
A comparative study of search and
optimization algorithms for the
automatic control of physically
realistic 2-D animated figures

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Fukunaga, Alex, Jon Christensen, J. Thomas Ngo, and Joe Marks.
1994. A comparative study of search and optimization algorithms for
the automatic control of physically realistic 2-D animated figures.
Harvard Computer Science Group Technical Report TR-23-94.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35059721

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154872034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20comparative%20study%20of%20search%20and%20optimization%20algorithms%20for%20the%20automatic%20control%20of%20physically%20realistic%202-D%20animated%20figures&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35059721
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Comparative Study of Search and Optimization Algorithms

for the Automatic Control of Physically Realistic 2-D

Animated Figures

Alex Fukunaga

1

Harvard University

Jon Christensen

Harvard University

J. Thomas Ngo

2

Harvard University

Joe Marks

3

Digital Equipment Corp.

1

Current a�liation: Computer Science Dept., University of California, Los Angeles, CA.

2

Current a�liation: Interval Research Corp., Palo Alto, CA.

3

Current a�liation: Mitsubishi Electric Research Labs, Cambridge, MA.

Abstract

In the Spacetime Constraints paradigm of animation, the animator speci�es what a charac-

ter should do, and the details of the motion are generated automatically by the computer.

Ngo and Marks [11, 12] recently proposed a technique of automatic motion synthesis that

uses a massively parallel genetic algorithm to search a space of motion controllers that gen-

erate physically realistic motions for 2D articulated �gures. In this paper, we describe an

empirical study of evolutionary computation algorithms and standard function optimization

algorithms that were implemented in lieu of the massively parallel GA in order to �nd a sub-

stantially more e�cient search algorithm that would be viable on serial workstations. We

discovered that simple search algorithms based on the evolutionary programming paradigm

were most e�cient in searching the space of motion controllers.

1

1

Portions of this report have been presented previously [7, 8].

1 Introduction

Computer animation has traditionally been a tedious and time-consuming process. In most

current computer animation systems, the animator is given minimal assistance from the

computer. For example, key-framing is the most common method for generating animations

[6]; in computer-assisted key-frame animation the animator speci�es a character's con�gu-

ration at key points in time, and the computer interpolates the intermediate con�gurations

between the key frames. This method su�ers from two major problems:

� the level of automation is minimal, and

� it is di�cult to achieve physically realistic (and therefore visually plausible) animation

with interpolation methods.

Automatic motion synthesis for articulated �gures is the problem posed by the Space-

time Constraints (SC) paradigm for animation proposed by Witkin and Kass [17].

In the SC paradigm, the animator speci�es:

� the physical structure of the character;

� the actuators that control the character's internal con�guration; and

� criteria for evaluating the character's motion.

The computer is expected to automatically generate a physically realistic and realizable

trajectory for the character that is near optimal

2

with respect to the criteria given by the

animator.

SC problems have two properties which make them di�cult to solve:

� The solution space is multimodal | the number of locally optimal trajectories a

character can follow is exponential, and many are far from the global optimum. In

addition, there may be many dissimilar solutions that are near the global optimum.

� The search space is discontinuous | small changes in the behavior of a character (i.e.,

the operation of its actuators) can result in large changes to the trajectory it follows.

Early motion-synthesis algorithms avoid the di�culties of global optimization by set-

tling for some form of local optimization: an initial trajectory (provided by the animator) is

subjected to perturbation-based local optimization [17, 1, 2]. However, local optimization

left the animator with the di�cult task of supplying a reasonable initial trajectory.

Recently, a new approach to the motion-synthesis problem was proposed [11, 12, 15].

In this approach, the goal is not to compute the �gure's trajectory directly, but instead to

generate a motion controller that, when executed in a simulated physical environment, will

produce the desired motion. The key aspects of any particular embodiment of this approach

are:

2

This problem is NP-hard, so guaranteed optimality is too di�cult a requirement.

1

� how the motion controller is represented; and

� how the space of possible controllers is searched.

Ngo and Marks [11, 12] proposed an algorithm in which the controller is represented as

a bank of mutually independent stimulus-response (SR) rules; we shall refer to this kind of

controller as a banked stimulus-response (BSR) controller. Information from the physical

environment is used to determine which rule is active at any given time in the physical

simulation. The space of possible BSR controllers is searched using a massively parallel

genetic algorithm.

