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SUMMARY

Cell-fate change involves significant genome reorga-
nization, including changes in replication timing, but
how these changes are related to genetic variation
has not been examined. To study how a change in
replication timing that occurs during reprogramming
impacts the copy-number variation (CNV) landscape,
we generated genome-wide replication-timing pro-
files of induced pluripotent stem cells (iPSCs) and
their parental fibroblasts. A significant portion of
the genome changes replication timing as a result
of reprogramming, indicative of overall genome reor-
ganization. We found that early- and late-replicating
domains in iPSCs are differentially affected by
copy-number gains and losses and that in particular,
CNV gains accumulate in regions of the genome that
change to earlier replication during the reprogram-
ming process. This differential relationship was pre-
sent irrespective of reprogramming method. Overall,
our findings reveal a functional association between
reorganization of replication timing and the CNV
landscape that emerges during reprogramming.

INTRODUCTION

The genome is topologically organized in three-dimensional

space within the nucleus and is highly dynamic as cell fate

changesduring normal development, aswell as indisease states,

such as cancer (Ryba et al., 2012). The significant cell-fate

changes that occur during embryonic stem cell (ESC) differentia-

tion and reprogramming of somatic cells to pluripotency also

involve genome-wide resetting of the higher-order chromatin

structure (Watanabe et al., 2013). In both scenarios, genome

reorganization precedes gene expression changes, suggesting

a potential causal relationship (Apostolou et al., 2013; Phillips-

Cremins et al., 2013; Wei et al., 2013; Zhang et al., 2013).

Higher-order genome organization has been shown to signifi-

cantly influence the distribution of genomic aberrations in both

immortalized somatic cells and cancer cells, but the underlying

mechanism remains elusive (De and Michor, 2011; Fudenberg

et al., 2011; Koren et al., 2012; Schuster-Böckler and Lehner,

2012). One method of mapping genomic organization is by

segmenting the genome into domains based on replication

timing, which occurs in a tightly regulated cell-type-specific

manner (Gilbert et al., 2010). Domains with similar replication

timing tend to colocalize within the nucleus, and as a result,

genome organization defined by replication timing overlaps

with other methods of defining chromatin topology, including

DNase I-hypersensitivity profiles, various epigenetic markers,

and genome-wide chromatin-interaction mapping (e.g., Hi-C)

(Dixon et al., 2012; Hu et al., 2013; Ryba et al., 2010). Several

studies have revealed that the cancer mutational landscape is

closely associated with replication timing by demonstrating that

copy-number variation (CNV) boundaries tend to have similar

replication timing, and gains and losses distribute differentially

with respect to replication timing (De and Michor, 2011; Liu

et al., 2013; Schuster-Böckler and Lehner, 2012). These studies

share one important limitation: the replication-timing maps

were not generated from the same cell types in which the CNVs

were analyzed. This limitation is significant because cellular iden-

tity is closely coupled to genome organization; in fact, only half of
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the genome has stable replication timing across all cell types,

with the remainder being organized in a highly cell-type-specific

manner (Hansen et al., 2010; Hiratani et al., 2008, 2010). Thus,

when an unmatched replication-timing profile is used, up to

50%of the genomemay not be accounted for during the analysis

due to the cell-type specificity of genome organization.

How cell fate change and its associated genome reorganiza-

tion are related to genome variation has not been examined.

We overcome the limitation of unmatched replication-timing

maps by generating replication-timing profiles of both induced

pluripotent stem cells (iPSCs) and their parental fibroblasts in

order to explore the linkbetween theCNV landscapeandgenome

reorganization due to cell fate change. We show that nuclear

reprogramming results in dramatic replication-timing reorganiza-

tion that influences the observed CNV landscape in iPSCs.

RESULTS

CNVs Reside within Replication-Timing Domains
Primary dermal fibroblasts from one healthy volunteer (wild-type,

WT) were reprogrammed using retroviral transduction of the

standard Yamanaka factors to generate multiple iPSC lines (Ta-

kahashi et al., 2007) (Figure S1). Replication-timing profiles were

generated from an iPSC line and the parental fibroblasts. Newly

replicated DNA from early and late S phase was differentially

labeled and hybridized to a whole-genome oligonucleotide

microarray. The ratio of the abundance of each probe in the early

versus late fractions generates a replication profile, which

reveals clear demarcation between megabase-sized regions of

coordinated replication called replication domains (Figure 1A).

