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Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if

detectable, antibiotic concentrations. Except possibly around localized antibiotic sources,

where resistance can provide a strong advantage, bacterial fitness is dominated by stresses

unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions

influence the selective advantage or disadvantage of antibiotic resistance? Here we find that

sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance

around localized sources of almost any toxin or stress. Furthermore, certain stresses generate

alternating rings of selection for and against resistance around a localized source of the

antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually

produce a net selection against resistance to the antibiotic. Our results show that interactions

between the effects of an antibiotic and other stresses in inhomogeneous environments can

generate pervasive, complex patterns of selection both for and against antibiotic resistance.
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C
linical antibiotic use has led to the evolution and spread
of antibiotic resistance in bacterial pathogens1.
Therapeutically, antibiotics are applied in high

concentrations that kill or halt the growth of susceptible
bacteria, yielding a strong selective advantage to resistance.
In contrast, antibiotics naturally produced by microbes in
environments such as soil are estimated to be at far lower
concentrations than in clinical settings2–7. Agricultural use of
antibiotics has further created environments where the
compounds are widely disseminated at low concentrations7–12.
Even in clinical use, pathogens and commensal microbes are
often exposed to antibiotics at levels below the minimum
inhibitory concentration (MIC), due to periodic dosing and
spatial distribution in the human body13–16. In these low-dose
antibiotic environments, the inhibitory effects of the
antibiotics are likely to be modest and overshadowed by a
variety of other chemical, physical and ecological stresses
that limit bacterial fitness. It remains unclear to what extent
antibiotic resistance is favoured in these multistress environments
containing sub-inhibitory levels of antibiotics.

What is the net selection for or against resistance (hereafter
‘selection on resistance’) in a multistress environment? Although
a gene conferring resistance to a given antibiotic might provide
positive or negative cross-resistance to a few other toxins or
stresses2,17–22, most individual aspects of an environment would
not, on their own, specifically favour bacteria for their resistance
or sensitivity to a particular antibiotic. However, this picture
might be altered by the presence of sub-inhibitory levels of the
antibiotic. Sub-inhibitory levels of antibiotics induce numerous
molecular and physiological responses in sensitive bacteria,
including changes in gene expression, biofilm formation, cell
shape, motility, predation and growth6,8,13,15,16,23–32. Assuming
that the molecular mechanisms conferring antibiotic resistance
effectively reduce the apparent concentration of the drug33–36,
resistant strains experience the antibiotic at much lower or
effectively zero concentrations and remain unperturbed. Hence,
low antibiotic levels can generate a spectrum of phenotypic
differences between sensitive strains that respond to the
antibiotic, and resistant strains that do not. Such antibiotic-
induced phenotypic differences between resistant and sensitive
bacteria can potentiate differences in susceptibility to other
antibiotics. For example, while macrolide and quinolone
antibiotics do not, on their own, select on resistance to
tetracyclines, they can act on the phenotypic differences
induced by sub-inhibitory doses of a tetracycline to select for
and against tetracycline resistance, respectively33,37,38. Given that
selection on antibiotic resistance in multidrug environments is
not captured by the individual effects of each drug, we sought to
systematically test the extent to which low levels of antibiotics can
potentiate selection for or against resistance to the antibiotic by
other stresses.

Here we find that sub-inhibitory levels of doxycycline, a
tetracycline antibiotic, widely potentiate selection on resistance
to tetracyclines by a diverse range of antibiotic, chemical
and physical stresses. A simple model of growth of
sensitive and resistant strains exposed to antibiotic–stress
combinations rationalizes these observations and suggests
that exceptions could be rare. We also observe a striking
effect of low background levels of a second antibiotic,
ciprofloxacin, on the spatial growth and selection of
tetracycline-sensitive and -resistant strains around a diffusing
source of doxycycline. Therefore, our results indicate that, in
heterogeneous multistress environments, the selective advantage
of resistance to a particular stress is affected not only by the level
of that stress but also by its interactions with the multiple other
stresses in the environment.