While this approach is successful, a major shortcoming is the expense of the search

algorithm: �nding a simple motion controller for a �ve-rod articulated �gure took 30-60

minutes on a 4096 processor CM-2 Connection Machine. If the approach is to be of practical

value, a more e�cient search algorithm is required.

The goal of our research is to explore search algorithms that would be viable on

workstation-class serial machines. We present a study of optimization algorithms for search-

ing the space of BSR controllers, comparing the various algorithms empirically on several

SC problems.

2 The Motion Synthesis Algorithm

This section briey describes the BSR controller representation and massively parallel GA

used by Ngo and Marks in their motion synthesis algorithm [11, 12].

2.1 The BSR Controller Representation

A BSR controller governs a vector

~

�(t) of joint angles, given information about the physical

environment in the form of a vector

~

S(t) of sense variables. Sample sense variables for an

articulated �gure are listed in Table 1.

�

1

; �

2

; : : : ; �

n�1

Joint angles

f

1

; f

2

; : : : ; f

n+1

Contact forces at rod endpoints

y

cm

Height of center of mass

_y

cm

Vertical velocity of center of mass

Table 1: Components of the vector

~

S of sense variables for an n-rod articulated �gure.

The controller contains N stimulus-response rules. Every rule i is speci�ed by stim-

ulus parameters

~

S

lo

[i] and

~

S

hi

[i], and response parameters

~

�

0

[i] and � [i]. Based on the

instantaneous value of the sense vector

~

S(t), exactly one rule is active at any one time. In

particular, each rule i receives a score based on how far the instantaneous sense vector

~

S(t)

falls within the hyperrectangle whose corners are

~

S

lo

[i] and

~

S

hi

[i]. The highest-scoring rule

2

Set i

active

to 1

for t = 1 to t

max

Cause joint angles

~

�(t) to approach

~

�

0

[i

active

]

with time constant � [i

active

]

Simulate motion for time interval t

Measure sense variables

~

S(t)

Possibly change i

active

, based on

~

S(t)

end for

Assign the controller a �tness value based on

how well the simulated motion meets the

animator-supplied task criteria

Fig. 1. Pseudocode for a BSR controller.

is said to be marked active. (If

~

S(t) is not inside the hyperrectangle associated with any

rule, the rule active in the previous time step remains active.) The joint angles

~

�(t) are

made to approach the target values

~

�

0

[i

active

] prescribed by the active rule i

active

. Figure 1

summarizes how a BSR controller behaves and is evaluated.

2.2 The Massively Parallel Genetic Algorithm

Ngo and Marks' original motion synthesis algorithm used a massively parallel GA to search

the space of possible BSR controllers. In this algorithm, shown in Figure 2, each candidate

solution, or genome, was assigned to a single processor, and each generation of genomes was

evaluated in parallel. The details of the initial randomization and mate selection, crossover,

and mutation, which are speci�c to this application, are described elsewhere [11, 12].

The evaluation function used to measure the �tness of a candidate solution was speci�c

to each class of SC problem. For example, in an instance of a SC problem in which the ob-

jective was to generate an articulated �gure that jumped as high as possible, the evaluation

function could be a function of the highest altitude achieved by the �gure's center of mass.

Although it �rst seemed that the match between the genetic algorithm and SIMD

massive parallelism was ideal, the issue of suitability is more complex. Ngo and Marks

observed some incompatibilities between the CM-2 architecture and the motion synthesis

algorithm that made the search algorithm ine�cient [10].

3 Newly Implemented Search Algorithms

We now detail the search algorithms explored in this study.

3

do parallel

Randomize genome

end do

for generation = 1 to number of generations

do parallel

Evaluate genome

Select mate genome from a nearby processor

Cross genome with mate genome

Mutate new genome

end do

end for

Fig. 2. A parallel GA.

for evaluation = 1 to number of evaluations

Randomly generate a new genome

Evaluate the new genome

if the new genome is better than best genome then

Set best genome = new genome

end if

end for

Fig. 3. Random generate and test (RG&T).

3.1 Random Generate and Test

As a baseline benchmark, we implemented a simple random generate-and-test (RG&T)

algorithm, which randomly generates a speci�ed number of BSR controllers, evaluates their

�tnesses, and selects the best controller generated (Figure 3).

