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Abstract 

Recent studies have documented an evolutionarily primitive, early emerging cognitive 

system for the mental representation of numerical quantity (the analog magnitude system). 

Studies with non-human primates, human infants, and preschoolers have shown this system to 

support computations of numerical ordering, addition, and subtraction involving whole number 

concepts prior to arithmetic training. Here we report evidence that this system supports 

children’s predictions about the outcomes of halving and perhaps also doubling transformations.  

A total of one hundred and thirty-eight kindergarten and first grade children were asked to reason 

about the quantity resulting from the doubling or halving of an initial numerosity (of a set of 

dots) or an initial length (of a bar). Controls for dot size, total dot area, and dot density ensured 

that children were responding to the number of dots in the arrays. Prior to formal instruction in 

symbolic multiplication, division, or rational number, halving (and perhaps doubling) 

computations appear to be deployed over discrete and possibly continuous quantities. The ability 

to apply simple multiplicative transformations to analog magnitude representations of quantity 

may form a part of the toolkit that children use to construct later concepts of rational number.  
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Children’s multiplicative transformations of discrete and continuous quantities  

The ability to represent approximate numerical magnitudes without the use of language is 

common to humans of all ages and to nonhuman animals. Animals, infants, children, and adults 

prevented from applying their exact verbal counting skills discriminate sets based on their 

cardinal values (for animals and human adults, see Dehaene, 1997, for a review; for human 

infants and children, see for example, Xu and Spelke, 2000; Barth, La Mont, Lipton, & Spelke, 

2005; Cordes and Brannon, 2008). An “analog magnitude representation” system appears to 

underlie this ability: the discrete numerosity of the set is internally coded by a mental magnitude, 

with the magnitude proportional to the number of elements in the set. Like comparative 

judgments of many kinds of continuous quantities, comparative judgments of discrete number 

are least accurate when the ratio of compared numerosities is closest to 1:1. Ratio-dependent 

discrimination in accord with Weber’s Law is a key signature of the analog magnitude system 

(Gallistel & Gelman, 1992, 2000; Dehaene, 2007). 

 Analog magnitude representations support computations of numerical ordering, addition, 

and subtraction across species and throughout the course of development. Most relevant here is 

evidence that nonverbal animals as well as human infants and children use analog magnitude 

representations to compute the outcomes of additive operations over visually presented sets of 

elements (McCrink & Wynn, 2004; Barth et al., 2005; Flombaum, Junge, & Hauser, 2005; 

Slaughter, Kamppi, & Paynter, 2006; Cantlon & Brannon, 2007; Gilmore, McCarthy, & Spelke, 

2007; Barth, Beckmann, & Spelke, 2008). 

More controversial is the question of whether analog magnitude representations of 

approximate number also support multiplicative operations on sets before young children receive 

formal training in multiplication and division. Concepts of multiplicative, rather than additive, 
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change are critical to children’s later construction of an understanding of rational number (Smith, 

Solomon, & Carey, 2005), a famously difficult achievement of middle school math. It is often 

suggested that children’s early intuitions about quantity transformations may support later 

learning about fractions, but these intuitions are often thought to rest on protoquantitative, non-

numerical notions of amount (Confrey, 1994; Mix, Levine, & Huttenlocher, 1999; Resnick & 

Singer, 1993; Resnick, 1992). To our knowledge, the potential role of analog magnitude 

representations of discrete quantity in children’s intuitive knowledge of multiplicative 

transformations has not yet been investigated. 

Gelman and Gallistel (Gallistel & Gelman, 1992, 2000, 2005) hold that mental 

magnitudes representing number (like those representing non-numerical quantity) do enter into 

ordering, addition, subtraction, multiplication, and division operations, even in the brains of 

nonverbal animals (Gallistel, 1990; Leon & Gallistel, 1998; Gallistel, Mark, King, & Latham, 

2001; but see Church & Broadbent, 1990; Kakade & Dayan, 2002; Yang & Shadlen, 2007 for 

alternative views). On this view, analog magnitudes provide a common representational format 

permitting computations over both continuous and discrete quantities.  

Some human adult studies also appear consistent with this idea: adults succeed at tasks 

which may involve multiplying and dividing approximate numerical magnitudes, even when they 

are prevented from exact counting (Barth, 2002). Because adults have had many years of 

arithmetic instruction, however, they may have solved these tasks by forming verbal estimates of 

the quantities involved and then invoking symbolic multiplication or division. Studies of patients 

with calculation deficits support this latter possibility, because impairments in symbolic 

multiplication have been linked to impairments in language but not in nonsymbolic number 
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processing (Cohen, Dehaene, Chochon, Lehéricy, & Naccache, 2000; Lemer, Dehaene, Spelke, 

& Cohen, 2003).  

