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Abstract
We present a gridded 8 km-resolution data product of the estimated composition of tree taxa

at the time of Euro-American settlement of the northeastern United States and the statistical

methodology used to produce the product from trees recorded by land surveyors. Composi-

tion is defined as the proportion of stems larger than approximately 20 cm diameter at breast

height for 22 tree taxa, generally at the genus level. The data come from settlement-era public

survey records that are transcribed and then aggregated spatially, giving count data. The

domain is divided into two regions, eastern (Maine to Ohio) and midwestern (Indiana to Min-

nesota). Public Land Survey point data in the midwestern region (ca. 0.8-km resolution) are

aggregated to a regular 8 km grid, while data in the eastern region, from Town Proprietor Sur-

veys, are aggregated at the township level in irregularly-shaped local administrative units.

The product is based on a Bayesian statistical model fit to the count data that estimates com-

position on the 8 km grid across the entire domain. The statistical model is designed to handle

data from both the regular grid and the irregularly-shaped townships and allows us to estimate

composition at locations with no data and to smooth over noise caused by limited counts in

locations with data. Critically, the model also allows us to quantify uncertainty in our composi-

tion estimates, making the product suitable for applications employing data assimilation. We

expect this data product to be useful for understanding the state of vegetation in the north-

eastern United States prior to large-scale Euro-American settlement. In addition to specific

regional questions, the data product can also serve as a baseline against which to investigate

how forests and ecosystems change after intensive settlement. The data product is being

made available at the NIS data portal as version 1.0.
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Introduction
Historical datasets provide critical context to understand forest ecology. They allow researchers
to define ‘baseline’ conditions for conservation management, to understand ecosystem pro-
cesses at decadal and centennial scales, to track forest responses to shifting climates, and, par-
ticularly in regions with widespread land use change, to understand the extent to which forests
after conversion and regeneration differ from the original forest cover.

Euro-American settlement and subsequent land use change occurred in a time-transient
fashion across North America and were accompanied by land surveys needed to demarcate
land for land tenure and use. Various systems were used by surveyors to locate legal boundary
markers, usually by recording and marking trees adjacent to survey markers. These data pro-
vide vegetation information that can be mapped and used quantitatively to represent the period
of settlement. Early surveys (from 1620 until 1825) in the northeastern United States provide
spatially-aggregated data at the township level [1, 2], with typical township size on the order of
200 km2 and no information about the locations of individual trees; we refer to these as the
Town Proprietor Survey (TPS). Later surveys after the establishment of the U.S. Public Land
Survey System (PLS) by the General Land Office (GLO) provide point-level data along a regu-
lar grid, with one-half mile (800 m) spacing, for Ohio and westward during the period 1785 to
1907 [3–6]. At each point 2-4 trees were identified, and the common name, diameter at breast
height, and distance and bearing from the point were recorded. Survey instructions during the
PLS varied through time and by point type. Accounting for this variation requires data screen-
ing to maximize consistency among points and the application of spatially-varying correction
factors [6] to accurately assess tree stem density, basal area and biomass from the early settle-
ment records, but the impact on composition estimates is limited [7]. Surveyors sometimes
used ambiguous common names, which requires matching to scientific names and standardi-
zation [6, 8].

Logging, agriculture, and land abandonment have left an indelible mark on forests in the
northeastern United States [2, 6, 9, 10]. However most studies have assessed these effects in
individual states or smaller domains [11, 12] and with various spatial resolutions, from town-
ships (36 square miles) to forest zones of hundreds or thousands of square miles. [6] provide a
new dataset of forest composition, biomass, and stem density based on PLS data for the upper
Midwest that is resolved to an 8 km by 8 km grid cell scale, providing broad spatial coverage at
a spatial scale that can be compared to modern forests using Forest Inventory and Analysis
products [13]. Combined with additional, coarsely-sampled PLS data from Illinois and Indi-
ana, newly-digitized data from southern Michigan, and with the TPS data, this gives us raw
data for much of the northeastern United States. However, there are several limitations of
using the raw data that can be alleviated by the use of a statistical model to develop a statisti-
cally-estimated data product. First, the PLS and TPS data only provide estimates of within-cell
variance that do not account for information from nearby locations. Second, there are data
gaps: the available digitized data from Illinois and Indiana represent a small fraction of those
states, and missing townships are common in the TPS data. Third, the TPS and PLS data have
fundamentally different sampling design and spatial resolution. Our statistical model allows us
to provide a spatially-complete data product of settlement-era tree composition for a common
8 km grid with uncertainty across the northeastern U.S.

In Data we describe the data sources, while in Statistical model we describe the statistical
model used to create the data product. InModel comparison we quantitatively compare com-
peting statistical specifications, and in Data Product we describe the final data product. In Dis-
cussion we discuss the uncertainties estimated by and the limitations of the statistical model,
and we list related data products under development.
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Methods

Data
The raw data were obtained from land division survey records collated and digitized from
across the northeastern U.S. by a number of researchers (Fig 1). For the states of Minnesota,
Wisconsin, Illinois, Indiana, and Michigan (the midwestern subdomain), digitized data are
available at PLS survey point locations and have been aggregated to a regular 8 km grid in the
Albers projection. (Note that for Indiana and Illinois, at the moment trees are associated with
township centroids and then assigned to 8 km grid cells based on the centroid, but in the near
future we will have point locations available for each tree.) For the states of Ohio, Pennsylvania,
New Jersey, New York and the six New England states (the eastern subdomain), data are aggre-
gated at the township level. We make predictions for all of the states listed above; these consti-
tute our core domain. There are also data from a single township in Quebec and a single
township in northern Delaware; these data help inform predictions in nearby locations within
our core domain, but predictions are not made for Quebec or Delaware. Digitization of PLS
data in Minnesota, Wisconsin and Michigan is essentially complete, with PLS data for nearly
all 8 km grid cells, but data in Illinois and Indiana represent a sample of the full set of grid cells,
with survey record transcription ongoing. Data for the eastern states are available for a subset
of the full set of townships covering the domain; the TPS data for some townships were lost,
incomplete, or have not been located [1].