Results
Measuring direct and antibiotic-potentiated selection on
resistance. To probe the prevalence of compounds that select for
or against resistance to an antibiotic when applied alone (direct
selection), and those that select on differences between sensitive
and resistant bacteria potentiated by the presence of a low
level of the antibiotic (potentiated selection), we used a
previously developed assay to measure their differential inhibition
of antibiotic-resistant versus -sensitive strains39. We used an
Escherichia coli K12 background (strain MC4100)40 and focused
on clinically relevant TetA efflux pump-mediated resistance to
tetracyclines, which is known to be subject to direct or
potentiated selection by several compounds21,22,33,37,41,42.
Briefly, the assay consists of competing mixed lawns of,
otherwise identical, tetracycline-sensitive (green, YFP-labelled)
and -resistant (red, CFP-labelled) E. coli on nutrient agar
containing concentration gradients of diffusing compounds
(Methods section)39. Chemicals that can change the
background ratio between the strains are identified as shifting
selection in favour of or against constitutively expressed tetA-
mediated tetracycline resistance (Fig. 1a; red and green rings,
respectively). We performed two types of assay (I and II). Direct
selection by individual compounds on the resistance allele is
identified in the ‘Type I’ assay, in the absence of the tetracycline
antibiotic, doxycycline (�Dox plate. TetA expression is induced
in the resistant strain without affecting growth by 20 ng ml� 1 of
anhydrotetracycline added uniformly to the agar).
Antibiotic-potentiated selection is identified when a compound
is neutrally selective in the Type I assay, but demonstrates
differential inhibition relative to the background in the ‘Type II’
assay, where a sub-inhibitory concentration of doxycycline is
added uniformly to the agar (þDox plate. 150 ng ml� 1

doxycycline induces TetA expression in the resistant strain and
reduces growth rate of the tetracycline-sensitive strain by about
half). As controls, we use erythromycin (Ery, 60 mg per spot) and
ciprofloxacin (Cpr, 45 ng per spot) which, respectively, show
selection for and against resistance, conditioned on the
presence of doxycycline (Fig. 1b,c, Supplementary Fig. 7). While
our competition diffusion assay is a straightforward,
sensitive means to identify differences in relative growth
patterns of strain pairs across gradients, it is subject to
common challenges of agar diffusion assays (time-varying toxin
and nutrient gradients, variation in fluorescence per cell,
interaction of diffusing compounds with the matrix and
incubation and initial conditions). Therefore, we also measured
the individual steady-state exponential growth rates of our
strains in static, discrete antibiotic gradients, with and
without doxycycline. These growth rate measurements in
liquid cultures spanning a range of toxin concentrations
confirm that ciprofloxacin alone and erythromycin alone
inhibit the tetracycline-resistant and -sensitive strains nearly
equally (MICEry B42 mg ml� 1 and MICCprB6 ng ml� 1),
but exert a strongly differential inhibition when combined with
a sub-inhibitory level of doxycycline (Fig. 1d, Supplementary
Fig. 1a). These measurements reveal a concentration range
of ‘threshold selection’ where one strain grows while the other is
fully inhibited (Fig. 1d, Supplementary Fig. 1a, green/red
shading). The differential inhibition assay on agar thus
identifies compounds that bias selection towards or
against antibiotic resistance, either directly or when potentiated
by sub-inhibitory levels of the resisted antibiotic39.

Doxycycline widely potentiates selection on tetracycline
resistance by non-tetracycline antibiotics. To study the effect of
a sub-inhibitory level of a tetracycline on selection for or against
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tetracycline resistance by other toxins, we used our differential
inhibition assay to test a set of clinical antibiotics of diverse types
and targets. As anticipated from the specificity of the tetracycline
efflux pump expressed by the resistant strain, we found that
nearly all non-tetracycline antibiotics did not, on their own,
produce a zone of differential selection either for or against tet-
racycline resistance (Fig. 1e, Type I assays, �Dox. See
Supplementary Fig. 7 for radial profiles and Supplementary

Fig. 2a,b for infrequent examples of direct selection). Strikingly,
when we added doxycycline to the agar, we observed that almost
all of the compounds biased selection either for or against tet-
racycline resistance (Fig. 1e, Type II assays, þDox;
Supplementary Figs 7, and 6. See Supplementary Fig. 2c for rare
example of no potentiated selection). Such indirect selection on
tetracycline resistance appears insensitive to the specific tetra-
cycline compound, and is mostly consistent across two distinct
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Figure 1 | Doxycycline potentiates selection biases for and against tetracycline resistance by diverse otherwise neutrally selective antibiotics. (a) YFP-

labelled, tetracycline-sensitive (Green) and CFP-labelled, tetracycline-resistant (Red) E. coli are mixed and grown together over a diffusing toxin gradient in

agar either absent or containing a uniform level of the tetracycline antibiotic, doxycycline (�Dox, þDox, respectively). Tetracycline resistance is induced by

doxycycline in þDox plates and, without growth defect, by anhydrotetracycline added to �Dox plates. Final strain ratios reveal deviations from background

inhibition (Yellow lawn with dark zone of clearing) that bias selection towards tetracycline resistance (Red ring) or sensitivity (Green ring). (b,c) Certain

compounds such as erythromycin (b, Ery) and ciprofloxacin (c, Cpr) do not directly select on tetracycline resistance alone (�Dox plates), yet combine with a

sub-inhibitory background level of a tetracycline (doxycycline) to select for resistance (Ery, þDox, Red ring) or against resistance (Cpr, þDox, Green ring).