 Representations of both discrete and continuous quantity do appear to support simpler 

forms of reasoning about multiplicative relationships. Adults track proportions unconsciously 

and make use of them when transferring from a discrimination learned for a continuous quantity 

to a novel discrimination of discrete quantity (Balci & Gallistel, 2006). A recent study has shown 

that even infants spontaneously represent the ratios between two sets of dots, discriminating new 

arrays with the same ratios of blue to red dots as those they have seen before from arrays in 

which the dots are in a different ratio relationship (McCrink & Wynn, 2007).  In young children, 

much previous work on proportional reasoning has focused on continuous quantity. Though 

some studies have reported earlier competence in proportional reasoning about continuous vs. 

discrete quantity, these often involve discrete tasks that provide opportunities for exact counting. 

Children’s apparent lack of competence could stem not from difficulties in reasoning about 

discrete quantities per se, but from the tendency to count when a task affords the opportunity 

(Jeong, Levine, & Huttenlocher, 2007; Boyer, Levine, & Huttenlocher, 2008).  

Here we focus on a simple form of multiplicative reasoning: the ability to apply the 

multiplicative transformations of halving or doubling to continuous or discrete quantities. We 

ask children to observe a few examples of such transformations, identify the ratio relationship 

that holds between the original quantity and the transformed one, and then apply the same 

transformation to a novel quantity, and then judge whether the transformed quantity would be 

larger or smaller than a comparison quantity. This task requires more than the detection of a ratio 

relationship: to succeed, children must apply a transformation that operates on an initial quantity 

to yield a second quantity that is a fixed ratio of the first. 



Multiplicative transformations  6 

Some evidence suggests that young children may not succeed at these tasks. Children 

exhibit an understanding of additive relations between quantities before they develop an 

understanding of multiplicative relations (Resnick & Singer, 1993), and numerous studies from 

the tradition of information integration theory suggest that younger children apply additive 

integration rules rather than normative multiplicative rules (e.g. Schlottmann & Anderson, 1994; 

Wilkening & Anderson, 1991; Wilkening, 1982; Anderson & Cuneo, 1978; but see Gigerenzer 

& Richter, 1990). These results have led researchers to argue that multiplicative reasoning is not 

available at all to children under the age of seven or eight. 

 In contrast, other studies have found evidence of intuitive reasoning about multiplicative 

transformations in younger children, provided that the task situation only required the 

modification of a single quantity (Schlottman & Tring, 2005; Schlottman, 2001). Also, Confrey 

and her colleagues have argued that young children possess schemas that form the basis for 

reasoning about multiplicative operations without relying on repeated addition, proposing that 

children show intuitive insight into a conceptual primitive called “splitting” that supports later 

reasoning about ratio, proportion, multiplication, and division (e.g. Confrey, 1994). 

The present studies address the following questions. First, is there evidence that analog 

magnitude representations of number can support computations of halving or doubling in young 

children? We tested kindergarten and first grade children, who have no formal instruction in 

symbolic multiplication or division, or in symbolic representations of fractions. We used a task 

in which stimuli are presented rapidly, to discourage attempts at exact counting, and in which a 

single numerical quantity is transformed, in order to maximize children’s chances of success. 

Second, are multiplicative computations evident earlier, or more robustly, for continuous 
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quantities than for discrete quantities? To address this question, we adapted the same procedure 

to a task in which the child mentally doubled or halved the magnitude of a continuous quantity. 

Experiment 1: Continuous and discrete doubling 

Kindergarten and first grade children observed a small number of examples of doubling 

transformations applied to either discrete quantities (blue dot arrays’ numerosities) or continuous 

quantities (blue bars’ lengths). Animated sequences presented on computer screens showed an 

initial quantity that was then covered by an occluder; while the initial quantity was hidden, 

children heard a sound indicating that a transformation was taking place (a rapid series of tones 

increasing in pitch). Then the occluder was removed and the resulting quantity (double the 

magnitude of the initial quantity) was revealed. During test trials, children saw novel quantities 

that were then occluded, followed by the sound that had previously accompanied the doubling 

transformation. Children compared the resulting (never presented) quantity to a final quantity (an 

array of red dots or a red bar).  

Method 

Participants   

Thirty first grade children and thirty-four kindergarten children recruited from 

Massachusetts schools participated in the spring of their school year. Stimuli were presented in 

the forms of an animated computer game on a Macintosh iBook laptop computer with a screen 

resolution of 1024 by 768 pixels. Fourteen first graders (mean age 7 years 1 month) and 

seventeen kindergartners (mean age 6 years 3 months) participated in the Continuous condition, 

and sixteen first graders (mean age 6 years 11 months) and seventeen kindergartners (mean age 6 

years 2 months) participated in the Discrete condition (the length of the testing session precluded 
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a within-subjects design). Participants completed a comparison task first to acclimate them to the 

procedure; the doubling task followed the comparison task. 