Computational segmentation algorithms can be used to define

the replication domains (Ryba et al., 2011). The iPSC profile we

generated is identical to previously published profiles of both

human ESCs and iPSCs, reflecting human pluripotent stem

cell-specific genome organization (Figure S1D) (Ryba et al.,

2010).

To map the corresponding genome-variation landscape of

iPSCs, we analyzed the fibroblast and low-passage (p6) iPSC

lines using high-resolution Affymetrix SNP Array 6.0 (Tables S1

and S2). CNV calls were validated using quantitative PCR with

an overall validation rate of 91% (Supplemental Experimental

Procedures). Raw data from the replication-timing profiles also

Figure 1. iPSC CNVs Reside within Replication-Timing Domains and Are Distributed Nonrandomly

(A)Newly replicatedDNA fromearly and lateSphase isdifferentially labeled andhybridized to awhole-genomeoligonucleotidemicroarray toproducea replication-

timing profile. Loess-smoothed replication-timing ratio (filled gray) of the first 50Mb of chromosome (Chr) 1 is shown as an example. Segmentation algorithms are

used to define replication domains (black segments) as regions with similar replication-timing ratio. TTRs are defined as genomic regions with a significant rate of

replication-timing ratio change (purple). TTRs cover approximately one-third of the genome. CNVs (green segments) are plotted above the replication profile, and

they can fall either entirely within individual domains or cross boundaries and involve more than one domain. A CNV may or may not involve a TTR.

(B) Permutation analysis demonstrates that CNVs are significantly more likely to reside within individual replication domains than expected by chance in both

iPSCs and parental fibroblasts (fib). Boxes display the percentages obtained from 1,000 simulations, and red diamonds represent the actual percentages.

(C) TTRs are not enriched within CNVs. The actual amount (black) of TTR and non-TTRs affected by CNVs, compared to expected numbers (gray) based on

random distribution, is shown with p values (Fisher’s exact test) above each plot.

See also Figure S1.
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independently validated all the homozygous losses detected by

SNP arrays in the same cell lines (Figure S1E) (Ryba et al., 2012).

Most CNVs of iPSCs were not detected in the parental fibro-

blasts and are heretofore referred to as ‘‘iPSC manifested’’

(Tables S1 and S2). iPSC-manifested CNVs in low-passage

iPSCs could represent clonal expansion of low-frequency

genetic aberrations in the tissue of origin or de novo mutations

during the reprogramming process (Liang and Zhang, 2013).

We found that, whereas two-thirds of CNVs detected in iPSCs

involve genic regions (including exons and introns), the affected

genes do not fall into any clear functional groups by Gene

Ontology analysis (Table S3). The CNV-affected genes did not

show any particular relationship to pluripotency, nor did we

find any enrichment of tumor suppression genes or oncogenes.

Our data are similar to other published reports that failed

to demonstrate consistent functional consequences due to

genomic aberrations in iPSCs (Amps et al., 2011; Hussein

et al., 2011; Martins-Taylor et al., 2011).

We mapped the iPSC CNVs to the newly generated replica-

tion-timing profiles and found that more than 95% of CNVs are

contained within individual replication domains, irrespective of

whether the iPSC or the parental fibroblast profile was used.

Permutation analysis using size-controlled random CNV lists

demonstrates that the detected CNVs are significantly more

likely to reside completely within individual replication domains

and do not span domain boundaries than would be expected

to occur by chance (Figure 1B).

Timing transition regions (TTRs), defined by genomic regions

with a significant rate of replication-timing ratio change, have

different replication kinetics compared to the center of the repli-

cation domain. TTRs probably represent sequences vulnerable

to DNA damage (Labib and Hodgson, 2007; Watanabe et al.,

2002, 2004). However, we did not find an enrichment of TTR

sequence in CNV-affected genomic regions in iPSCs (Figure 1C).