d, Nearly identical growth responses of tetracycline-sensitive (TetS, Green plots Strain Wyl,) and -resistant (TetR, Red plots, Strain t17cl) strains by

ciprofloxacin alone (�Dox), diverge significantly in the presence of a uniform, sub-inhibitory level of doxycycline (þDox), generating a region of strong

‘threshold selection’ between the MICs (grey vertical lines) where only the sensitive strain can grow (Green shading). Smoothing splines R2: 0.998

(TetR, �Dox), 0.997 (TetS, �Dox), 0.999 (TetR, þDox), 0.995 (TetS, þDox). e, Competing tetracycline-resistant (Red) and -sensitive (Green) bacteria are

equally inhibited, and experience no change in relative growth along diffusing gradients of diverse non-tetracycline antibiotics acting alone (�Dox panels).

Combining these antibiotic gradients with a uniform, sub-inhibitory level of doxycycline in the agar (þDox panels) typically biases selection near the MIC

(see Supplementary Fig. 2 for an exception) either towards tetracycline resistance (Red rings) or tetracycline sensitivity (Green rings).
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mechanisms of resistance (Supplementary Fig. 6). Growth rate
measurements in liquid culture revealed that doxycycline-
potentiated selection by other antibiotics in our differential
inhibition assay most frequently associated with ‘threshold
selection’ as seen with our controls (Fig. 1d, Supplementary
Fig. 1a–d,f). Interestingly, our plate assay also detected more
subtle selection biases arising from variations in relative growth
rates of the strains over a toxin gradient, while their MICs remain
equal in the liquid assay (Fig. 1e, Supplementary Fig. 1e,g). While
a few, particular instances of potentiated selection have already
been reported33,37,38, our findings suggest that the presence of
low levels of an antibiotic will potentiate selection on resistance to
that antibiotic by many other antibiotics.

Simple geometric model of antibiotic-potentiated selection on
resistance. To understand why a sub-inhibitory antibiotic dose
might induce sensitive and resistant strains to have different
MICs to almost every other antibiotic tested, we revisit a simple
model where the inhibitory effect of an antibiotic combination is
coarsely described by an MIC line that separates the regions of
growth and no growth in drug–drug concentration space
(Fig. 2)33,36. The shape of the MIC line depends on whether the
drugs have a combined effect less than (suppressive
combination), equal to (buffering combination) or greater than
(augmenting combination) that of one of the drugs alone
(Fig. 2a–c, respectively). Such interactions have been previously
observed to dramatically affect selection on resistance for several
pairs of antibiotics33,43,44. While the mechanisms behind
antibiotic interactions are often hard to elucidate38,45, their
reaction to genetic changes that confer resistance to one of
the antibiotics appears largely as scalings of the mutants
dose-response function along that drug’s concentration axis,
rather than reshapings of the interaction itself33–35. Hence,
assuming that bacteria resistant to drug X behave, to a first
approximation, as their sensitive counterparts exposed to a
scaled-down concentration of drug X, the MIC line of the
resistant strain can be approximated by geometrically stretching

the MIC line of the sensitive strain along the X concentration axis
(for example, Fig. 2a, grey arrow)33. Between the resistant and
sensitive MIC lines, there exist regions in the X–Y drug
concentration space where only the X-resistant or X-sensitive
strain grows (Fig. 2; red-white striped, pale green areas,
respectively). In this model, the patterns of selection along
gradients of Y roughly correspond to those along the diffusing
gradients of compounds (Y) in our differential inhibition assay
(Fig. 1). We observe that, even when drug Y alone equally inhibits
X-sensitive and X-resistant strains (X¼ 0, no selection in Type I
Assay), the addition of a fixed sub-MIC level of X (X¼ x040) will
almost always generate differential susceptibility to Y (that is,
selection for or against resistance in Type II Assay). In the
suppressive case, Y selects in favour of X-sensitivity (Fig. 2a) and
in the augmentative case Y selects in favour of X-resistance
(Fig. 2c). Importantly, potentiated selection either for or against
resistance is absent only if the scaled MIC line of the resistant
strain falls atop that of the sensitive at sub-inhibitory levels of X,
which robustly occurs only in the special case of buffering
interactions (Fig. 2b). This model thus allows us to intuitively
explain our observation of widespread potentiated selection on
antibiotic resistance by other antibiotics. Furthermore, it suggests
that the same phenomena should occur in virtually all non-
buffering combinations of a toxin or any stress with a sub-
inhibitory dose of the antibiotic.