Procedure   

For all tasks in Experiments 1 and 2: Children observed the outcomes of four 

transformations during the example trials, and received corrective feedback following their 

guesses during the four practice trials. During test trials, children never saw the outcomes of the 

transformations; they only heard a sound indicating the transformation’s occurrence. Children 

judged which magnitude was greater while only the red magnitude was visible. Stimulus 

presentations were brief so that children could not count dots or measure lengths, and red and 

blue bars were presented in different positions and orientations. Blue dots were always 10 pixels 

in diameter and red dots were always 3 pixels in diameter. Bars varied only in length, not width, 

so that children would attend to transformations of length rather than assessing area (Spence, 

2004). Ratios of the compared bars’ lengths (or sets’ numerosities) could have one of three 

values: 4:7 (5 trials), 4:6 (6 trials), or 4:5 (5 trials), with the red bar longer (or the red set larger) 

on half the trials.  

Continuous Comparison task. Children first completed four practice trials to introduce 

the elements of the task. In the first two practice trials, a blue rectangular bar appeared in the top 

half of the computer screen, followed by a red rectangular bar in the central region of the bottom 

part of the screen. The blue bar was rotated up to 45 degrees in either direction from the 

horizontal, and the red bar was always horizontally oriented. Children were asked to judge which 

bar was longer. In the second pair of practice trials, the blue bar appeared and was covered after 

2.5 seconds with a large occluding rectangle, filling the top portion of the screen. The red bar 

appeared and the child judged which one was longer (with only the red bar visible during the 
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choice). Children received meaningful feedback during the four practice trials. Sixteen 

comparison test trials (Figure 1A) followed the procedure of the final practice trials except that 

children received only mildly positive feedback. Lengths ranged from 60 to 240 pixel-widths.  

Continuous Doubling task. Children were presented with four example trials first in 

which there was no task. They saw a blue bar appear on the top half of the screen, which was 

then covered by a rectangular occluder after 2.5 seconds as in the comparison task. A sound was 

heard (a rapid sequence of notes, rising in pitch) while the blue bar remained hidden, and then 

the occluder disappeared to reveal a transformed blue bar twice the length of the original. Four 

practice trials followed: the blue bar appeared and was covered by the occluder, the 

“transforming” sound was heard, and a red bar appeared at the bottom of the screen. The child 

was asked which was longer, the new blue bar or the red bar. In the final step, the occluder was 

removed to reveal the transformed blue bar; this allowed the child to check their judgment 

concerning the relative lengths of the transformed blue bar and the red bar. Sixteen test trials 

followed (Figure 1B): in the test trials, the transformed blue bar was never revealed and children 

were given mildly positive feedback regardless of response. Children judged which bar was 

longer while only the red bar was visible. The final comparisons (between the lengths of the 

never-presented transformed blue bar and the red bar) were matched to the comparisons made in 

the Continuous Comparison task, so the initial blue bars in the Continuous Doubling task were 

necessarily half the lengths of those presented during the comparison task. Lengths ranged from 

30 to 240 pixels.  

Discrete Comparison task. This task followed the procedure of the Continuous 

Comparison task with sets of dots rather than bars. Blue dots appeared in an invisible rectangular 

envelope (512 by 192  pixels) in the top half of the screen, and red dots appeared in a square 
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region outlined in red in the central lower region of the screen (192 by 192 pixel-widths). Sets’ 

numerosities ranged from 12 dots to 80 dots. Test trials are depicted in Figure 2A. 

Discrete Doubling task. This task followed the procedure of the Continuous Doubling 

task with sets of dots rather than bars. Sets of blue dots appeared on the top half of the screen in 

an invisible rectangular envelope (256 by 192  pixel-widths), which was then covered by a 

rectangular occluder. When the occluder disappeared to reveal a transformed blue set with twice 

the number of dots as the initial set (on initial example trials only), the doubled set appeared in a 

512 by 192 pixel invisible rectangular envelope, so that density remained constant before and 

after the transformation while area varied. Red dots were always presented within the same small 

square region, clearly delineated in red, such that the area covered by the red array stayed 

roughly constant with changes in red set numerosity, though red set density did vary with 

numerosity. The final comparisons (between the numerosities of the never-presented transformed 

blue set and the red set) were matched to the comparisons made in the Discrete Comparison task, 

so the initial blue sets in the Discrete Doubling task necessarily contained half as many dots as 

those presented during the comparison task. Set sizes ranged from 6 dots to 80 dots. Test trials 

are depicted in Figure 2B. 

Results 

An ANOVA examined the effects of the between-subjects factors Age and Condition 

(continuous or discrete) and the within-subjects factors Operation (comparison or doubling) and 

Ratio (4:7, 4:6, or 4:5) on the percentage correct in the test trials (i.e., which was larger: the 

hidden blue quantity or the visible comparison red quantity). There was no main effect for age, 

and age did not interact with any other variable. Accuracy scores for the continuous and discrete 

comparison and doubling tasks, collapsed across both age groups, are shown in Figure 3. 
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Children performed above chance for both operations, in both conditions, at every ratio (p < 

0.05). For the 3 ratios in the continuous comparison task, children were 90%, 91%, and 81% 

correct with SDs 19%, 17%, and 16%; for continuous doubling, 82%, 75%, and 65% correct 

with SDs 21%, 15%, 22%; for discrete comparison, 82%, 77%, and 60% correct with SDs 17%, 

18%, 16%; for discrete doubling, 70%, 72%, and 65% correct with SDs 15%, 16%, 16%. 