Impact of Replication-Timing Dynamics on the CNV
Landscape
Reprogramming and ESC differentiation involve global changes

in chromosome structure that include temporal reorganization of

replication domains and spatial reorganization of the genome; in

fact, one-half of the genome changes organization at some stage

during development (Hiratani et al., 2008; Orkin and Hochedlin-

ger, 2011; Ryba et al., 2010). Comparison of fibroblast and

iPSC replication-timing profiles revealed that during reprogram-

ming, 40% of the genome changes replication timing, as defined

by a greater than 0.5 difference in the early/late ratio between

fibroblast and iPSC profiles (Figure 2A). This cutoff corresponds

to the amount of time (about 1 hr) required to complete a replica-

tion factory (Leonhardt et al., 2000) and is the same cutoff for

significance for transcription (D.M.G., unpublished data). This

change is nearly double in magnitude compared to the change

observed when ESCs are differentiated into neural precursor

cells (Hiratani et al., 2008), reflecting the extensive genome reor-

ganization during nuclear reprogramming.

To test how genome reorganization influences the genome-

variation landscape, we determined the fibroblast and iPSC

replication-timing values of genomic loci affected by iPSC-

manifested CNVs using cell-type-specific replication-timing

profiles. The distribution of replication-timing values of CNV

gain loci is statistically different in fibroblasts and iPSCs; they

are predominantly late replicating in fibroblasts but early repli-

cating in iPSCs. In contrast, loci affected by CNV losses are

generally late replicating in both cell types. (Figure 2B).

To better understand the dynamics of the CNV landscape, a

genome-wide representation of replication-timing dynamics

during reprogramming was generated by plotting fibroblast

versus iPSC replication-timing values for all 620,000 probes on

the array (Figure 2C). In this plot, the gray diagonal region repre-

sents genomic loci with no change in replication timing during

reprogramming, defined as a less than 0.5 difference in replica-

tion-timing ratio between fibroblasts and iPSCs. The portions of

the genome that replicate either earlier (Figure 2C, red) or later

(blue) in iPSCs than in fibroblasts fall outside the diagonal.

When the replication-timing values of CNVs were plotted on

this genome background, we show that CNV gains are enriched

in the genome compartment that changes to earlier replication

during reprogramming. This scatterplot presentation reveals

the replication-timing dynamics underlying the distribution shift

of gains seen in Figure 2B. In contrast, the majority of losses

reside in late replicating regions in both fibroblasts and iPSCs

(Figure 2C), consistent with the absence of a shift in the CNV

loss distribution (Figure 2B). Together, these findings further

support the strong relationship between replication timing

and genome variation by demonstrating that the distribution of

CNVs observed in low-passage iPSCs is influenced by replica-

tion-timing reorganization associated with cell fate change.

Human iPSC genomic variation has been studied using a vari-

ety of approaches. Hussein et al. and Laurent et al. generated

iPSC using the same retroviral factors as we did here, but

whereas Hussein et al. also used the Affymetrix 6.0 SNP array,

Laurent et al. used the IlluminaOmniquad v.1 SNP array (Hussein

et al., 2011; Laurent et al., 2011). More recently, Abyzov et al.

used whole-genome sequencing to identify CNVs in retroviral

reprogrammed iPSC lines (Abyzov et al., 2012). None of these

studies considered the role of higher-order chromatin organiza-

tion on genomic variation, and their data sets serve as de facto

controls to exclude potential lab-specific, CNV detection

platform-specific, or parental fibroblast-specific effects in our

experiments. Therefore, we analyzed these data sets relative

to our newly generated replication-timing profiles. To maintain

consistency with our experimental approach, we limited the

analysis to data sets of low-passage iPSCs generated from

dermal fibroblasts. An overall similar trend was seen using

data sets from different laboratories: CNV distribution is

nonrandom, with gains predominating in regions changing to

earlier replication in iPSCs (Figure S2B).

