interested in. In such case, the two bio-entities can be used as the

input of a query that searches for all direct and indirect

relationships with high probabilities between the two bio-entities.

To perform the above searches, we designed graph theoretic

algorithms, breadth-first search with pruning (BFSP) and most

probable path (MPP) (see Methods for details). We illustrate how

knowledge discovery can be performed using IBN through a few

case studies.

Knowledge discovery case study 1: insulin network. In

this case study, we want to find all proteins related to insulin

pathway directly or indirectly through other proteins. Using BFSP

(see Method) starting with insulin pathway and retrieving only the

bio-entities within two edges away from insulin pathway, the

search returns more than two thousand interactions. The proteins

directly related to insulin pathway are shown in Fig 2a and the

proteins and small molecules that interact with them are shown in

Fig 2b, where a subset of edges with probability p = 1 are selected.

The molecular interaction information for insulin pathway,

retrieved from IBN, not only shows how proteins within this

pathway related to one another, but also shows how other proteins

not directly associated with insulin pathway interact with those

proteins. Some of those indirectly related proteins may actually be

associated with insulin pathway, although they have not been

annotated so far. For example, TRB3 was found to disrupt insulin

signalling by binding to AKT[64]. In the current database, only

AKT is annotated to be associated with insulin pathway. Based on

the discovered information, we can add protein TRB3 to the list of

proteins that are associated to insulin pathway. Another example is

inhibitor kappaB kinase (IKK), which contributes to insulin

resistance by phosphorylating protein IRS-1[65], a protein that

has been annotated to be associated with insulin pathway. Again,

protein IKK can be added to those proteins related to insulin

pathway based on this information. The set of proteins that are

currently annotated to be associated with insulin pathway is given

in supplementary material (File S1). Retrieval of pathway related

information can thus assist human annotation of protein-pathway

associations. Other constraints can be easily incorporated into

BFSP algorithm. For example, one can limit the proteins from

human only, or limit the interaction relationships to be only one

particular type, such as phosphorylation, inhibition or activation.

Knowledge discovery case study 2: aspirin network. We

use aspirin as an example to illustrate how one can use IBN to

search for diseases related to a small molecule. A BFSP search with

aspirin and its synonyms as the query keyword and pc = 1 resulted

Figure 1. System overview. The knowledge discovery system for bio-entity relationships. Green boxes are bio-entities. Red ones are bio-entity
relationships, which are used to build IBN.
doi:10.1371/journal.pone.0021474.g001
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in 144 proteins, where pc is the probability cutoff to prune away

low probability relationships in BFSP algorithm. These are

proteins that are known to directly interact with aspirin.

Reducing pc to 0.5, we obtained 155 pathways and 1 disease

(GO terms are ignored since they are not linked to diseases in

IBN). Since the goal here is to find diseases related to aspirin,

proteins indirectly interact with aspirin are ignored because they

will not lead to a disease given pc = 0.5 (see BFSP procedure for

probability calculations). The reason that only one disease was

returned is because the only way we obtain disease information is

through the aspirin-protein-pathway-disease route and pathway-

disease relationship is poorly annotated in the current databases.

The disease found is ALPS (Autoimmune Lymphoproliferative

Syndrome). We did a literature search and did not find literature

support for aspirin being a treatment for ALPS. In IBN, aspirin is

connected to ALPS through pathway apoptosis and a few proteins

associated with that pathway. The query result not only links

aspirin to the disease ALPS, but also provides the edges that

connect the two entities, which may shed light on the mechanism

of the action of aspirin on the disease (if it is indeed effective). To

find out more diseases related to aspirin, we did a text mining

study using one of the proteins that is well known to interact with

aspirin, Cox-2. We searched all PubMed abstracts for co-

occurrences of pathway and disease names with Cox-2. We

found that there are totally 444 diseases and 45 pathways. Some

diseases co-occur with Cox-2 many more time than others, such as

cancer (2585 co-occurrences) and pain (335 co-occurrences).

Higher frequency of co-occurrence indicates higher likelihood of

true association or stronger relationship. The diseases and

pathways that are strongly associated with Cox-2, together with

ALPS, are plotted in Fig 3.

Knowledge discovery case study 3: PMA network. PMA

(phorbol ester, or 12-O-Tetradecanoylphorbol-13-acetate) is a

potent tumor promoter often employed in biomedical research to

activate the signal transduction enzyme, protein kinase C

(PKC)[66]. PMA is also being studied as a drug in the treatment

of hematologic cancer or bone marrow disorder and is currently

undergoing phase 1 clinical trial[67]. In this study, our goal is to

build a network around PMA that includes proteins, GO terms,

and pathways that are affected by PMA directly or indirectly.