There was a main effect of Operation (F(1,60)=19.85, p<.0005): accuracy was greater for 

comparison than for doubling. There was a main effect of Ratio (F(2,120)=27.51, p<.0005) with 

a significant linear trend (F(1,60)=42.94, p<.0005). There was also a main effect of between-

subjects factor Condition (F(1,60)=20.24, p<.0005); accuracy was greater in the continuous than 

in the discrete condition. These main effects must be interpreted light of the interaction of 

Operation and Condition (F(1,60)=6.47, p<.05). That is, the main effects were due to children’s 

high accuracy for the continuous comparison task: the discrete comparison and doubling tasks 

did not differ from each other (t(32)=1.57, p>.05), and the continuous and discrete doubling 

tasks did not differ from each other (t(62)=1.93, p>.05). Of course, it is not surprising that 

accuracy was highest for the continuous comparison task; only in this task were the red and blue 

stimuli being compared identical except for length (the dimension being compared) and 

orientation. The dot arrays in the discrete comparison task differed dramatically in overall size, 

shape, and dot dimensions. Finally, there was a significant three-way interaction of Condition, 

Operation, and Ratio (F(2,120)=5.07, p<.01) due to relatively low accuracy levels on the 4:7 

ratio trials in the discrete doubling task. 

Discussion 

Children successfully chose which stimulus (the red or the mentally transformed blue) 

was larger on the doubling tasks in both the continuous and discrete conditions, and the two age 
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groups did not perform differently. Just as in previous studies of additive operations subserved 

by analog magnitude number representations, performance was as accurate on the doubling task 

as on a comparison task.  Performance was above chance for every task at every ratio tested, and 

accuracy was dependent on the ratio of the quantities being compared, consistent with the 

signature of the analog magnitude system. Children’s overall accuracy was equally high for the 

doubling tasks in the discrete condition (the transformation of an initial set’s numerosity) and in 

the continuous condition (the transformation of an initial bar’s length).  

These data are consistent with the children’s abstracting the common ratio relation 

between the two quantities during the practice trials, and then transforming the initial quantity 

during each test trial according to that ratio (approximately twice as large). However, the 

demonstrated transformation was equivalent to adding another instance of the initial quantity 

(“ADD ANOTHER”). Such an additive strategy may be especially likely in the case of length: 

our finding that the continuous comparison of lengths was by far the easiest task suggests that 

children can easily create a working memory representation of the length of the blue bar and 

compare it to the length of a red bar in a different position and orientation. Children’s 

performance patterns in a wide variety of quantitative tasks suggest that they tend to apply 

additive rules (such as repeated addition), rather than multiplicative rules, until relatively late in 

elementary school (Resnick, 1992; Ginsburg, 1977). This tendency can occur even when additive 

rules lead to incorrect results, but in the present study, both additive and multiplicative 

interpretations were consistent with the transformations that children observed.  

 If children are only able to make use of additive transformations of analog magnitude 

representations prior to instruction on symbolic multiplication and division, they might succeed 

at the doubling task of Experiment 1 but fail at a similar task that does not lend itself to additive 
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strategies. To test this hypothesis, children were tested on an analogous halving task in 

Experiment 2. Though repeated addition is one way to produce the effect of doubling, there is no 

comparable additive operation for halving (because subtracting one half requires identifying the 

half to be subtracted). 

Experiment 2: Continuous and discrete halving 

In the second experiment, kindergarten and first grade children completed versions of the 

tasks of Experiment 1 in which halving transformations replaced doubling transformations. 

Method 

Participants.   

Twenty-seven first grade children and forty-seven kindergartners recruited from 

Massachusetts schools participated in the spring of their school year. There were two between-

subjects conditions: fourteen first graders (mean age 7 years 1 month) and twenty-two 

kindergartners (mean age 6 years 2 months) participated in the Continuous condition and thirteen 

first graders (mean age 6 years 11 months) and twenty-five kindergartners (mean age 6 years 1 

month) participated in the Discrete condition. As in Experiment 1, stimuli were presented in the 

form of a computer game, and all participants completed the comparison task first, followed by 

the halving task. 

Procedure 

Continuous condition. The continuous comparison procedure of Experiment 2 was 

identical to the continuous comparison procedure of Experiment 1 ( Figure 1A). The continuous 

halving task procedure (Figure 1C) was just like the continuous doubling task procedure (four 

demonstration trials, four practice trials, and sixteen test trials), except that the sound indicating 

that a hidden transformation was taking place was now a series of notes of falling pitch (rather 
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than rising pitch), and the transformed blue bar was half its original length. Initial blue bar 

lengths in the Continuous Halving task were matched to those presented in the Continuous 

Comparison task. Bars’ lengths ranged from 30 to 240 pixel-widths. 