Nonrandom, Differential CNV Distribution Is a
Generalized Feature of Reprogramming
To exclude the possibility that the nonrandom replication-timing

distribution of the CNVs is due to a direct effect of the retroviral

vectors (RVs) used for reprogramming, we applied our analysis

to iPSCs generated using other reprogramming methods. To

this end, we generated iPSCs using episomal (EP) factors that

do not integrate into the genome. In low-passage EP iPSCs,

like RV iPSCs, CNV gains are significantly enriched in regions
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Figure 2. Reorganization of Replication-Timing Program during Reprogramming Affects CNV Distribution

(A) Comparison between replication-timing profiles of iPSCs (black) and parental fibroblasts (gray) of chr 7 120–143 Mb shows changes during reprogramming.

Pink indicates regions changing to earlier replication: greater than +0.5 difference in replication-timing ratio between fibroblasts and iPSCs. Blue indicates regions

changing to later replication: greater than �0.5 difference in replication-timing ratio between fibroblasts and iPSCs.

(B) Kernel density plots show the replication-timing distribution of CNV-affected regions in fibroblasts (left) and in iPSCs (right). CNV gains have earlier replication

timing in iPSCs than fibroblasts. CNV losses are late replicating in both iPSCs and fibroblasts. p values from the K-S tests between fibroblast and iPSC distribution

are shown.

(legend continued on next page)
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of the genomewhose replication timing changed to earlier during

reprogramming. Again, we found that the majority of CNV losses

occur at regions that do not significantly change replication

timing during reprogramming (Figures 3A and S3).

Next, we analyzed Hussein et al.’s data on sister iPSC lines

derived from the same parental fibroblast line (human foreskin

fibroblasts, HFFs) using either retroviruses or piggyBac transpo-

sons (PBs) (Hussein et al., 2011). Distribution plots similar to Fig-

ure 2B from multiple data sets were directly compared to each

other (Figures 3B and S3). Gains and losses from these PB and

RV iPSCs had a similar nonrandom distribution with respect to

replication-timing dynamics during reprogramming: gains were

likely to have earlier replication in iPSCs compared to fibroblasts,

whereas losses maintain late replication. Together, these find-

ings demonstrate that the trend for nonrandom, differential

CNV gain and loss accumulation as a function of change in repli-

cation timing is a generalized feature of reprogramming.

DISCUSSION

Improved mapping and understanding of the higher-order

genomeorganization is providing a clearer picture of howgenome

functions, such as gene expression and genome integrity, are

related to its spatial organization (Cavalli and Misteli, 2013). A

static association between genome organization and genome

aberration has been described, but how themutagenic landscape

is affected by changes in genomeorganization has not been stud-

ied. Here, by leveraging reprogramming to alter cell fate and

analyzing the genome aberration landscape before and after

usingcell-type-matchedgenome-wide replication-timingprofiles,

we show that theCNV landscape of iPSCs is spatially constrained

by chromatin organization, and the distribution of CNVs is influ-

enced by changes in replication timing due to reprogramming.

Some studies have reported that reprogramming results in

genetic aberrations such as point mutations and CNVs in human

iPSCs (Gore et al., 2011; Hussein et al., 2011; Laurent et al.,

2011; Martins-Taylor et al., 2011; Mayshar et al., 2010). How-

ever, more recently, others have demonstrated that the majority

of iPSC CNVs preexisted in cells within the parental population

(Abyzov et al., 2012; Cheng et al., 2012; Quinlan et al., 2011).

Consistent with these reports, we found shared iPSC-

manifested CNVs among the iPSC clones in each of our reprog-

ramming experiments, albeit at low frequency. Interestingly, we

also found that about 50% of iPSC-manifested iPSC CNVs have

overlap with known CNVs in the Database of Genomic Variation

(MacDonald et al., 2014), and these likely represent previously

existing low-frequency CNVs in the starting cell population.

Ultimately, the accumulation of genomic changes in any

genome will result from a combination of mutation rates, repair

rates, and selection. In a completely stochastic process, akin

to genetic drift, CNV gains and losses would be distributed

randomly. Our results show that this is not the case because

CNVs are nonrandomly distributed in iPSCs as a function of repli-

cation-timing change. iPSC-manifested gains predominate in

loci that change to earlier replication during reprogramming,

whereas losses occur in loci that remain late replicating. The

mechanism and timing of this relationship are not immediately

apparent, but it is conceivable that both preexisting and de

novo CNVs are subject to the influence of the extensive genome

reorganization (Figure 4).