Note that surveys occurred over a period of more than 200 years as European colonists
(before U.S. independence) and the United States settled what is now the northeastern and
midwestern United States. Our estimates are for the period of settlement represented by the
survey data and therefore are time-transgressive; they do not represent any single point in time
across the domain, but rather the state of the landscape at the time just prior to widespread
Euro-American settlement and land use [1, 14]. These forest composition datasets do include
the effects of Native American land use and early Euro-American settlement activities, e.g.

Fig 1. Spatial domain of the northeastern United States, with locations with data shown in gray.
Locations are grid cells in midwestern portion and townships in eastern portion. In addition to locations
without data being indicated in white, grid cells completely covered in water are white (e.g., a few locations in
the northwestern portion of the domain in the states of Minnesota andWisconsin).

doi:10.1371/journal.pone.0150087.g001
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[15], but it is likely that the imprint of this earlier land use is highly concentrated rather than
spatially extensive [16].

Extensive details on the upper Midwest (Minnesota, Wisconsin, Michigan) data and pro-
cessing steps are available [6]; key elements include the use of only corner points, the use of
only the two closest trees at each corner point, spatially-varying correction factors for sampling
effort, and a standardized taxonomy table. The lower Midwest (Illinois, Indiana) data were
purchased from the Indiana State Archives (Indiana) and Hubtack Document Resources (hub-
tack.com; Illinois) and processed using similar steps as for the upper Midwest data. Digitization
of the Illinois and Indiana data is still underway, so many grid cells contained no data at the
time the statistical model was fit. Note that the number of trees per grid cell varies depending
on the number of survey points in a cell, with an average of 124 trees per cell. The gridded data
at the 8 km resolution for the midwest subdomain are available through the NIS data portal
[17]. The TPS data were compiled by C.V. Cogbill from a myriad of archival sources represent-
ing land division surveys conducted in connection with local settlement and are available
through the NIS data portal [18, 19].

The aggregation into taxonomic groups is primarily at the genus level but is at the species
level in some cases of monospecific genera. We model the following 22 taxa plus an “other
hardwood” category: Atlantic white cedar (Chamaecyparis thyoides), Ash (Fraxinus spp.), Bass-
wood (Tilia americana), Beech (Fagus grandifolia), Birch (Betula spp.), Black gum/sweet gum
(Nyssa sylvatica and Liquidambar styraciflua), Cedar/juniper (Juniperus virginiana and Thuja
occidentalis), Cherry (Prunus spp.), Chestnut (Castanea dentata), Dogwood (Cornus spp.), Elm
(Ulmus spp.), Fir (Abies balsamea), Hemlock (Tsuga canadensis), Hickory (Carya spp.), Iron-
wood (Carpinus caroliniana and Ostrya virginiana), Maple (Acer spp.), Oak (Quercus spp.),
Pine (Pinus spp.), Poplar/tulip poplar (Populus spp. and Liriodendron tulipifera), Spruce (Picea
spp.), Tamarack (Larix laricina), and Walnut (Juglans spp.). Note that in several cases (black
gum/sweet gum, ironwood, poplar/tulip poplar, cedar/juniper), because of ambiguity in the
common tree names used by surveyors, a group represents trees from different genera or even
families. For the midwestern subdomain we do not fit statistical models for Atlantic white
cedar and chestnut as these species have 0 and 7 trees present, respectively. The taxa grouped
into the other hardwood category are those for which fewer than roughly 2000 trees were pres-
ent in the dataset; however, we include Atlantic white cedar explicitly despite it only having
336 trees in the dataset because of specific ecological interest in Atlantic white cedar wetlands.

Diameters are only recorded in the PLS data. Although surveyors avoided using small trees,
there was no consistent lower diameter limit. The PLS data generally represent trees greater
than 8 inches (ca. 20 cm) diameter at breast height (dbh), but with some trees as small as 1 inch
dbh (smaller trees were much more common in far northern Minnesota). TPS data have no
information about dbh, but the trees were large enough to blaze and are presumed to be rela-
tively large trees useful for marking property boundaries.

There are approximately 860,000 trees in the midwestern subdomain and 420,000 trees in
the eastern subdomain. In the midwestern subdomain, oak is the most common taxon and
pine the second most common, while in the eastern subdomain oak is the most common and
beech the second most common.

Our domain is a rectangle covering all of the states using a metric Albers (Great Lakes and
St. Lawrence) projection (PROJ4: EPSG:3175), with the rectangle split into 8 km cells, arranged
in a 296 by 180 grid of cells, with the centroid of the cell in the southwest corner located at
(-71000 m, 58000 m). For the midwestern subdomain we use the western-most 146 by 180 grid
of cells when fitting the statistical models. For the eastern subdomain we use the eastern-most
180 by 180 grid of cells and then omit 23 rows of cells in the north and 17 rows of cells in the
south, as these grid cells are outside of the states containing data.

Settlement-Era Tree Composition in the Northeastern U.S.
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Statistical model
We fit a Bayesian statistical model to the data, with two primary goals:

1. To estimate composition on a regular grid across the entire domain, filling gaps where no
data are available, and

2. To quantify uncertainty in composition at all locations. Even in grid cells and townships
with data, we wish to quantify uncertainty because the empirical proportions represent esti-
mates of the true proportions that could be calculated using the full population of all the
trees in a grid cell or township.