Performing BFSP with PMA as the query keyword and pc = 0.5

returned thousands of proteins and interactions. This is not very

surprising since many of proteins in PKC family and those

regulating (or regulated by) them are hub proteins that are

important in many biological processes. However, not all the

reported proteins, pathways or GO terms are actually affected by

PMA. The reason is that a significant part of the interaction

information used by us is obtained from databases and there is no

detailed interaction information available such as directions of the

interactions. Proteins that are not affected by PMA directly or

indirectly can also be returned, which is not desirable. Clearly,

without the directionality information, many false positives are

produced and the effect of the signal/query can be difficult to infer

accurately.

We built a smaller network for PMA by requiring the

interactions to be either regulatory type or phosphorylation using

interactions extracted from literature, which resulted in only 79

proteins and 166 interactions in total. We manually verified the

interactions and kept only the correct ones. The resulting directed

network is shown in Fig 4a. In Fig 4b, pathways and GO terms

associated with those proteins in Fig 4a are also shown. With this

directed network, we can infer with more accuracy the pathways

and GO terms affected by PMA. Some pathways are indeed found

to be affected by PMA. For example, association of PMA with p38

MAPK signaling pathway is confirmed in Ref[68], and association

of PMA with Atypical NF-kappaB pathway is confirmed in

Ref[69]. The former was found through protein MAP3K4 and the

latter was found through protein CSNK2A1. In both abstracts,

there is no mentioning of the proteins, indicating the relationships

were discovered indirectly through other literature. In Fig 5 we

Figure 2. Insulin pathway network. a). Network with only proteins directly related to insulin pathway. b). Network with proteins, and small
molecules. Nodes in blue, called pathway proteins, are proteins that are annotated as associated with insulin pathway as shown in a), nodes in green
are proteins that interact with pathway proteins. Nodes in yellow are small molecules that interact with pathway proteins.
doi:10.1371/journal.pone.0021474.g002
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show the edges that link the pathways and PMA found using most

probable path (MPP) algorithm (without taking directionality into

account). Interestingly, the edges between PMA and the pathways

do not actually explain the associations because the direction

between IGHE and SH3KBP1 is the opposite of what one would

expect. It is likely that the real mechanism is not through the path

found by MPP. By looking at Fig 4, one can identify a few hub

proteins and one of them, JUN, directly regulate the two proteins

associated with the two pathways. JUN is also regulated by 13

other proteins. It is therefore tempting to speculate that the real

pathway may go through JUN since regulation of any of the 13

proteins by PMA would give a plausible explanation of the

associations between PMA and the two pathways. Further

experiments can be designed using such information to elucidate

the true mechanism.

In Fig 6, we plot all the proteins and pathways that are affected

by PMA directly or indirectly when directionality information is

taken into account, which is substantially smaller than Fig 4b.

Simply from the names of some of the pathways (given in the

legend of Fig 6), we can see that they should be regulated by PMA

since PMA directly activates IL2 and some of the pathways are

related to IL2. Manual verification of all the relationships between

PMA and pathways is not a trivial task. One way is to perform a

retrieval search using both PMA and a pathway name as the

keyword at PubMed. Returned articles from the searches can be

manually read to confirm the relationship. For those PubMed

Figure 3. Aspirin network. Aspirin is connected to three proteins, which are connected to apoptosis pathway, which is then connected with
disease ALPS. The network also provides a mechanism of action of aspirin as a treatment for ALPS.
doi:10.1371/journal.pone.0021474.g003

Figure 4. PMA network with direction information for the interactions. a) PMA and proteins. b) PMA, proteins, GO terms and pathways.
doi:10.1371/journal.pone.0021474.g004
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searches with no hits, searches on Google sometimes provide clues

on the relationship. Again those need to be carefully followed to

confirm the relationship. For instance, searching PMA and

pathway, Calcineurin-regulated NFAT-dependent transcription

in lymphocytes, did not return any articles in PubMed. However,

we found some evidence through Google search for the associ-

ation at this URL: http://www.genome.jp/dbget-bin/www_bget?

uniprot:O95644. Of course, even there is no any reported

evidence for a relationship it can still be true.

Another pathway we examined is muscle contraction, which is

separated from PMA by four proteins. PubMed search using

PMA and muscle contraction as the keywords returned 182

articles. The first article[70] published recently studied the

mechanism of PKC induced muscle contraction using mouse

model and reported that PKC activation by PMA increased the

level of protein TRPM4, which may be responsible for the

smooth muscle cell depolarization and vasoconstriction of

cerebral arteries. Using the PMA network in Fig 6 containing

all the human proteins, another mechanism can be hypothesized,

which can be tested experimentally if a follow-up by manual

literature review considers it worthwhile. In the current database,

muscle contraction is associated with other 44 proteins and PMA

interacts with another 8 proteins. A manual database/literature

search starting from those proteins to find the path between PMA

and muscle contraction is clearly a daunting task.