3.2 Genetic Algorithms

Because of the success of the massively parallel GA, the �rst serial algorithms we imple-

mented were genetic algorithms, distinguished from EP algorithms by the use of a crossover

operator to recombine parameters among members in an evolving population of solutions.

3.2.1 Implementation of Genetic Operators

Both the crossover and mutation operators were tailored to �t the BSR representation.

4

Initialize population

for generation = 1 to number of generations

Evaluate each genome in population

for i = 1 to (size of population / 2)

Select two parent genomes by roulette-wheel selection

Cross & mutate to generate two child genomes

end for

Replace old parent population with new child population

end for

Fig. 4. A generational-replacement GA (GGA).

Crossover When two individuals are mated, two children are generated. One child,

designated a hybrid, is a product of crossover between the two parents. The other is an

exact copy of one of the parents (selected randomly).

3

Crossover between two genomes

begins by creating a random 1:1 mapping between their stimulus-response pairs. Each

stimulus-response pair is crossed with the one to which it is mapped, using a crossover

operator tailored to this application [11].

Mutation Mutation perturbs a genome to which it is applied in two ways. One SR

pair is subjected to creep, i.e., each of the parameters in that SR pair is changed by a small

amount. Another SR pair is randomized from scratch, with the constraint that at least one

corner of the new stimulus hyperrectangle coincide with the original trajectory through the

multidimensional space de�ned by the stimulus senses.

3.2.2 Generational Replacement GA

The generational-replacement genetic algorithm (GGA) is characterized by the replacement

of the entire population of genomes at each iteration. In our implementation (Figure 4),

parent genomes are selected using roulette-wheel selection [9], in which the probability of

a genome being selected for mating is proportional to its �tness. Two child genomes are

produced from the parents. One child, randomly chosen, is the hybrid result of a crossover

operation between the parents, and the other child is a copy of one parent. Both child

genomes next undergo mutation. When the population of child genomes has been generated,

it completely replaces the population of parent genomes, except for the best member of each

generation, which is carried over to the next generation without modi�cation by elitism.

Of the algorithms presented in this study, this is the most similar to the massively parallel

algorithm used by Ngo and Marks, although there are no analogues to the localized mating

scheme and hill-climbing random initialization used in the parallel algorithm.

3

This asymmetric mating strategy yielded better results than a symmetric strategy in which both o�spring

were hybrids.

5

Initialize population

Evaluate each genome in population

Rank order the population

for evaluation = 1 to (number of evaluations / 2)

Select two parent genomes by linear rank-based selection

Cross & mutate to generate two child genomes

Evaluate the two child genomes

Insert child genomes in order into population

Delete two lowest-ranked genomes in the population

end for

Fig. 5. A steady-state GA (SSGA).

3.2.3 Steady-State GA

Unlike a GGA, a steady-state genetic algorithm (SSGA) uses an overlapping population in

which only a small fraction of the population is replaced during each iteration. Previous

researchers have reported that SSGAs outperform (in terms of speed on serial hardware)

their generational counterparts in many applications [3]. The advantage of a SSGA is that

newly generated individuals with high �tnesses are immediately available to take part in

reproduction, rather than having to wait a complete generation until they become part of

the mating pool.

The SSGA we used (Figure 5) uses a technique called linear rank-based selection [16].

The population is sorted according to �tness, and probabilities for being selected for re-

production are assigned based on the rank of the individual in the population, ensuring

constant selective pressure throughout the search. A linear function is used to allocate

reproductive trials, according to a user-de�ned bias. A bias of 1.5, for example, means that

the top-ranked individual is 1.5 times more likely to reproduce than the median individual

in a population. At each iteration, two parent genomes are selected according to this selec-

tion scheme and mated, producing two child genomes just as in the GGA. They are then

inserted into the population according to their �tness. Thus, a maximum of two genomes

will be replaced during each iteration.