Doxycycline potentiates selection on tetracycline resistance by
chemical and physical stresses. We examined the prediction of
our model that a low doxycycline dose should potentiate selection
for or against tetracycline resistance by almost any interaction
with another stress. We used variants of our differential inhibi-
tion assay to examine a range of chemical and physical stressors,
including: EDTA, calcium chloride and sodium citrate, osmotic
stress due to high concentration sodium chloride, sucrose and
PEG 8000, oxidative stress by hydrogen peroxide, paraquat and
transient gradients of infrared heating and ultraviolet irradiation
(Fig. 3, Supplementary Fig. 3, Methods section). In all cases, a low
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level of doxycycline-potentiated substantial selection biased either
in favour of or against tetracycline resistance. Importantly, we
observed no direct selection on tetracycline resistance by these
stresses on their own. These results indicate that although rela-
tively few stresses may directly select on antibiotic resistance,
stresses will typically be rendered selective for or against resis-
tance by a range of sub-inhibitory levels of antibiotic in the
environment. Selection on antibiotic resistance could, therefore,
be strongly context-dependent in environments where an anti-
biotic is found with other stresses, and as diverse as the local
heterogeneity of stresses, even where the antibiotic is uniformly
distributed (Supplementary Fig. 4).

A stress-modified pattern of selection on resistance to a loca-
lized antibiotic source. Having realized that low levels of an
antibiotic commonly potentiate strong selection on resistance to
that antibiotic by other inhibitory compounds or stresses, we
asked the inverse question: how does the presence of other
stresses or compounds at low levels affect the way an antibiotic
selects on its own resistance allele? We have previously seen that
combining a tetracycline antibiotic (doxycycline) with

ciprofloxacin generates a region of drug concentrations selective
for sensitivity to tetracyclines33. However, this region appears
only at low concentrations of doxycycline and it is unclear
whether it is of any importance in an environment where large
amounts of a tetracycline is produced and diffuses from a
localized source. As expected, a spot of doxycycline tested alone
generates a large zone of selection for tetracycline resistance
(Fig. 4a inset, red region). However, we found that when a small
inhibitory level of ciprofloxacin is added uniformly into the agar,
a spot of doxycycline now produces a surprisingly complex
pattern consisting of two separated rings of selection: the inner
favoring resistance to tetracycline, and the outer selecting for
tetracycline sensitivity (Fig. 4a, red, green rings, Supplementary
Fig. 8). In all other regions, both strains are inhibited (Fig. 4a,
black regions). This pattern is consistent with our geometrical
model: the suppressive interaction between doxycycline and
ciprofloxacin generates regions of inhibition and selection for and
against resistance along a doxycycline gradient at a fixed
ciprofloxacin concentration (Fig. 4b, black, red and green
wedge sections, respectively, Supplementary Fig. 8)33. Because
the ratio between the high and low concentration boundaries is
the same for the positive (red) and negative (green) selection
regions33, the diffusion process generates two rings with similar
widths (Fig. 4a; Supplementary Fig. 9, Note 1 and Figs 10,11).
Due to the two-dimensional geometry, the similar widths of the
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positive and negative selection rings (Supplementary Fig. 9)
means that the net selection for tetracycline sensitivity integrated
across the plate could exceed that for resistance, regardless of the
doxycycline dose (Fig. 4a, green ring has larger area than red ring;
See also Supplementary Fig. 5 for colony-forming unit (CFU)
counts, and Supplementary Note 1). Such an advantage to
sensitivity may be even more pronounced for diffusion from a
point source in the more natural three-dimensional geometry
(Supplementary Note 1). Consequently, in the presence of certain
stresses in an environment (here inhibition of DNA replication by
ciprofloxacin), local production or inoculation of an antibiotic,
even at very high levels, can actually lead to an overall space-
integrated selection against bacteria resistant to it.