Discussion

In this study, we performed a large scale integration of a diverse

set of bio-entities and their relationship information from both

databases and literature and built a network based system,

integrated bio-entity network (IBN), for biological knowledge

discovery. We aim to address the three challenges faced by the

current knowledge discovery studies, namely, data integration,

relationship annotation and hypothesis ranking. Although there is

still a lot of room for further improvement in all three areas, the

framework we set up in this study presents a clear path toward

effective automatic biological knowledge discovery. With the

network data structure, graph theoretic algorithms can be

designed to search for high probability indirect relationships

(hypotheses) in IBN. Those automatically generated hypotheses

based on the current knowledge base can help researchers to better

understand their experimental results and design future experi-

ments. A goal of future research would be to implement a publicly

accessible knowledge discovery system.

Finally, we point out several directions that the current system

can be further improved. Firstly, some relationship information

is still poorly documented in the current databases such as

protein-disease relationships and protein-pathway relationships.

These relationships can be extracted automatically from litera-

ture[56,71] and added to IBN. Secondly, relationship informa-

tion needs to be specific to the particular relationship type and

direction needs to be given where it is relevant. Such information

can be obtained for interactions extracted automatically from

literature. We recently developed a method similar to protein

interaction extraction to predict the directionality of interactions

and obtained very good accuracy (unpublished result). This

method can be used to add directionality information to the edges

in IBN. Thirdly, the probabilities associated with the relationships

in IBN have been very helpful in estimating the probabilities of

indirectly related bio-entities to rank the generated hypotheses.

Estimation of the probabilities of automatically generated

hypotheses can be further improved by building more sophisti-

cated models using information of individual relationships.

Finally, we want to point out that the protein naming system

still needs to be improved. There are still a significant number of

errors in annotated protein names.

Methods

In this study, we use a previously developed protein interaction

extraction method[38] to extract molecular interaction informa-

tion from literature. The method is briefly described below. We

first construct dictionaries containing words that are related to our

information extraction task, including protein name dictionary,

small molecule name dictionary, interaction word dictionary, GO

term dictionary, pathway dictionary and disease dictionary.

Abstracts that contain at least one interaction word are

Figure 5. The most probable paths from PMA to two associated
pathways.
doi:10.1371/journal.pone.0021474.g005

Figure 6. Proteins and pathways that are regulated by PMA
directly and indirectly. PMA affected pathways through IL2 are:
Calcineurin-regulated NFAT-dependent transcription in lymphocytes,
IL27-mediated signaling events, IL12-mediated signaling events, IL23-
mediated signaling events, Glucocorticoid receptor regulatory network,
IL2-mediated signaling events, IL2 signaling events mediated by PI3K,
Calcium signaling in the CD4+ TCR pathway, Regulation of Telomerase,
IL12 signaling mediated by STAT4, Downstream signaling in naı̈ve CD8+
T cells and IL2 signaling events mediated by STAT5; PMA affected
pathways through IGHE are: IL4-mediated signaling events and Fc-
epsilon receptor I signaling in mast cells; PMA affected pathways
through CEBPA are: E2F transcription factor network, Regulation of
retinoblastoma protein, regulation of Androgen receptor activity,
FOXA2 and FOXA3 transcription factor networks and C-MYB transcrip-
tion factor network; PMA affected pathway through TPM3 is Muscle
contraction.
doi:10.1371/journal.pone.0021474.g006
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downloaded from PubMed database (up to Sept. 2009). The

abstracts were then split into sentences. Sentences containing at

least one triplet (two molecule names and one interaction word)

are kept. Features are then extracted for each triplet in a sentence

and parsed to a previously trained Bayesian Network (BN)

model[38]. The model then estimates the probability of each

triplet being a true interaction.

Dictionaries
In information extraction, we use dictionaries to tag molecular

names or interaction words. The synonyms of molecular names

are incorporated in the dictionaries. All the synonyms of a

molecule are linked to one vertex in IBN.

Protein name dictionary
This dictionary contains totally 7,663,997 protein names. It

was constructed by combining protein names from several

sources including NCBI Gene database[42,52], UniProtKB/

Swiss-Prot[72] and BioThesaurus[73]. We filtered out false

names in protein name dictionary using GENIES[74] and a

large number of PubMed abstracts, where those names that are

not tagged by GENIES as protein names in the PubMed

abstracts more than half of the time (a rather conservative

arbitrary cutoff) are filtered out. For example, ‘‘DNA replication’’