Switching to earlier replication involves epigenetic resetting

that results in increased active chromatin modifications, such

as histone acetylation (Hiratani et al., 2008; Schwaiger et al.,

2009) and an overall open chromatin state. These regions

contain genes essential to the cell’s new functions and are

therefore more likely to be under increased selection during

reprogramming. Although this functional selection is plausible,

it is difficult to reconcile with the inability to link CNVs in iPSCs

to gene expression changes. Neither our gene expression anal-

ysis nor the published literature has consistently identified gene

expression changes that correlate with genomic aberration to

prove that this mechanism is dominant (Amps et al., 2011; Hus-

sein et al., 2011; Martins-Taylor et al., 2011). In fact, in a recent

analysis of 125 human pluripotent stem cell lines, the most

commonly identified aberration was a minimal amplicon at

20q11.21 (affecting >20% of lines), yet there was no correlation

between the presence of this amplicon and the expression of the

genes it contains (Amps et al., 2011).

Variable efficiency of DNA damage response (DDR) pathways

in different chromatin compartments could contribute to the

differential distribution of gains and losses. It is possible that

DNA damage occurring in early S phase is more accurately

repaired due to higher-fidelity repair mechanisms, including

copying from the correct template (Chang and Cimprich,

2009). Not only is DDR more efficient in open chromatin, but

also heterochromatin appears to retard repair processes and

could potentially lead to accumulation of deletions in the late

replicating compartment (Goodarzi et al., 2008; Murga et al.,

2007; Rübe et al., 2011). Another mechanism to explain differen-

tial distribution of de novo mutations is that replication-timing

reorganization could adversely affect the interaction between

replication and transcription machineries, leading to replication

and transcription collisions, and consequently to double-strand

breaks and CNVs (Helmrich et al., 2013).

Interestingly, we noticed subtle differences in CNV occurrence

among the three reprogramming methods. In contrast to RV

iPSCs, PB and EP iPSCs overall had significantly more CNV

gains compared to losses (Figure 3B), suggesting that there

(C) Replication-timing values of CNV gains (top) or losses (bottom) were determined using the profiles of both fibroblasts and iPSCs and were shown as a

scatterplot with density-smoothed genome-wide replication-timing values (RTV) of over 620,000 probes serving as background. The gray central region

represents�60% of the genome with no change in replication timing defined as iPSC RTV� fibroblast RTV <±0.5. Regions with greater than +0.5 change (iPSC

RTV� fibroblast RTV) are classified as ‘‘earlier in iPSC’’ (red), and those with less than�0.5 change (iPSC RTV� fibroblast RTV) are classified as ‘‘later in iPSCs’’

(blue). The bar graphs depict the distribution of CNV gains or losses compared to the genome-wide distribution of RTVs among these regions. Upward-pointing

arrowheads indicate statistically significant enrichment of CNVs in the region, whereas downward-pointing arrowheads indicate statistically significant depletion

of CNVs compared to the genome distribution in corresponding regions based on binomial test. Number of arrowheads correlates with p value significance (see

Figure S2).
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may be a differential impact of distinct reprogramming methods

on different genomic compartments and the iPSC CNV land-

scape. This finding warrants further investigation and is likely

intertwined in the complex interplay of various other internal

and external genomic stresses, the cell’s DDR network, and

selective pressure exerted by the cell’s environment.

Figure 3. Nonrandom Differential CNV

Distribution Is a Generalized Feature of

Reprogramming

(A) Replication-timing dynamics of CNVs from EP

reprogrammed iPSCs. iPSC-manifested CNVs in

low-passage iPSCs are presented in the same

format as in Figure 2D. Matched BJ fibroblast

replication-timing profile is used. p values are

shown in Figure S3A.

(B) Kernel density plots show the replication-timing

distribution of CNV gains and losses detected in

iPSCs derived using retroviral (purple), PB (blue),

or EP (green) vectors. RV and PB iPSCs were

derived from the same parental lines (Hussein

et al., 2011). EP iPSCs were reprogrammed from

HFF line BJ. Gains enrich in regions that change to

earlier replication during reprogramming in all

cases. (Numbers of CNVs in parentheses. p values

from K-S tests are shown in Figure S3B.)