3.2.4 Distributed GA

In a distributed genetic algorithm (DGA) [14], large populations are subdivided into smaller

subpopulations or demes. A GA is executed independently for each deme, and the demes

interact periodically by periodic migration of individuals among demes. This model maps

naturally to a distributed workstation cluster, but also works well in single-machine serial

architectures because there is very little overhead for subdividing a large population into

demes. Tanese [14] has shown that DGAs implemented on serial machines outperform single

population GAs, even in the absence of parallelism, and refers to this as the superlinear

6

Initialize all demes

Evaluate each genome in population

Rank order each deme

for evaluation = 1 to (number of evaluations / (2�number of demes))

for each deme

Insert any inbound migrants into deme

Select two parent genomes by linear rank-based selection

Cross & mutate to generate two child genomes

Evaluate the two child genomes

Insert child genomes in order into population

Delete two lowest-ranked genomes in the population

With small probability

Select two migrant genomes by linear rank-based selection

Send copies of migrant genomes to randomly selected deme

end for

end for

Fig. 6. A distributed GA (DGA).

speedup phenomenon of distributed GAs. The improved performance of a DGA is believed

to be due to niching caused by reproductive isolation between demes.

In our DGA (Figure 6), a SSGA identical to the one described above in Section 3.2.3

is executed for each deme. A migration operator is used with small probability to establish

gene ow among the isolated demes.

3.3 Evolutionary Programming Algorithms

3.3.1 Evolutionary Programming

Evolutionary programming (EP) [4, 5] is a class of evolutionary computation algorithms

that can be distinguished from genetic algorithms primarily by the lack of crossover and

other genetic operators. EP1 (Figure 7) and EP2 (Figure 8) are EP algorithms that are

based directly on our previously described generational and steady-state genetic algorithms,

respectively. They di�er from their GA counterparts only in that the crossover operator is

never applied, while the mutation operator is applied with probability 1.

3.3.2 Stochastic Hill Climbing

Stochastic hill climbing (SHC) is the simplest possible EP algorithm (Figure 9). A single

initial solution is perturbed randomly at each iteration, using the mutation operator used

in the genetic algorithms (but with a probability of 1 that the operator is applied). The

resulting child genome is evaluated and compared to the original genome, and the better

7

Initialize population

for generation = 1 to number of generations

Evaluate each genome in population

for i = 1 to size of population

Select a parent genome by roulette-wheel selection

Mutate to generate a child genome

end for

Replace old parent population with new child population

end for

Fig. 7. Evolutionary programming (EP1).

Initialize population

Evaluate each genome in population

Rank order the population

for evaluation = 1 to number of evaluations

Select a parent genome by linear rank-based selection

Mutate to generate a child genome

Evaluate the child genome

Insert child genome in order into population

Delete the lowest-ranked genome in the population

end for

Fig. 8. Evolutionary programming (EP2).

8

Initialize and evaluate a single genome

for evaluation = 1 to number of evaluations

Randomly perturb the genome

Evaluate the new genome

if the new genome is better than the old one then

Replace the old genome with the new one

end if

end for

Fig. 9. Stochastic hill climbing (SHC).

genome is selected as the parent genome for the next iteration. A likely problem with this

simple algorithm is that it is easy for the search to be trapped at a local optimum.

3.3.3 Stochastic Population Hill Climbing

The stochastic population hill climbing (SPHC) algorithm (Figure 10) improves on the

SHC algorithm by using a population of solutions to add robustness to the search. How-

ever, rather than applying selection to the population at every iteration, as is commonly

done with an EP algorithm, each member independently undergoes stochastic hill climbing.

Periodically, a reseeding operator is applied which selects the top half of the population

and copies them into the bottom half of the population, refocusing the search on the most

promising genomes in the population.

4 Experimental Study

A study was designed to evaluate the performance of the newly implemented serial algo-

rithms. For animation applications, the visual quality and physical realism of the trajecto-

ries found by the searches is the ultimate measure of performance. However, these subjective

metrics are not easily obtainable. We therefore used the �tness values calculated by the

evaluation function as an objective measure of success.

Each of the serial algorithms described in Section 3 was tested on �ve di�erent instances

of the SC problem (see the appendix for a description of these problems). Each algorithm

was run until the evaluation function was executed 40,000 times. For example, in the

case of the GGA, this means that if the population size was 100, then 400 generations

were executed. On the other hand, for a SHC, the initial individual was subjected to

40,000 random perturbations. The number 40,000 was chosen based on early trials that

indicated that controllers that generated high-quality motions could be generated within

40,000 evaluations.