At a high level, the Bayesian statistical model estimates composition across the domain,
even in locations with sparse or no data, by combining the raw composition data with the
assumption that composition varies in a smooth spatial fashion across the domain. The infor-
mation in the data is quantified by the data model, also known as the likelihood. The assump-
tion of smoothness is built into the model by representing the true unknown spatially-varying
composition using a statistical spatial process representation that induces smoothing of esti-
mates across nearby locations. This spatial process representation is a form of prior distribu-
tion and is a function of model parameters called hyperparameters that determine the
correlation structure of the process and are also estimated based on the data.

The result of fitting the Bayesian model via Markov chain Monte Carlo (MCMC) is a set of
representative samples from the posterior distribution for the composition in the 23 taxonomic
groupings at each of the grid cells. These samples are the data product (described further in
Data Product) and can be used in subsequent analyses. The mean and standard deviation of
the samples for each pair of cell and taxon represent our best estimate (i.e., prediction) of com-
position and a Bayesian “standard error” quantifying the uncertainty in the estimate.

In the remainder of this section we provide the technical specification of the model and of
the computations involved in fitting the model.

Data model. We start by describing the basic model for those states for which we have raw
data on the 8 km grid, and inModel for township data we describe the extension of the model
to accommodate data aggregated at the township level.

The statistical model treats the observations as coming from a multinomial distribution
with a (latent) vector of proportions for each grid cell,

yi � Multiðni; yðsiÞÞ;

where yi is the vector of counts for the P taxa at the ith cell, ni is the number of trees counted in
the cell, and θ(si) is the vector of unknown proportions for those taxa at that cell. Note that we
use a standard multinomial distribution without overdispersion, because the set of trees in the
dataset is roughly uniformly sampled across the cells or townships [6].

The proportions, θp(si), p = 1, . . ., P, are modeled spatially by a set of P Gaussian spatial pro-
cesses, one per taxon, αp(si), p = 1, . . ., P. This collection of processes defines a multivariate spa-
tial process for composition. The αp(s) processes are defined on the 8 km grid, αp = {αp(s1), . . .,
αp(sm)} for them grid cells. In Latent variable model we introduce a multinomial probit model
that relates the αp(s) processes to the proportion processes, θp(s), via the introduction of latent

variables, with an implicit sum-to-one constraint,
PP

p¼1 ypðsÞ ¼ 1. A multinomial probit model

is similar to logistic regression, used for modeling a binary outcome based on an underlying
probability the outcome will occur, but generalizes to modeling a categorical variable based on
probabilities for each category.

Settlement-Era Tree Composition in the Northeastern U.S.
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The critical component of the statistical model is the representation of αp(s) as a spatial pro-
cess. A spatial process is a statistical representation that models spatially-correlated values. It
provides a prior structure that serves to smooth across noise in the observations and allows for
prediction at locations based on information from nearby locations, including interpolation to
locations with no data. Apart from the sum-to-one constraint, the taxa are considered to be
independent in the prior. We did not want to impose any structure that ties the different taxa
together, as any correlation will likely vary across space.

In the next section, we consider two spatial models to define the structure of the αp(s) pro-
cesses, a standard conditional autoregressive model [20] and a Gaussian Markov random field
(MRF) approximation to a Gaussian process with Matérn covariance [21]. These models are
specific statistical formulations of spatial processes that represent spatial correlation by defin-
ing neighborhoods around each location that are used to help inform predictions at the
location.

Spatial process models. MRFmodels represent the neighborhood information by working
directly with the precision matrix (the inverse of the covariance matrix) of the values of the
spatial process, so calculation of the prior density of αp is computationally simple [22]. How-
ever, in situations in which the likelihood is not normal, such as our multinomial likelihood, it
can be difficult to set up effective MCMC algorithms that are able to move in the high-dimen-
sional space of αp. The latent variable representation helps to alleviate this problem. Next we
describe two alternative spatial models that we considered; inModel comparison, we evaluate
the models on held-out data to choose between the two.

Standard conditional autoregressive models. Our first model is a standard conditional
autoregressive (CAR) model; technical details can be found in [20]. We use a standard form of
this model that treats the four cardinal neighbors of each grid cell as the neighbors of the grid
cell. The corresponding precision matrix has diagonal elements, Qii, equal to the number of
neighbors for the ith area (i.e., four except for cells on the boundary of the domain), while Qik

= −1 (the negative of a weight of one) when areas i and k are neighbors and Qik = 0 when they
are not. This gives the following model for the values of αp(si) collected as a vector across all of
the grid cells, i = 1, . . .,m:

ap � Nð0; s2
pQ

�Þ:

The use of the generalized inverse notation indicates that Q is not full-rank, but is of rankm
− 1; this gives an improper prior on an implicit overall mean for the process values. Note that
we specify an explicit mean of zero because a non-zero mean would not be identifiable in light
of the implicit mean. This specification is called an intrinsic conditional autoregression (ICAR)
and we can write Q = D − C where C is them ×m adjacency matrix defining the neighborhood
relation of the locations; that is Cik = 1 if locations i and k are neighbors and zero otherwise.
The matrix D is anm ×m diagonal matrix containing the row sums of matrix C as the diagonal

entries, Dii ¼
Xm
k¼1

Cik:

We refer to this as the CAR model.
Gaussian process approximation. Gaussian processes (GP) are also standard models for

spatial processes [20]. GP models are computationally challenging for large datasets because of
computational manipulations involving large covariance matrices. Given this, [21] proposed a
new framework for using Gaussian MRFs (GMRFs) as approximations to GPs, based on the
use of stochastic partial differential equations (SPDEs).