Discussion
While antibiotic resistance enjoys a clear fitness advantage in
clinical settings where single drugs are used in high concentra-
tions, the selective advantage of antibiotic resistance in natural
and artificial environments with much lower antibiotic concen-
trations is harder to quantify. Recent reports demonstrate direct
selection by sub-inhibitory levels of antibiotics on adaptations to
them when the drugs still comprise the dominant environmental
stress31,32,46, but leave it unclear how this underlying selection
responds in the presence of other, typically non-selective stresses.
Our findings suggest that in such environments, sub-inhibitory
antibiotic doses can usually potentiate selection either for or
against resistance by otherwise neutrally selective chemical,
physical or environmental stresses. In addition, certain
compounds that do not select for or against resistance to a
given antibiotic on their own can dramatically affect selection for
resistance by the antibiotic itself, even generating a net selection
for drug sensitivity by high level locally diffusing sources of the
antibiotic. Taken with previous observations of selection for
antibiotic sensitivity by drug combinations33 and by antibiotic
degradation products20, and of antibiotic-potentiated selection
for and against resistance by products of soil microbes39, these
results demonstrate regimes where evolution of antibiotic
resistance may depend less on direct selection by the antibiotic
than on the interaction of its effects with those of the chemical,
physical and ecological environment.

Methods
Media. Assay media consisted of M63 salts (2 g l� 1 (NH4)2SO4, 13.6 g l� 1

KH2PO4, 0.5 mg l� 1 FeSO4�7H2O) supplemented with 0.2% glucose, 0.01%
casamino acids, 1 mM MgSO4, 1.5 mM thiamine. Solid media included 2%
bacto-agar (BD). In Type I Assay, expression of the regulated TetA efflux pump
without growth defect was achieved by the addition of 20 ng ml� 1 anhydrote-
tracycline. In Type II Assay, a sub-inhibitory concentration of doxycycline
(150 ng ml� 1, doxycycline hyclate, Sigma), induced expression of the efflux pump
and reduced the growth rate of the sensitive strains (Wyl, Wcl, Table 1) by roughly
50% (ref. 39). Media was freshly prepared for every assay.

Competition diffusion assay for antibiotic, chemical and osmotic stress.
Aliquots of overnight stationary cultures (B109 CFU ml� 1) of a tetracycline-
resistant and -sensitive strain pair (one expressing CFP, one YFP; all assays were
replicated in ‘dye-swapped’ strain pairs; Table 1) are thawed from � 80 �C, diluted

1:100 in PBS, mixed 1:1 and 100–200 ml of the mixture spread over assay agar in
90 mm plates. With B106 CFU per plate, the changes in strain ratio that appear as
confluent rings around the diffusing compound are distinct from individual
mutant colonies that could arise at low frequency. Antibiotics were each deposited
at the centres of 90 mm Type I (�Dox) and Type II (þDox) plates in impreg-
nated paper disks (BBL, Remel), or as a 2–3 ml drop of stock solution directly
deposited on the agar surface. Paraquat (100 mg ml� 1), and hydrogen peroxide
(3%) were deposited directly on the agar surface as a 2.5 ml droplet. 40ml of 0.5 M
EDTA, or 75 ml of 5.1 M NaCl, 2.6 M sucrose, 30 mM PEG 8000, 2.5 M sodium
citrate or 1 M CaCl2 solution were loaded into agar cups formed by removing 6-
mm diameter plugs from the centre of the plates. The plates are then incubated at
30 �C for 20 h and imaged in CFP and YFP channels using a custom plate imager39.
The fluorescent plate images are divided by images of uniformly fluorescent sheets
of acrylic to correct for shading artifacts. These illumination-normalized
fluorescent images are linearly rescaled to give B1 and 55% signal saturation in
regions representing no growth (black regions) and test-compound-free
background growth (yellow region). The normalized images are displayed as the
red (resistant strain) and green (sensitive strain) channels of a false colour image.

Heat gradient assay. Assay plates are spread with a mixed lawn of fluorescently
labelled tetracycline-sensitive and -resistant strains (in a 2:1 initial ratio diluted
from frozen stocks to B106 cells of each strain per plate) and pre-incubated at
30 �C for B3 h. Small regions of a Type I (�Dox) and a Type II (þDox) plate are
swabbed and struck on LB agar for verification by colony counting of a roughly 1:1
strain ratio at stress exposure (Varying the ratio eightfold in favour of the sensitive
strain reduced signal but did not noticeably affect the outcome). The plates are then
placed side-by-side and exposed from one edge, without lids, to an infrared heat
lamp (Philips, Heat-Ray 250 W) at a distance of B1 inch from the plate, for 5 min.
The plates are cooled, uncovered at room temperature for several minutes, returned
to 30 �C, incubated for 20 h and imaged.