Discrete condition. The discrete comparison task (Figure 2A) was identical to that 

described in Experiment 1. The discrete halving task procedure (Figure 2C) was identical to the 

discrete doubling task procedure except that the sound was now a series of notes of falling pitch 

(rather than rising pitch), and the transformed blue set was half its original numerosity. The 

presented initial blue sets in the Discrete Halving task contained as many dots as the blue sets 

presented during the comparison task. Set sizes ranged from 6 dots to 80 dots. 

Results 

An ANOVA examined the effects of between-subjects factors Age and Condition 

(continuous or discrete) and within-subjects factors Operation (comparison or halving) and Ratio 

(4:7, 4:6, or 4:5) on accuracy on the test trials. As in Experiment 1, there were no effects of age. 

Accuracy scores for the continuous and discrete comparison and halving tasks, collapsed across 

the two age groups, are shown in Figure 4. Children performed above chance for both operations, 

in both conditions, at every ratio (p<0.05). For the 3 ratios in the continuous comparison task, 

children were 97%, 95%, and 89% correct with SDs 11%, 11%, and 15%; for continuous 

halving, 75%, 58%, and 62% correct with SDs 22%, 20%, 17%; for discrete comparison, 81%, 

75%, and 68% correct with SDs 16%, 19%, 19%; for discrete halving, 69%, 65%, and 58% 

correct with SDs 21%, 18%, 23%. 

There was a main effect of Operation (F(1,70)=109.86, p<.0001): accuracy was greater 

for comparison than for halving. There was a main effect of Ratio (F(2,140)=16.25, p<.0005) 

with a significant linear trend (F(1,70)=30.46, p<.0005). There was also an effect of the between-
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subjects factor Condition (F(1,70)=17.34, p<.0005): accuracy was greater in the continuous than 

in the discrete condition. A significant interaction of Operation and Condition (F(1,70)=20.62, 

p<.0005) suggested that the main effects were due in part to children’s high accuracy for the 

continuous comparison task, which required comparing the lengths of identical stimuli that 

differed only in color, orientation and position. All other comparisons required transforming the 

blue stimuli held in working memory (halving them) and, in the case of the discrete condition, 

comparing the set sizes of arrays that differed dramatically (in dot size, array size and shape). 

Accuracy levels on the discrete comparison and halving tasks differed as well (t(37)=4.03, 

p<0.005 (corrected for multiple comparisons). Accuracy levels on the continuous and discrete 

halving tasks did not differ from each other (t(72)=0.35, p>.05, uncorrected). There was a 

significant three-way interaction of Condition, Operation, and Ratio (F(2,140)=3.41, p<.05) due 

to relatively low accuracy levels on the 4:6 ratio trials in the continuous halving task.  

Discussion 

Children chose the larger quantity with better-than-chance accuracy for the comparison 

tasks and the halving tasks in both the continuous and discrete conditions at every ratio tested. 

Accuracy decreased as the ratio of the compared quantities approached 1, consistent with the 

signature of the analog magnitude system. Kindergarten and first grade children did not perform 

differently. These results – ratio sensitivity, no age effect, and no difference between continuous 

and discrete halving – are remarkably convergent with the doubling results of Experiment 1. But 

before we discuss the implications of children’s success at doubling and halving both discrete 

and continuous quantities, we must explore other strategies children may have adopted in these 

tasks. Might children have succeeded without carrying out any computation on the hidden 
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quantity? Each alternative we explored makes specific predictions regarding details of the data; 

we tested for the use of alternative strategies by testing those predictions as follows. 

Alternative strategy 1:  Ignore the transformation altogether 

Did children simply compare the initially presented blue magnitude to the red magnitude, 

ignoring the invisible transformation of the blue magnitude? This possibility is especially 

important to consider because comparison did precede doubling or halving for all participants, in 

order to accustom children to the elements of the doubling & halving tasks. Such a strategy 

would result in chance performance overall on the doubling task if children applied it 

consistently, because the presented blue quantity (before it was invisibly “doubled”) was always 

smaller than the red quantity. Therefore such a strategy would lead to 100% (or very high) 

accuracy on the trials with a correct answer of  “red” and 0% (or very low) accuracy on trials 

with a correct answer of “blue.” Because children performed above chance overall, they did not 

rely entirely on a strategy involving comparing the initial blue quantity to the red quantity. The 

data suggest that children did not use this strategy even on a subset of the presented trials in the 

doubling task: if they had done so, they would have achieved higher levels of accuracy on the 

trials with a correct answer of “red” than on those with a correct answer of “blue.” This is not the 

case for the continuous doubling task (“answer = red” trials, 74%; “answer = blue” trials, 74%) 

or for the discrete doubling task (“answer = red” trials, 73%; “answer = blue” trials, 65%; 

t(32)=1.25, p>.05).  