Gaussian processes are generally constructed using one of a number of correlation functions
that define how the strength of correlation between the values of the process at two locations

Settlement-Era Tree Composition in the Northeastern U.S.
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decays as a function of the distance between the locations. We consider Gaussian processes in
the commonly-used Matérn class, using the following parameterization of the Matérn correla-
tion function,

RðdÞ ¼ 1

GðnÞ2n�1

2
ffiffiffi
n

p
d

r

� �n

Kn

2
ffiffiffi
n

p
d

r

� �
;

where d is Euclidean distance, ρ is the spatial range parameter, andKnð�Þ is the modified Bessel
function of the second kind, whose order is the smoothness (differentiability) parameter, ν> 0.
ν = 0.5 gives the exponential covariance. For any pair of locations, R(d) defines the correlation
of the process, (i.e., αp(s) in our context), as a function of the distance between the locations.
Considering all pairs of locations, this defines a correlation matrix for all locations of interest.

The approach of [21] allows us to consider MRF approximations to the Matérn -based GP
for ν = 1 and ν = 2. Our second spatial model is this Lindgren approximation for Matérn
-based GPs with ν = 1. To implement this Lindgren model, one modifies the Qmatrix defined
previously as follows based on the technical specification of the precision matrix provided in
[21]. Let a ¼ 4þ 1

r2. The diagonal elements of Q are 4 + a2. The entries corresponding to cardi-

nal neighbors are −2a. Those for diagonal neighbors are 2, and those for 2nd-order cardinal
neighbors are 1. This extends the neighborhood structure relative to the CAR model and
parameterizes it as a function of ρ.

The primary difference between the CAR and Lindgren models is that the Lindgren model
provides an additional degree of freedom by estimating ρ. In particular ρ allows us to estimate
the locality of the spatial smoothing. As ρ decreases, the model uses increasingly localized data
to estimate the compositional proportions at a given location, effectively averaging the empiri-
cal proportions over smaller neighborhoods. In general, the [21] model will generally provide
for a smoother estimate than the CAR model [23].

To ensure that the σ2 parameter is mathematically equivalent between the two models, we
reparameterize, producing our second model:

ap � N mp; s
2
p �

4p
r2
p

QðrpÞ�1

 !

We refer to this model as the SPDE model.
Prior distributions. The ICAR specification contains a set of hyperparameters fs2

pg;
p = 1, . . .P. Following [24] we use a uniform distribution on each σp parameter, with upper
bound of 1000. For the SPDE model we also have hyperparameters {μp}, which we give flat,
non-informative priors (truncated at ±10), and {ρp}, which we give uniform priors on the inter-
val (0.1, exp(5)). These various hyperparameters are unknown parameters that control the spa-
tial structure of the two spatial models and are estimated from both the data and the prior
distributions just specified based on the Bayesian approach.

Latent variable model. It is well-known that devising an effective MCMC algorithm for
models with latent Gaussian process(es) and a non-Gaussian likelihood is difficult [22, 25, 26].
To develop an algorithm, we make use of a latent variable representation for the multinomial
probit model [27]. The representation introduces latent variables that allow one to develop an
MCMC sampling strategy that takes advantage of closed-form full conditional distributions
(so-called Gibbs sampling steps) for αp.

Suppose that compositional counts are available at a number of locations. At location i, a
sample of size ni observations is collected, and each observation (i.e., each tree) can be classified
into P distinct categories. For a given tree j at location i, let Yij denote the response variable
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indicating the category. Let Yij be associated with P latent variablesWij1, . . .,WijP such that Yij

= p if and only ifWijp ¼ max
p0

fWijp0 g; in other words, the maximum of the set of latent variables

fWijpgP
p¼1 determines the category of observation j at location i. The final piece of the latent var-

iable representation is the relationship between theW variables and the αp(s) processes. We
have that

Wijp � NðapðsiÞ; 1Þ

independently for all of theWijp values. Consider the following example with two locations
that are neighbors and P = 2 categories. Each tree j at location i is associated with two variables
Wij1 andWij2, governed by the latent variables α1(si) and α2(si), respectively. Suppose that
α1(si)>α2(si) for a given location i. Then this model implies that any tree j is more likely to be
labeled 1 than 2 at location i. The difference between α1(si) and α2(si) explains the difference in
probability of categories 1 and 2 at location i, and the similarity between αp(s1) and αp(s2)
explains the correlation between the probabilities at locations 1 and 2 for category p.

Model for township data. We developed an extension of the model described in previous
sections to account for data at a different aggregation than our core 8 km grid. This extension
introduces a new set of latent variables, one per tree, that indicate the grid cells in which the
trees are located and that can be sampled within the MCMC as additional unknown parame-
ters. Specifically, ctj is the latent “membership” variable for tree j in township t, t = 1, . . ., T.
The prior for ctj is a discrete distribution that puts mass, ψti, i = 1, . . .,m, proportional to the
areal overlap between the township in which the tree is located and them grid cells, giving

ctj � Multinomð1; fct1; . . . ;ctmgÞ;

independently across all trees. Because the townships overlap a limited number of grid cells,
most of the ψt1, . . ., ψtm values are zero.

Using the latent variable representation, we have thatWtjp*N(αp(sctj), 1) for tree j in town-
ship t. In updating the other parameters in the model during the MCMC (specifically the α val-
ues), we condition on the current values, {ctj}, which provides a “soft” (i.e., probabilistic)
assignment of trees to grid cells that respects both the known township in which the trees
occurred and the uncertainty in which grid cells the trees occurred.

Note that this prior represents the location of each tree in a township as being independent
of the other trees; this is somewhat unrealistic because it does not represent our knowledge that
the trees in a township would be distributed somewhat regularly across the area of the town-
ship because the witness trees were used to indicate property boundaries.