Based on performance on early, small-scale experiments, each algorithm was tested

9

Initialize population

Evaluate each genome in population

for generation = 1 to number of generations

for each individual genome in the population

Randomly perturb the genome

Evaluate the new genome

if the new genome is better than the old one then

Replace the old genome with the new one

end for

if (generation mod reseed interval) = 0 then

Rank order the population

Replace bottom 50% of the population with top 50%

end if

end for

Fig. 10. Stochastic population hill climbing (SPHC).

using several sets of promising control parameters (Table 4). In Table 4, the crossover and

mutation rates refer to the probability that the operators were applied to a given genome.

The migration operator is the probability that outbound migrants were generated out of

a particular deme. The reseed interval is the number of generations between reseeding

operations in the SPHC algorithm, where a generation is a number of evaluations equal to

the size of the population.

For each experimental group (an algorithm + control parameter set), each experiment

was repeated 10 times, and the average performance was calculated.

5 Results

5.1 Comparison of Serial Algorithms

Figures 11 through 15 present the performances (as measured by the �tness values of the

best individuals evaluated over time) of a representative group from each algorithm for each

of the �ve SC problems. The groups selected to be shown are the groups that performed

the best overall in all �ve of the test-suite problems.

From the �gures, the following general observations can be made:

� The EP algorithms outperformed everything else. In particular, the SPHC algorithm

consistently yielded the best results.

� All the EC algorithms outperformed RG&T.

� The SHC algorithm performed very well in the beginning, but its progress tapered

o�, and was consistently outperformed by the SPHC algorithm.

10

Experimental Mutation Crossover Migration Reseed

Group Population Rate Rate Rate Interval

RG&T N/A N/A N/A N/A N/A

GGA-1 100 0.1 0.6 N/A N/A

GGA-2 200 0.1 0.6 N/A N/A

SSGA-1 100 0.1 0.6 N/A N/A

SSGA-2 200 0.1 0.6 N/A N/A

DGA-1 5 � 40 0.1 0.6 0.05 N/A

DGA-2 5 � 40 0.1 0.6 0.005 N/A

DGA-3 5 � 100 0.1 0.6 0.05 N/A

DGA-4 5 � 100 0.1 0.6 0.005 N/A

EP1-1 20 1.0 N/A N/A N/A

EP1-2 50 1.0 N/A N/A N/A

EP2-1 20 1.0 N/A N/A N/A

EP2-2 50 1.0 N/A N/A N/A

SHC 1 1.0 N/A N/A N/A

SPHC-1 10 1.0 N/A N/A 100

SPHC-2 10 1.0 N/A N/A 200

SPHC-3 10 1.0 N/A N/A 400

SPHC-4 10 1.0 N/A N/A 400

SPHC-5 10 1.0 N/A N/A 800

Table 2. Key parameters.

0

1

2

3

4

5

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure 11: Comparative performance of the algorithms, Sarah Sigma Problem (n=10)

11

0

1

2

3

4

5

6

7

8

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure 12: Comparative performance of the algorithms, Willy Worm Problem (n=10)

0

1

2

3

4

5

6

7

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure 13: Comparative performance of the algorithms, Beryl Biped Problem (n=10)

12

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure 14: Comparative performance of the algorithms, Mr. Star-Man Problem (n=10)

-1

0

1

2

3

4

5

6

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure 15: Comparative performance of the algorithms, Five-Rod Fred Problem (n=10)

13

� There is no consistent trend in performances among the genetic algorithms (i.e. GGA,

SSGA, DGA).

An additional observation is that the less successful EC algorithms were eventually able to

generate solutions of the same quality as the SPHC algorithm if we let them proceed beyond

40,000 evaluations. That is, the primary di�erence observed between the algorithms was

their e�ciency, and not in their completeness (ability to generate good solutions).

5.2 Comparisons with the Massively Parallel GA

Due to the enormous computational cost that would have been incurred on a CM-2, we

did not obtain performance data for the massively parallel GA that could be compared

quantitatively with the serial algorithms. However, we can make the following anecdotal

observations about the relative performance of the serial and parallel algorithms:

� The parallel GA requires between 200,000 and 850,000 physical simulations (50-200

generations of the GA) to produce motion controllers comparable to those produced

at a cost of 40,000 simulations by the SPHC algorithm.