was a name in the original dictionary, but it was tagged as a

protein name less than 20% of the time by GENIES among more

than a thousand occurrences in the PubMed abstracts, so it was

deleted from the dictionary.
Small molecule name dictionary. Obtained from NCBI

PubChem database[61], this dictionary contains 38,791,284

names.
Interaction word dictionary. It contains words that describe

interactions of molecules including regulatory relationships con-

ftaining 192 words as used in the previous study[38].
GO terms. We obtained GO terms from Gene Ontology

database[44]. There are totally 30,707 GO terms, which fall into

three broad categories, molecule function, biological process, and

cellular component. Some very common GO terms, such as

‘‘protein’’ are filtered out by a combined automatic and manual

process.
Pathway names. We obtained pathway names from KEGG

pathway database[60], Reactome[59], and pathway interaction

database[58]. There are totally 607 pathways names. In the

pathway database, some pathways have been annotated with

relationship to certain disease and such information is used to infer

relationship involving diseases.
Disease names. We obtained 29,018 disease names from

PharmGKB[75]. Additional disease names were obtained from

KEGG database.
Species names. We obtained species names from NCBI

database. The protein–species relationships were obtained from

UniProtKB/Swiss-Prot[72] and NCBI Gene database[42,52].

Graph theoretic algorithms and calculation of
probabilities for indirect relationships

The probabilities of the relationships between any two vertices

that are not connected by an edge in IBN can be calculated using

the probabilities of existing edges. Any edge, representing a

relationship between two bio-entities, has a probability assigned to

it. For relationships obtained from manually annotated databases,

the probabilities are 1. For relationships extracted from literature,

the probabilities are given by the extraction method. When

multiple instances are extracted for one particular relationship (i.e.

several mentions of the same interaction between two proteins)

from the literature, the highest probability among the instances is

assigned as the probability for the relationship. Below we describe

two algorithms that can be used to search for high probability

relationships in IBN.

Breadth-first search with pruning (BFSP) algorithm
To search for all indirectly connected vertices from a given

vertex we perform a modified breadth-first search (BFS)

algorithm[76], breadth-first search with pruning (BFSP), starting

from the vertex. The BFSP procedure for a vertex i in a graph G is

given below. Here we are only interested in vertices whose

relationships to i have probabilities greater than a threshold value,

pc. The additional pruning step aims to only include those

significant relationships in the search result, which is essential in

large scale knowledge discovery.

procedure BFSP(graph G, node i)

create a queue Q

enqueue vertex i onto Q

mark vertex i

while Q is not empty

dequeue a vertex v from Q

for each unmarked neighbour W of V

if w is not marked

pi,w = pi,v 6pv,w 6pd

/* pi,w is the probability for the relationship between node i and

w, pi,v is the probability between node i and v, pv,w is the probability

for node v and w, and pd is a parameter to model the uncertainty

when inferring relationships through indirect edges */

if di,w . pc

/* pc is the threshold for selecting more relevant relationships */

mark w

enqueue w onto Q

In the above procedure the probability pd is used to model the

uncertainty when inferring relationships through indirect edges.

For example, even relationship between vertices A and B has

probability 1 and that between vertices B and C also has

probability 1, the relationship between A and C is not necessarily

1. In fact, in many cases such relationship can be false. For

instance, even A interacts with B and B interacts with C, A may

not interact with C. In principle, this probability can be learned

from data and does not have to be a constant. In this study, we

simply set pd to 0.8 and pc to 0.5, unless otherwise specified. This

means all the indirect relationships involving more than three

edges will not satisfy the pc threshold. In another word, the BFSP

algorithm will not visit any vertices which are more than three

edges apart from the query vertex.

Most probable path (MPP) algorithm. This algorithm

is used to find the path between two bio-entities in IBN

with the highest probabilities among all paths connecting the

two bio-entities, which is based on Djikstra’s shortest path

algorithm[77].

procedure MPP (graph G, node s, node t)

/* initialize all the vertices in G(V, E), where V is the set of

vertices and E is the set of edges */

for each vertex V in V

pv,s = infinity

pi[V] = nil

ps,s = 1

/* pv,s is the probability of vertex v to s, pi[v] is the predecessor

set of vertex v to s. */

S = {0} /* Make S empty */

Q = V /* Put the vertices in Q */

while not Empty(Q)
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/* extract the vertex in Q which has the highest probability

relationship with s */

u = ExtractMostProbable( Q );

if(u = = t)

stop; /* the MPP between s and t has been found */

AddNode( S, u ); /* Add u to S */

/* checks whether the current best estimate of the MPP to v can

be improved by

going through u */

for each vertex v in Adjacent( u )

if ( pv,s , pu,s 6 pu,v 6 pd) then

pv,s = pu,s 6 pu,v 6 pd

pi[v] = u

/* pu,v is the probability of the relationship between u and v, and

pu,s is the probability of the relationship between u and s., pd is the

probability modeling the uncertainty when inferring relationships

from indirect edges as in BFSP. */
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