Computation. The [27] representation is convenient for MCMC sampling, particularly in
this high-dimensional spatial context, as it allows us to draw from the posterior conditional dis-
tributions of theWijp variables (these distributions are truncated normal) in closed form and to
draw the entire vector of latent process values for each taxon, αp, as a single sample that
respects the spatial dependence structure for each taxon.

While the latent variable representation provides great advantages in the MCMC sampling
for each αp compared to joint Metropolis updates or updating each location individually, there
is still strong dependence between the hyperparameters, fs2

p; mp; rpg and the latent process val-
ues (as well as between the latent process values and the latentWijp variables). To address the
first, we developed a “cross-level” joint updating strategy for the CAR model in which we pro-
pose ϕp = σp, p = 1, . . ., P, (and for the SPDE model, ϕp 2 {μp, (σp, ρp)}) via a Metropolis-style
random walk and then given the proposed value, ��

p, propose αp from its full conditional distri-

bution given ��
p and the latentWp variables, whereWp is the vector of allWijp values for taxon
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p:Wp = {Wijp}, i = 1, . . .,m;j = 1, . . ., ni. This is equivalent to sampling from the marginalized
(with respect to αp) distribution of ϕp conditional onWp. For these various joint samples of
hyperparameters and αp, we use adaptive Metropolis sampling [28].

The full description of the MCMC sampling steps is provided in Appendix. In addition, in
the latent variable representation, θp(s) never appears explicitly and cannot be calculated in
close form. Instead we use Monte Carlo integration overWijp, p = 1, . . ., P to estimate θp(si),
also described in Appendix.

The model is implemented in R [29] with core computational calculations coded in C+
+ using the Rcpp package [30]. We also make extensive use of sparse matrix representations
and algorithms, using the spam package in R [31]. All code is available on Github, including
pre- and post-processing code, at https://github.com/PalEON-Project/composition.

Model comparison
Design. We compared the CAR and SPDE models by holding out data from the fitting

process and assessing the fit of the model on the held-out data. We used two experiments with
held-out data:

1. The first experiment used a subregion containing most of Minnesota and a small amount of
westernWisconsin, defined to be the cells whose x-coordinate was less than 300,000 m (this
defines a north-south line that approximately goes through Duluth, Minnesota) and hereafter
referred to as the “Minnesota subregion”. We chose this subregion for evaluation because of
its high data density, allowing us to experiment with the effects of increasing data sparsity on
model performance. We held out all data from 95% of the cells in this Minnesota subregion,
with cells selected at random. This was meant to assess the ability of the model to interpolate
from a sparse set of cells/townships and mimics the limited data in Illinois and Indiana.

2. We held out 5% of the trees from all of the trees in the dataset for the midwestern subdo-
main (leaving aside the held-out Minnesota subregion cells). This was meant to assess the
ability of the model to estimate the composition in cells in which data were available.

Finally, in a separate sensitivity analysis we instead left out 80% of the cells in Minnesota
subregion at random. This variation on the first experiment above was meant to indicate
whether our model comparison conclusions would be robust as the digitization process for Illi-
nois and Indiana progresses and provides us with increasingly dense data.

There has been extensive work in the statistical literature on good metrics to use to compare
the predictive ability of models; these metrics are referred to as scoring rules. A general conclu-
sion from this work is that predictive distributions should maximize sharpness subject to cali-
bration. That is, the predictive distribution should be as narrow as possible while being
calibrated such that the observations are consistent with the distribution [32]. When thinking
in terms of prediction intervals as summaries of the predictive distribution, we seek intervals
that are as narrow as possible while still covering the truth the expected proportion (e.g., 95%
for a 95% prediction interval) of the time.

Following the suggestions in [32], we considered the following metrics: Brier score, log predic-
tive density, mean square prediction error, mean absolute error, and coverage and length of pre-
diction intervals. Further details on each are given below. For experiment 1, we define Yi = {Yi1,
. . ., YiP} as the count of all trees in held-out cell i and for experiment 2, Yi is the count of held-out
individual trees in the cell, while yijp is an indicator variable taking value either 0 or 1 depending

on whether the jth held-out tree in the ith cell is of taxon p. ŷ ip ¼ Yip=ni is the empirical propor-

tion in category p for the ni held-out trees in cell i. We calculated each of the metrics in two ways.
First, we used the posterior mean composition estimates (as an evaluation of our core
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predictions), with ~ypðsÞ being the posterior mean. Second, we averaged the metric over the poste-

rior samples (as an evaluation of our full data product, including uncertainty), taking ~ypðsÞ to be
an individual MCMC sample and then averaging the metric over all the posterior samples.

1. Brier score: [32] suggest this metric, which has been in use for decades. For multi-category
as opposed to binary outcomes, this takes the form

1

n

Xm
i¼1

Xni
j¼1

XP
p¼1

ðyijp � ~ypðsiÞÞ2

where n ¼Pm
i¼1 ni is the total number of held-out trees for a given experiment and j

indexes across held-out trees in cell i.

2. Log predictive density: This metric takes the log of the probability density of held-out obser-

vations under the fitted model, Yi � Multinomðni; f~y1ðsiÞ; . . . ; ~yPðsiÞgÞ, summing on the
log scale across all of the held-out data.
While in principle, this metric should be optimal [33], it is very sensitive to small predic-
tions near zero [32]. Even worse, our Monte Carlo estimation of θ used 10000 samples, so in

some cases ~ypðsÞ ¼ 0. When a tree is present in a cell but its corresponding proportion is 0,
this gives a log density of −1, preventing use of the metric. As an informal solution to this

we set ~ypðsÞ ¼ 1
100000 in such cases, but given these issues we treat the log predictive density

as a secondary measure.