UV gradient assay. Assay plates are spread with a mixed lawn of fluorescently
labelled tetracycline-sensitive and -resistant strains (with a 2:1 initial ratio, diluted
from frozen stocks to B106 cells of each per plate) and pre-incubated at 37 �C for
B3 h. A �Dox and þDox plate are removed and a small region of each swabbed
and struck on LB agar for subsequent verification of strain ratio at exposure. The
plates are then placed upright, side-by-side, without lids in a Stratalinker 1800
(Stratagene) and exposed to ultraviolet as a cover is drawn across both plates
simultaneously, resulting in a roughly linear gradient of ultraviolet exposure
between 0 and 7 s. Plates are then returned to 37 �C, incubated for 20 h and imaged.

Discrete chemical assay. 31 concentrations of each antibiotic, spanning a
100-fold range in a background of either 150 ng ml� 1 doxycycline or 20 ng ml� 1

anhydrotetracycline (to induce TetA expression in the resistant strain without
growth defect) and antibiotic-free conditions, were obtained in triplicate by serial
dilutions across 96-well microtiter plates (PerkinElmer, B&W Isoplate). Bacter-
ioluciferase-expressing tetracycline-resistant (t17cl, Table 1) and -sensitive (Wyl,
Table 1) assay strains were inoculated into the drug gradient at about 10,000 cells
per well, just below the reader’s detection limit. The plates were sealed with a
transparent barrier to prevent evaporation, and incubated at 30 �C. Luminescence
from each well was measured over time using a Biotek Synergy H1 platereader, and
growth rates were derived by linear least-squares fits to the log data in the
exponential growth regime47. Poor fits and late-rising signals (indicating resistant
subpopulations) were removed. A cubic smoothing spline (MATLAB, csaps) was
used to fit a dose-response curve to the combined growth rate data. Cubic
smoothing splines fit to 100 randomly assorted data series from the replicate
experiments were used to derive mean and s.d. of MICs.

Doxycycline diffusion assay. Direct selection by doxycycline on tetracycline
resistance was tested on solid assay media containing 20 ng ml� 1 anhydrote-
tracycline, to induce tetA without growth deficit (�Cpr plates). Ciprofloxacin-
potentiated selection by doxycycline on tetracycline resistance was tested using the
same plates, supplemented uniformly with 7.5 ng ml� 1 ciprofloxacin (þCpr
plates). Doxycycline hyclate (2.5 ml of 15 mg ml� 1 solution in water) was spotted at

Table 1 | Tetracycline-sensitive and -resistant Escherichia coli assay strains.

Strain Type Notes Source

Wyl MC4100-YFP/pCSl YFP-labelled, Tet-sensitive Chait et al.33

t17cl MC4100-CFP, ycaD-ycaM::Tn10/pCSl CFP-labelled, Tet-resistant (tetA) Chait et al.33

GB(c) MC4100-CFP/pGW155B CFP-labelled, Tet-resistant (tet36) Chait et al.39

Wcl MC4100-CFP/pCSl CFP-labelled, Tet-sensitive Chait et al.33

t17yl MC4100-YFP, ycaD-ycaM::Tn10/pCSl YFP-labelled, Tet-resistant Chait et al.33

GB(y) MC4100-YFP/pGW155B YFP-labelled, Tet-resistant (tet36) Chait et al.39
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the centre of each plate, and the plates incubated at room temperature for 6 h.
The plates were then spread with B106 each of YFP- and CFP-labelled
tetracycline-sensitive and -resistant assay strains (for example, Wyl, t17cl, Table 1),
incubated at 30 �C for 45 h and imaged39. Plate images in the CFP and YFP
channels were corrected for illumination shading, The illumination-normalized
fluorescent images of the �Cpr plates were linearly rescaled to give B1 and 35%
signal saturation in regions representing no growth (black regions) and test-
compound-free background growth (yellow region). The illumination-normalized
fluorescent images of the þCpr plates were linearly rescaled to give B1% of signal
saturation in regions representing no growth (black regions) and around 80 and
50% of signal saturation in the resistant and sensitive rings, approximating the
relative density of each. The images are displayed as the red (resistant strain) and
green (sensitive strain) channels of a false colour image.
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