� The running time of the massively parallel GA is typically 30-60 minutes on a 4096-

processor CM-2 Connection Machine, versus 3-6 minutes for the 40,000 evaluation

SPHC algorithm on a DEC 3000/400 AXP workstation.

We also observed that, in the case of SC problems with highly multimodal solutions, our

EC algorithms are able to generate all of the major variations that the massively parallel

GA was able to generate. For example, for the Willy Worm locomotion problem, the SPHC

algorithm generates both the \crawling" and \ipping" modes of locomotion (Figures 18-

19).

6 Experiments with Standard Continuous OptimizationMeth-

ods

In addition to the stochastic discrete optimization methods outlined above, we also ex-

perimented with more traditional continuous optimization methods. We implemented two

techniques commonly applied in continuous optimization problems lacking gradient infor-

mation: the downhill simplex method of Nelder and Mead and the direction-set technique

of Powell. Complete implementation details of these algorithms are beyond the scope of

this paper; however, descriptions and sample implementations can be found in [13].

6.1 Powell's Method

Powell's method is classi�ed as a \direction-set" optimization algorithm, which is one that

seeks to calculate an optimal basis for the function space such that the unit vectors are

well suited to one-dimensional optimization. In other words, an optimal choice of basis

14

vectors should provide steep descent, while at the same time satisfying the criterion that

optimization along one dimension disturbs minimally previously computed optimizations

along other basis dimensions. Powell's algorithm, then, works by repeatedly performing

successive one-dimensional optimizations along a set of basis vectors. As it progresses,

the orientation of the set of basis vectors is revised to increase the rate of descent. Our

implementation utilized Brent's method for one-dimensional optimization, though other

techniques would probably work just as well given the lack of di�erentiability exhibited by

much of the search space.

6.2 The Downhill Simplex Method of Nelder and Mead

This approach works by keeping a simplex of points and at each iteration repositioning the

highest point of the simplex by reecting it through the opposite face. If this is unsuccessful,

the algorithm tries to squeeze the simplex along an axis, or, if nothing else works, to shrink

the simplex. The algorithm continues in this fashion, moving the simplex downhill until

it is no longer able to make progress. The main advantage of this algorithm, other than

simplicity, is that it makes no assumptions about the smoothness or di�erentiability of the

space. Also, because of its coarseness, it can sometimes \step over" local minima that trap

Powell's method. Because of the discontinuous nature of the BSR search space, we expected

that this method might prove to be more robust than Powell's method, which relies more

heavily on assumptions of smoothness.

6.3 Experiments and Results

We performed two groups of experiments to determine the e�ectiveness of these techniques

for motion synthesis. In the �rst group of tests, we applied the algorithms from scratch,

generating a random point in BSR space and using it to seed the minimization algorithms.

In the second group of tests, we considered using these techniques as a postprocess to re�ne

existing trajectories. For these experiments, we began with an existing solution generated

by the SPHC algorithm and then ran the minimization algorithms on this solution to

determine if further improvement of the solution was obtainable. Each set of experiments

was performed for seven distinct motion/creature combinations.

In the �rst group of experiments, we found that neither of the minimization techniques

proved to be e�ective at generating trajectories from scratch. For each of the seven motion-

synthesis problems, a hundred random seeds were generated for each technique. Since it is

common to restart multidimensional minimization techniques such as these, each algorithm

was restarted �ve times with the previous solution. (In most cases no additional improve-

ment was obtained after one or two restarts | �ve was chosen as a reasonably secure upper

bound.) Nevertheless, neither of the techniques was able to provide a useful amount of

improvement beyond the initial randomly generated solutions, for any of the seven test

cases. Although experiments with a larger number of random seeds could be considered,

we found that our computational cost for the above experiments was already greater than

the corresponding cost required by the stochastic search techniques described earlier to �nd

near optimal solutions.