3. (Experiment 1 only) Weighted root mean square prediction error (RMSPE),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pn

Xm
i¼1

XP
p¼1

niðŷ ip � ~ypðsÞÞ2
vuut

and mean absolute error (MAE)

1

Pn

Xm
i¼1

XP
p¼1

nijŷ ip � ~ypðsÞj :

These metrics calculate the error of the estimated proportions relative to the empirical pro-
portions based on the held-out trees, averaging over cells and taxa. We weight by the num-
ber of held-out trees in each cell to account for the greater variability in the empirical
proportions in locations with few held-out trees.

4. (Experiment 1 only) Coverage and length of 95% prediction intervals for Yip. We considered
only cells with at least 50 trees to focus our assessment on cases where empirical proportions
were reasonably certain and avoid being strongly influenced by predictive inference for cells
where observational variability dominates.

Note that all of the metrics except coverage and interval length can be applied to individual
posterior samples and therefore allow us to estimate the posterior probability that one model
has a lower (better) value of the metric than the other model by simply calculating the propor-
tion of samples for which the model has a lower value of the metric. Also note that in addition
to allowing comparison between models the MAE and RMSPE metrics allow one to assess
absolute performance of each model in predicting composition.

In our initial exploratory fitting, we noticed that the SPDE model produced boundary effects
in the predicted composition near the edges of the convex hull of the observations. To attempt
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to alleviate this, we added a buffer zone with a width of six grid cells around our entire original
domain, but note that the boundary effects were still evident even after inclusion of the buffer.
For the model comparison, we included this buffer for both the SPDE and CAR models.

We ran each model for 150,000 iterations. After discarding 25,000 iterations for burn-in, we
retained a posterior sample of 250 subsampled iterations—we use a subsample instead of the
full 125,000 post-burn-in iterations to reduce post-processing computations and storage needs.

Results. Here we summarize the results of our analyses that inform the choice between the
CAR and SPDE models.

For Experiment 1 (full cells held out) for cells in the Minnesota subregion held out of the fit-
ting process, the CAR model outperforms the SPDE model based on the posterior distribution
over the predictive metric values (Table 1). For the posterior mean predictions, the SPDE
model appears to outperform the CAR model to a lesser degree, but we do not have any uncer-
tainty estimates for this comparison. Coverage and interval lengths are similar between the two
models (Table 2). From a practical perspective, based on the difference in mean absolute error,
the differences between the models are small (Table 1).

The results for the variation on Experiment 1 in which the proportion of cells that are held
out decreases from 95% to 80% show that the SPDE model generally outperforms the CAR
model, but again differences from a practical perspective, based on mean absolute error, are
limited (Tables 3 and 4).

In Experiment 2 (individual trees held out), we have evidence (posterior probability of 0.93)
that the SPDE model is better based on the Brier score, but the Brier score values for the two
models are numerically almost the same (Table 5).

Table 1. Predictive ability based on several predictivemetric criteria for the CAR and SPDE spatial
models when holding out 95% of entire cells of data in Minnesota.

Posterior mean of metric Metric of posterior
mean predictions

CAR
model

SPDE
model

Posterior Prob. CAR
<SPDE

CAR
model

SPDE
model

Brier 0.819 0.844 0.98 0.738 0.733

Negative Log Density 466325 510383 1.00 394003 394554

Mean Absolute Error 0.0364 0.0383 0.98 0.0275 0.0269

Root Mean Square
Error

0.0897 0.0960 0.97 0.0647 0.0627

Smaller values are better for all metrics.

doi:10.1371/journal.pone.0150087.t001

Table 2. Coverage and length of prediction intervals for the CAR and SPDE spatial models when hold-
ing out 95% of entire cells of data in Minnesota.

CAR model SPDE model

Coverage 0.977 0.978

Mean Interval Length 0.129 0.142

Median Interval Length 0.037 0.033

Coverage values near 0.95 are optimal, while shorter intervals are better.

doi:10.1371/journal.pone.0150087.t002
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The differences between models are not consistent across the various comparisons, so there
is not a clear choice. In our final data product we use the CAR model, for three reasons. First,
the CAR model has modestly better performance when data are sparse, as is still the case for
Illinois and Indiana. Second, the model is simpler and easier to explain, and computations can
be done more quickly. Third, predictions from the SPDE model showed boundary effects, with
some taxa showing non-negligible posterior mean values at the edges of the domain, well away
from where the taxa were present in the empirical data. This included non-negligible values
within (but near the edge of) the convex hull of locations with data.

Table 3. Predictive ability based on several predictivemetric criteria for the CAR and SPDE spatial
models when holding out 80% of entire cells of data in Minnesota.

Posterior mean of score Score of posterior mean
predictions

CAR
model

SPDE
model

Posterior Prob. CAR
<SPDE

CAR
model

SPDE
model

Brier 0.773 0.765 0.10 0.710 0.710

Negative Log Density 355928 353987 0.25 311525 311902

Mean Absolute Error 0.0309 0.0296 0.10 0.0226 0.0223

Root Mean Square
Error

0.0763 0.0739 0.02 0.0533 0.0530

Smaller values are better for all metrics.

doi:10.1371/journal.pone.0150087.t003

Table 4. Coverage and length of prediction intervals for the CAR and SPDE spatial models when hold-
ing out 80% of entire cells of data in Minnesota.

CAR model SPDE model

Coverage 0.981 0.972

Mean Interval Length 0.112 0.103

Median Interval Length 0.028 0.022

Coverage values near 0.95 are optimal, while shorter intervals are better.

doi:10.1371/journal.pone.0150087.t004

Table 5. Predictive ability based on several predictivemetric criteria for the CAR and SPDE spatial
models when holding out 5% of trees.