This strategy would also result in chance performance if children applied it consistently 

in the halving task, because the initially presented blue quantity (before its unseen “halving”) 

was always larger than the red quantity. Because children performed above chance overall, they 

did not rely entirely on this strategy. If children applied the strategy on a subset of the presented 
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trials, they would achieve higher levels of accuracy on the trials with a correct answer of “blue” 

than on those with a correct answer of “red.” This was not the case for the discrete halving task 

(“answer = red” trials, 63%; “answer = blue” trials, 65%).   Thus, children showed no evidence 

of comparing the initial blue quantity to the final red quantity in the discrete halving task.  

However, on the continuous halving task, children were 42% correct for the “answer = red” trials 

(not significantly different from chance; t(35)=1.65, p>.05) and 88% correct for the “answer = 

blue” trials. These accuracy scores were significantly different from each other (t(35)=6.49, 

p<.0001). Children could not have relied entirely on this strategy in the continuous halving task 

(because such reliance would have produced lower overall accuracy), but the pattern of 

performance was consistent with the use of a simple comparison strategy on some trials.  

 Alternative strategy 2:  Respond based on range analysis 

 Another strategy exists that could have led to better-than-chance performance even if 

children did not base their choices on the magnitude of the transformed quantity. It is possible 

that children simply responded based on the range of values of the red lengths  or set 

numerosities (the magnitude presented last in every trial). The correct response for the largest red 

items was always “red” (these were bigger than the transformed blue item), and the correct 

response for the smallest red items was always “blue” (these were smaller than the transformed 

blue item). Children have been found to exploit such a range analysis in previous across-

modality approximate subtraction tasks (when subtracting numerosities of sound sequences from 

numerosities of visual sets), though not in analogous addition tasks (Barth, Beckmann, & Spelke, 

2008). It is especially important to consider this strategy in the present doubling task because the 

comparison trials always preceded the doubling trials, and the range of red items was the same in 

the comparison and doubling trials. Thus, children had ample opportunity to learn about the 
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range of magnitudes being presented. If the practice trials taught children to give roughly equal 

numbers of “blue” and “red” answers, and the comparison trial block exposed them to a 

particular range of red set numerosities or red bar lengths, children might well have made use of 

this strategy. Four distinct arguments are relevant to our consideration of children’s use of this 

range-based strategy.  

 First, if children learned about the range of red magnitudes from the initial comparison 

trials, we should expect the use of this range-based strategy to lead to two specific patterns of 

performance, because the red numerosities or lengths from the comparison blocks were identical 

to those for the doubling blocks, but the red numerosities or lengths of the halving blocks were 

smaller than those for the preceding comparison blocks. If children relied on this strategy, they 

should be  more accurate for doubling than for halving. There was no accuracy difference 

between the discrete doubling and discrete halving tasks (t(69)=1.94, p>0.05, uncorrected) but 

continuous doubling performance was better than continuous halving performance (t(65)=2.73, 

p<0.05, corrected for multiple comparisons). Thus, this analysis militates against a range based 

strategy in the discrete tasks, but suggests such a strategy might have played a role in the 

continuous tasks.   

 Second, if children did make use of a range based strategy, halving tasks should produce a 

pattern of bias toward blue responses. This was not the case for the discrete halving task, but for 

the continuous halving task, children did perform better for the “answer = blue” trials than the 

“answer = red” trials (88% correct vs. 42% correct, (t(35)=6.49, p<.0001). Therefore children’s 

performance patterns for the continuous tasks appear consistent so far with the use of a strategy 

based on the information about the range of red lengths gathered during the initial comparison 

block, but there is no evidence of such a strategy in the case of the discrete tasks.  
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 Third, if children gathered information about the range of red magnitudes from the halving 

or doubling blocks themselves, rather than from the preceding comparison blocks, they should 

perform better on the second halves of the blocks than on the first halves. This was not the case 

for any task. For discrete doubling and discrete halving, there was no difference in performance 

from the first half of the task to the second half (t(32) = 0.58, p>0.05, and t(37) = 0.13, p>0.05, 

uncorrected, respectively). For the continuous doubling and halving tasks, performance was 

better on the first half than on the second (t(30) = 2.14, p<0.05, and t(35) = 2.42, p<0.03, 

uncorrected, respectively).  

 Fourth, if children pursued this range-based strategy, then they should perform better on 

trials containing extreme red magnitudes than on trials containing intermediate red magnitudes, 

when comparison ratios are equated across the two trial types. Better performance on the trials 

containing extreme red magnitudes would indicate that children were likely influenced by a 

strategy based on the magnitude of the final red item, although it does not constitute evidence of 

children’s complete reliance on such a strategy. For both continuous and discrete doubling, 

accuracy was higher on the trial subsets containing red magnitudes at the extreme ends of the 

range (t(30)=4.0, p<0.0004, uncorrected, and t(32)=8.28, p<0.0001, uncorrected, respectively). 