In sum, genome-wide analysis of iPSC

CNVs using the replication-timing profiles

of both fibroblasts and iPSCs demon-

strates an important functional asso-

ciation between genome variations and

replication-timing reorganization result-

ing from reprogramming. We have

focused on CNVs and replication timing

during reprogramming, but in the

future, genomic aberrations identified by

other techniques (e.g., whole-genome

sequencing) as well as epigenomic

changes can be similarly mapped to

dynamic genome organization land-

scapes. Understanding the link between

genome organization and function

will be enhanced by improved biochem-

ical techniques and computational

approaches to allow higher throughput

and improved resolution (Misteli, 2012;

Wang et al., 2012). Because iPSC tech-

nology readily allows the manipulation of

cell fate change, it will serve as a powerful

experimental platform to further study the

relationship between genome organiza-

tion and function.

EXPERIMENTAL PROCEDURES

Generation, Characterization, and

Genome-wide Analyses of iPSCs

WT fibroblasts hFib2 were reprogrammed with

RVs as described by Park et al. (2008). For EP

vector-mediated reprogramming, vectors were obtained from Addgene

(pCXLE-hUL, pCXLE-hSK, and pCXLE-hOCT3/hOCT4) and introduced into

BJ fibroblasts by electroporation, and reprogrammed colonies were picked

and expanded. Immunofluorescent staining of pluripotency markers Oct4,

Nanog, SSEA-4, Tra-1-60, and Tra-1-81 and teratoma formation assays

demonstrated the pluripotency of all the established iPSC lines. Genome-

wide expression profiling with Affymetrix Human Genome U133 Plus 2.0

Cell Reports 7, 70–78, April 10, 2014 ª2014 The Authors 75



microarrays and CNV analysis with Affymetrix SNP 6.0 arrays were performed

according to manufacturer’s instructions at the Genotyping and Microarray

Center of Coriell Institute for Medical Research. Replication-timing profiling

was performed and analyzed as in Ryba et al. (2011).

Computational Analyses

Tostatistically analyze ifCNVs fallwithin replication-timingdomains (Figure1B),

we performed permutation analysis. For each simulation, we generated a new

list of CNVs by assuming uniformdistribution ofCNV start positions along chro-

mosomes (omitting centromeric regions) while keeping their size distribution.

For each new list, we mapped to the replication domain profile and obtained

the percentage of new CNVs falling within domains. We repeated the permuta-

tion 1,000 times. The permutation p value is defined as the number of permuta-

tions yieldingahigherpercentage than theactual experimental result. InFigures

2 and 3, the Kolmogorov-Smirnov (K-S) test was used to detect differences be-

tween distributions. Binomial tests were used to assess the statistical signifi-

canceofCNVenrichment in thegenomic regions. Thenull hypothesis is random

distribution, i.e., no CNV gain or loss enrichment in the regions of interest.
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The GEO accession number for the replication-timing microarray, SNP array,

and gene expression array reported in this paper is GSE46848.
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Figure 4. The Distribution of Genomic Variations in Human iPSCs Is Related to Replication-Timing Reorganization during Reprogramming

Individual cells in the starting population have a unique set of preexisting background CNVs (CNV gains are indicated with a circled +; CNV losses are indicated

with a circled�), which can be captured by the clonal nature of reprogramming. IPSC-manifestedmutationsmay also lead to de novo CNVs that occur during the

reprogramming process (noncircled +,�). Preexisting and de novo mutations may contribute to reprogramming fitness. The extensive genomic and epigenomic

changes associated with reprogramming can in part be reflected by changes in replication timing (gray indicates no change during reprogramming, red shows

earlier in iPSCs, and blue indicates later in iPSCs). Early and late replicating domains in iPSCs are differentially affected by copy-number gains and losses, during

reprogramming. Specifically, CNVgains accumulate in regions of the genome that change to early replication during the reprogramming process. In contrast, CNV

losses tend to be late replicating in both fibroblasts and iPSCs. This specific CNV distribution, like individual mutations, contributes to reprogramming fitness.
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