Posterior mean of metric Metric of posterior mean
predictions

CAR
model

SPDE
model

Posterior Prob. CAR
<SPDE

CAR
model

SPDE
model

Brier 0.662 0.661 0.07 0.657 0.657

Negative Log
Density

51757 51626 0.01 50705 50736

Smaller values are better for all metrics.

doi:10.1371/journal.pone.0150087.t005
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Data Product
The final data product is a dataset that contains 250 posterior samples of the proportions of
each of the 23 tree taxa at each grid cell in the states in our domain of the northeastern United
States.

For this final data product, we ran the model using the CAR specification with all of the
data (including the data held out in the model comparison analyses) for 150,000 iterations with
the same burn-in and subsampling details as described inModel comparison. Based on graphi-
cal checks and calculation of effective sample size values, mixing was generally reasonable, but
for some of the hyperparameters was relatively slow, particularly for less common taxa. Despite
this, mixing for the variables of substantive interest—the proportions—was good, with effective
sample sizes for the final product generally near 250.

Maps of estimated composition for the full domain for several taxa of substantive interest
illustrate the results, contrasting the raw data proportions, the posterior means, and posterior
standard deviations as pointwise estimates of uncertainty (Fig 2). We also present the posterior
means for all 23 taxa (Fig 3).

The data product is publicly available at the NIS Data Portal under the CC BY 4.0 license as
version 1.0 as of February 2016 [34]. The product is in the form of a netCDF-4 file, with dimen-
sions x-coordinate, y-coordinate, and MCMC iteration. There is one variable per taxon. In
addition, dynamic visualizations of the product using the Shiny tool are available at https://
www3.nd.edu/~paleolab/paleonproject/maps. The PalEON Project (in particular the first
author) will continue to maintain this product, releasing new versions as additional data in Illi-
nois, Indiana and Ohio are digitized. Note that digitization of data from Illinois and Indiana is
ongoing, and digitization of additional data from Ohio is planned as well. As a result, at some
point we expect to have complete data for the midwestern half of the domain.

Discussion
In the parts of the modeled region with spatially complete data (in particular, Minnesota, Wis-
consin, and Michigan), the statistical estimates of forest composition closely match the patterns
apparent in the raw data (Fig 2), as expected. In these areas, the estimated tree composition
from the model has the advantage of downweighting unusual or outlier values in the empirical
proportions of individual grid cells, which are likely due to stochastic sampling variation within
that grid cell (compare the first two columns in Fig 2). Some stochastic variation is expected
given that, even in the most spatially complete regions, each grid cell contains an average of
124 trees (120-135 is typical) [6] and some cells contain many fewer trees. Hence, some
smoothing of this stochastic variation is appropriate. This smoothing is based on information
on data from nearby cells, and the estimates from the model reflect the smooth trends in forest
composition across the spatial domain. A partial cost is that these maps can smooth out sharp
ecotones or other forms of true spatial heterogeneity, particularly in areas with sparse data
(including areas with low tree density). For example, the sharp increase in Elm along the Min-
nesota River (Fig 2, first column) likely represents a real ecotone in the settlement-era vegeta-
tion. Vegetation gradients and ecotones were sharper in the settlement-era forests in the upper
Midwest than in contemporary forests [6], and the modeled estimates may partially obscure
this change. Users interested in using the original unsmoothed data are directed to the data
product described earlier [17]. Additional investigation of other statistical representations to
better capture sharp gradients is of interest, in particular nonstationary spatial models and use
of covariates. Potential environmental covariates include soils, firebreaks, and topography [35,
36]. Here, however, we chose to limit our model to be exclusively a function of spatial distance
in order to avoid dependence on the environmental drivers of pre-settlement forest
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composition that might lead to circular reasoning in subsequent inferences based on this data-
set. Use of covariates could also lead to prediction that a taxa is present well beyond its range
boundary in places where data are sparse.

A key advance of this work over prior reconstructions of settlement-era vegetation lies in
the estimates of uncertainty across the spatial domain. These estimates of uncertainty include
the sampling uncertainty within grid cells (as do the within-grid cell estimates of uncertainty
available from the raw proportions), but, because this is a spatial model, predictions and their
associated uncertainty estimates are also informed by the information content of nearby cells.
The maps of standard errors across species (Fig 2, third column) highlight the advantages of
this approach in areas of high data coverage (Minnesota, Wisconsin, Michigan) and in areas of
sparse coverage (e.g., Illinois, Indiana, parts of Ohio). Where there are not large gaps in the
data, the model provides low and fairly smooth estimates of uncertainty. Uncertainty is gener-
ally higher in the eastern subdomain than in the areas of the midwestern subdomain with high
data coverage because of missing townships and lower sampling density even in townships
with data. In areas of sparse coverage and in areas with low tree density (e.g., southwestern
Minnesota), the standard error of our estimates increases appropriately. Nevetheless, these
uncertainties surround reasonable estimates of trends in composition. For example, the model
does a good job of capturing the oak ecotone in Indiana and Illinois, representing a shift from
oak savannas and woodlands to closed mesic forests (Fig 2). Experiment 1 showed that both
models predicted composition at cells with no data reasonably well, mimicking the case of
sparsely sampled data and giving confidence in the broad spatial patterns predicted in more
poorly sampled regions, particularly those with regular, but sparse sampling that mimic the
experiment (Illinois and Indiana, but not Ohio). The apparent blockiness of uncertainty esti-
mates in a few places such as Ohio is caused by spatial gaps and variations in sampling resolu-
tion. Absolute uncertainty generally increases with abundance for all taxa (Fig 2, column 3).

The exploration of alternative approaches to spatial modeling of composition showed simi-
lar results for the SPDE and CAR models, both in terms of prediction accuracy and perfor-
mance of prediction intervals. Small differences among the various metrics of goodness of fit
favored each model in turn, but applied users of the models would find little pragmatic differ-
ence affecting scientific inference. Ultimately, we slightly favor the CAR model, because it
avoids the boundary effects apparent in the SPDE model at the edges of the domain.