In contrast, for both continuous and discrete halving, accuracy was no higher for trial subsets 

containing extreme red magnitudes (t(35)=1.96, p>0.05, uncorrected, and t(37)=1.57, p>0.05, 

uncorrected). This finding makes sense in light of the fact that in the doubling tasks, red 

magnitudes were identical in the doubling block and the preceding comparison block, such that 

range information gathered during the comparison block would remain relevant during the 

doubling block. It may be that the incorporation of comparison trials designed in this manner 

obscured evidence of children’s ability to respond appropriately to the doubling transformations 
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by encouraging them to exploit available range-based information. In contrast, in the halving 

tasks, red magnitudes shifted dramatically from the comparison block to the halving block. 

 Thus, these analyses militate against either alternative strategy in the discrete halving 

task. The simple strategy of comparing the initial blue quantity to the final red quantity, ignoring 

the transformation, may have played some role in children’s performance on the continuous 

halving task, but not on either of the doubling tasks.  Furthermore, the analyses provide some 

evidence that children could have made use of range based alternative strategies in the doubling 

tasks (especially continuous doubling), but there was no hint of reliance on these strategies for 

the halving tasks.   

General Discussion  

 

We sought to answer two questions. First, can analog magnitude representations support 

reasoning about multiplicative transformations of discrete quantities in young children, prior to 

formal instruction in relevant symbolic algorithms? Second, are multiplicative computations 

evident earlier, or more robustly, for continuous quantities than for discrete quantities? 

Our findings suggest that children’s analog magnitude representations of discrete 

numerical quantity can indeed enter into halving, and perhaps doubling, operations.  Though 

success at a doubling task like that of Experiment 1 could be explained in terms of a tendency to 

represent the transformation in terms of addition (“initial quantity + initial quantity” rather than 

“initial quantity doubled”), children’s unambiguous success at the discrete halving task of 

Experiment 2 cannot be explained in an analogous manner (because subtracting one half requires 

first halving the initial quantity). These findings are therefore consistent with the idea that 

children can represent an approximate halving operation, and can apply this operation to 

representations of discrete numerosity, before they are taught symbolic multiplication, division, 
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or fraction notation. Children apparently succeeded at recognizing the nature of the halving 

transformation based on a small number of examples, applying that transformation to novel 

discrete sets in order to halve them mentally, and comparing the resulting (never-presented) 

numerosity to a third set. Overall, the results of Experiment 2 provide evidence of nonverbal 

approximate halving of discrete, and most probably also continuous, quantities.  

 Children’s accuracy depended on the ratio of the compared quantities, consistent with 

the idea that children made use of analog magnitude representations of quantity in performing 

the tasks. Followup analyses testing for the use of alternative strategies showed that these data 

provide clear evidence of children’s ability to apply halving transformations to sets of discrete 

elements. The evidence is somewhat less clear for the continuous quantities tested here (lengths). 

Thus, we find no evidence that children are more sensitive to multiplicative transformations of 

continuous magnitude: Children performed equally well for both types of tasks, and patterns of 

performance for the discrete tasks constitute stronger evidence for children’s ability to reason 

about multiplicative transformations than do patterns of performance for the continuous tasks.  

Whether younger children might reveal better be able to double or halve continuous than discrete 

quantities is a topic for further research. 

What multiplicative computations might children have been carrying out? 

 It is important to acknowledge that these data provide no evidence that children can 

multiply or divide one analog magnitude (e.g., approximately 15) by another (e.g., approximately 

2).  Although we have designated the transformations “doubling” and “halving,” we do not mean 

to imply that representations of the number two enter into the computation. We have no evidence 

concerning exactly what computation the child is carrying out; after all, it is possible they are 

multiplying and dividing by two. But it is also possible that they are computing ratios and then 
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creating a representation of a new quantity that is a constant ratio to each standard. Whichever 

computation they are using, especially in the halving task, it is a multiplicative one. 

Potential limitations of these studies 

This approach to investigating children’s intuitions about multiplicative transformations 

of quantity required the use of a between-subjects design, due to the length of the test session, 

the number of conditions tested, and the young age of the participants. Because groups were 

formed by semi-random assignment rather than being equated with respect to sex, intelligence, 

attentional resources, or other variables, it is possible that between-group variations may have 

influenced the results. In future studies it would be ideal to employ within-subjects tests of both 

continuous and discrete quantities, and within-subjects tests involving halving and doubling 

transformations. In addition, we chose to design the tasks such that some aspects of the stimuli 

were balanced across doubling and halving conditions (the overall stimulus magnitudes 

employed, for example); this necessarily meant that other aspects could not be equated (such as 

the initially–presented magnitudes; see Figures 1 and 2 and Procedures). Ideally, future studies 

would explore possible stimulus magnitude effects that may have resulted from this design. 