The models presented here estimate only the relative abundance of tree taxa, which does
not directly tell us about tree density or other aspects of vegetation structure. This becomes a
particular limitation for interpreting vegetation where trees become sparse at the prairie-forest
transition from northern Minnesota through southern Illinois [37]. Our model (correctly) pre-
dicts that tree composition there is dominated by oak, but this is less useful considering the
sparseness of trees. This limitation can be addressed by developing estimates of absolute abun-
dance (e.g., biomass) rather than compositional estimates. A gridded dataset of biomass, stem
density, and basal area is already available for Minnesota, Wisconsin, and northern Michigan
[6], based on the PLS data. An extension to southern Michigan, Illinois, and Indiana is planned.
We are currently developing statistical estimates of biomass for Minnesota, Wisconsin, and
Michigan using a statistical model applied to the gridded biomass dataset, with extension to

Fig 2. Raw data, predictions, and uncertainty for select taxa. Empirical proportions from raw data (column 1), predictions in the form of posterior means
(column 2) and uncertainty estimates in the form of posterior standard deviations—representing standard errors of prediction (column 3). In raw data plots,
white indicates no data.

doi:10.1371/journal.pone.0150087.g002
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Fig 3. Predictions (posterior means) for all taxa over the entire domain.

doi:10.1371/journal.pone.0150087.g003
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Illinois and Indiana planned. We also plan to estimate stem density and basal area using a simi-
lar approach to that used for biomass.

Appendix

MCMC details

Define �wip ¼ 1
ni

Xni
j¼1

Wijp as the average of theW values for the pth taxon in the ith grid cell and

�wp ¼ f�wipg; i = 1, . . .,m. Let A be a diagonal matrix where Aii is the number of trees in the ith

grid cell. When there are no trees in a grid cell, �wip ¼ 0 and Aii = 0. For the township data, at

each iteration, based on the current values of the grid cell membership variables, {ctj}, trees are
aggregated into grid cells and the calculations above can then be carried out.

The conditional distribution forWijp given the other unknowns in the model and the data is
as follows. Let TN(a, b, μ, τ2) denote the truncated normal distribution with mean parameter μ
and variance parameter τ2, truncated below by a and above by b.

Wijp �
TN max

p� 6¼yij
wijp� ;1; ayijðsiÞ; 1

� �
; if p ¼ yij

TN �1;wijyij
; apðsiÞ; 1

� �
; if p 6¼ yij

8>>><
>>>:

In essence, the truncation value is determined by the taxon of the jth tree. For a given p, theW
values for all trees in all cells can be sampled in parallel.

The conditional distribution of αp is

ap � N ðAþ QpÞ�1A�wp; ðAþ QpÞ�1
� �

:

where Qp ¼ ðs2
pÞ�1Q for the CAR model and s2

p � 4pr2p
� ��1

QðrpÞ for the SPDE model. For each

hyperparameter, ϕp = log σp for the CAR model and ϕp 2 {μp, (log σp, log ρp)} for the SPDE
model, we sample {ϕp, αp} jointly, proposing ϕp as a random walk and, conditional on the pro-
posed value of ϕp, sampling αp from the distribution just above. The joint proposal is accepted
or rejected as a standard Metropolis-Hastings proposal, with adaptation of the proposal (co)
variance [28]. The proposal distribution for ϕp is a normal distribution (bivariate for ϕp = (log
σp, log ρp)).

For the township-level data, for a given tree j in township t, we draw the latent tree member-
ship variable, ctj 2 {1, . . .,m}, from a discrete distribution by normalizing posterior weights,
{ψ1 Ltj1, . . ., ψm Ltjm}, produced by multiplying the prior weights by a likelihood contribution,
Ltji, i = 1, . . .,m. Ltji is the density of the latentWtj1, . . .,WtjP values for the given tree under the
condition that ctj = i, namely the product of independent normal densities,
Wtjp � N ðapðsiÞ; 1Þ, over p = 1, . . ., P. Thus the posterior reweights the prior based on how

consistent the currentWtj values for a tree are with the α values for the candidate grid cells.

Estimating θp(s) via Monte Carlo integration
In the latent variable representation, θp(s) never appears explicitly and cannot be calculated in
closed form. Instead we use Monte Carlo integration overWijp, p = 1, . . ., P to estimate θp(si).
The quantity ypðsiÞ ¼ ProbðWijp ¼ max

p�
Wijp� Þ defines the probability of taxon p at grid cell i.

This requires one to choose the number of Monte Carlo samples, which we set at 10000,
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effectively sampling 10000 hypothetical trees and estimating the probabilities of the different
taxa in the population from the empirical proportions in this sample of trees. For each of the

saved MCMC samples, k = 1, . . .K, we estimate yðkÞp ðsiÞ numerically. Specifically, for t = 1, . . .,

10000 samples (i.e., hypothetical trees), we independently draw

WðkÞ
itp � N ðaðkÞp ðsiÞ; 1Þ; p ¼ 1; . . . ; P

and estimate using

yðkÞ
p ðsiÞ �

1

10000

X10000
t¼1

1ðWðkÞ
itp ¼ max

p�
WðkÞ

itp� Þ; p ¼ 1; . . . ; P

where 1(�) is the indicator function that evaluates to 1 if the expression is true and 0 if false. In
other words, we calculate the proportion of times that the maximum ofWitp, p = 1, . . ., P corre-

sponds to taxon p. Considering yðkÞp ðsiÞ; k ¼ 1; . . . ;K , we have a sample from the posterior of

θp(si).
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