Potential relation to the later construction of rational number concepts 

Both articulated and intuitive concepts of division play an important role in children’s 

eventual construction of an understanding of rational number. An articulated model of fractions 

based on division is strongly related to middle school children’s understanding of other aspects 

of rational number (Smith, Solomon, & Carey, 2005), and many researchers suggest that early 

intuitions about transformations of continuous physical amounts support later fraction learning 

(Resnick & Singer, 1993; Confrey, 1994; Moss & Case, 1999). But children’s great difficulty in 

understanding fractions emphasizes the conceptual distance between intuitions about physical 
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quantities and formal reasoning about rational numbers. There may be no clear path from 

reasoning about amounts in the world to reasoning about numbers as mathematical entities, and 

we do not yet possess a full description of the intermediate steps children take along this path. 

Many researchers have argued that learning about fractions requires conceptual change 

(Smith et al., 2005; Gelman, 1991; Gelman & Meck, 1992) rather than the enrichment of existing 

knowledge about numbers and quantities (Mix et al., 1999; Sophian, Geryantes, & Chang, 1997). 

On the former view, making sense of rational number is especially difficult for children because 

their early concept of numbers – that numbers are what you get when you count – must be 

changed fundamentally when they are confronted with fractions (Smith et al., 2005; Gelman & 

Meck, 1992; Hartnett & Gelman, 1998). To understand rational number, children must come to 

form a new concept of number as infinitely divisible.  

Physical continuous quantities have often been supposed to provide a convenient model 

for children’s thinking about repeated division, because it seems plausible that continuous 

models of these quantities might be perceptually given. However, a recent clinical interview 

study demonstrated that this aspect of children’s thinking about physical quantity may itself be 

painstakingly constructed. Despite the apparent perceptual availability of the continuity of matter 

and length, the study found that many children between eight and twelve years of age do not yet 

possess a continuous model of matter or (in a pilot study) length (Smith et al., 2005). Such an 

understanding may be crucial to the construction of an understanding of rational number: all 

children who showed evidence of a discontinuous model of matter also did not yet understand 

that numbers could be divided infinitely, and all children who understood the infinite divisibility 

of number also showed evidence of a continuous model of matter (Smith et al., 2005).  
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Early intuitions about transformations of continuous physical amounts, therefore, may not 

provide children with the conceptual tools they need to build rational number concepts. A 

concept of repeated division differentiated from subtraction, in the context of reasoning about 

numbers and physical quantities in verbal tasks, appears to be an important component of older 

children’s construction of concepts of rational number (Smith et al., 2005), yet an understanding 

of differentiated division in such contexts is relatively late-emerging. The present study shows 

that even much younger children already appear to possess the ability to apply simple 

multiplicative transformations to numerical quantities (sets of discrete elements). It is possible 

that the early nonverbal understanding of halving computations operating over analog magnitude 

representations of discrete quantity may serve as one of the building blocks of the later 

understandings of division that are crucial to children’s understanding of fractions. 

We did not find evidence that intuitive reasoning about multiplicative transformations of 

continuous quantities preceded such reasoning in the context of discrete quantity, though in the 

verbally-based clinical interview study described above, children’s patterns of response 

suggested that an understanding of the infinite divisibility of matter appeared to precede that of 

number (though the acquisition of concepts of the repeated division of numbers and the repeated 

division of matter progressed largely in parallel, Smith et al., 2005). It may be that early concepts 

of multiplicative change develop in the context of continuous quantities first (Mix, Huttenlocher, 

& Levine, 2002). It is also possible that the developmental patterns observed in studies of young 

children’s nonverbal reasoning about sets and amounts will not parallel those observed in studies 

of older children’s verbal reasoning about numbers and matter. Additional studies are needed to 

distinguish between these possibilities, and to determine whether the capabilities demonstrated 

by children in these experiments extend to other simple forms of multiplicative transformations 
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beyond halving and doubling (or even to true computations of multiplication and division). 

Future work will explore the ways in which children’s later steps on the path toward rational 

number concepts might build upon their early ability to perform computations of halving and 

doubling over analog magnitude representations of discrete quantity. 
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Figure Captions 

 

Figure 1. Schematic depictions of procedures for the continuous comparison task (Experiments 1 

and 2), continuous doubling task (Experiment 1), and continuous halving task (Experiment 2). 

Not drawn to scale. 

 

Figure 2. Schematic depictions of procedures for the discrete comparison task (Experiments 1 

and 2), discrete doubling task (Experiment 1), and discrete halving task (Experiment 2). Not 

drawn to scale. 

 

Figure 3. Children’s accuracy for the continuous and discrete comparison and doubling tasks of 

Experiment 1 (collapsed across kindergarten and first grade participants). Error bars represent 

SEM. 

 

Figure 4. Children’s accuracy for the continuous and discrete comparison and halving tasks of 

Experiment 2 (collapsed across kindergarten and first grade participants). Error bars represent 

SEM. 
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