15

F
it

n
e

s
s

0

2

4

6

8

10

Starman

motion

1

Starman

motion

2

Fred

motion

1

Fred

motion

2

Fred

motion

3

Fred

motion

4

Willy

motion

1

initial seed

Simplex

Powell

Figure 16: Improvements to BSR controllers using Powell's method and the downhill simplex

method

In the second groups of tests, we applied each of these techniques to a solution discovered

by the SPHC algorithm after 40,000 iterations. In nearly all cases, these techniques provided

at least a modest amount of improvement (see Figure 16). As the graph shows, in nearly

all cases Powell's method provides at least as much improvement as the downhill simplex

method.

Overall, our experiments indicate that neither of these techniques is likely to be useful

for generating interesting motions from scratch. Nevertheless, our results indicate that it

may be useful to consider the use of continuous optimization algorithms such as these for

local re�nement of trajectories generated by discrete search techniques. Not surprisingly,

Powell's method is often able to �ne-tune solutions found by the SPHC algorithm to a

degree which SPHC itself is unlikely to achieve in a reasonable amount of time, due to the

coarseness and randomness of its mutation operators. The visual e�ect of this improvement,

however, is often quite modest.

7 Conclusions

The primary motivation for this study was to �nd a search algorithm that would make

the Ngo-Marks approach to motion synthesis viable on current serial machines. We have

succeeded in this e�ort, and have identi�ed the SPHC algorithm to be a particularly e�ec-

tive serial global search algorithm. We have improved the e�ciency of the global search

algorithm by an order of magnitude with respect to the number of physical simulations ex-

ecuted; furthermore, the SPHC algorithm algorithm on a DEC AXP workstation generates

BSR controllers equivalent to those found by the massively parallel GA in one tenth of the

time.

Another signi�cant result yielded by our study was the isolation of the BSR controller

representation as the key component in the success of the motion-synthesis algorithm. The

16

fact that simple search algorithms such as SPHC are successful in generating good motion

controllers, even outperforming the original massively parallel GA, clearly demonstrates

the fact that the space of BSR controllers is relatively simple to search for near-optimal

solutions.

We believe that our study is thorough enough to conjecture that although there no doubt

exist other algorithms that can marginally outperform the SPHC algorithm, future research

in improving the e�ciency of the the search component of the motion-synthesis algorithm

would be best directed towards studying fundamentally di�erent search algorithms, di�erent

encodings of the motion controller, or substantially di�erent implementations of genetic

operators. For example, our preliminary experiments with two standard function-optimizing

techniques has shown that although these deterministic algorithms perform poorly from

random starting points, they can rapidly �nd small to medium improvements in solutions

originally generated by our EC algorithms (Section 6). A hybrid EC/deterministic algorithm

may prove to be a very e�ective combination.

References

[1] L. S. Brotman and A. N. Netravali. Motion interpolation by optimal control. Computer

Graphics, 22(4):309{315, August 1988.

[2] M. F. Cohen. Interactive spacetime control for animation. Computer Graphics,

26(2):293{302, July 1992.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, NY,

1991.

[4] Evolutionary Programming Society. Proceedings of the First Annual Conference on

Evolutionary Programming, February 1992.

[5] Evolutionary Programming Society. Proceedings of the Second Annual Conference on

Evolutionary Programming, February 1993.

[6] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles

and Practice. The Systems Programming Series. Addison-Wesley, Reading, MA, 2nd

edition, 1990.

[7] A. Fukunaga. Genetic and stochastic search strategies to solve the spacetime con-

straints problem. A.B. Thesis, Harvard University, April 1993.

[8] A. Fukunaga, J. T. Ngo, and J. Marks. Automatic control of physically realistic an-

imated �gures using evolutionary programming. In Proceedings of the Third Annual

Conference on Evolutionary Programming (EP94), San Diego, CA, February 1994.

World Scienti�c. To appear.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, Massachusetts, 1989.

17

[10] J. T. Ngo and J. Marks. Massively parallel genetic algorithm for physically correct

articulated �gure locomotion. Working Notes for the AAAI Spring Symposium on

Innovative Applications of Massive Parallelism, Stanford University, March 1993.

[11] J. T. Ngo and J. Marks. Physically realistic motion synthesis in animation. Evolution-

ary Computation, 1(3):235{268, 1993.

[12] J. T. Ngo and J. Marks. Spacetime constraints revisited. In SIGGRAPH '93 Conference

Proceedings, pages 343{350. ACM SIGGRAPH, Anaheim, CA, August 1993.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. The Art of Scienti�c Computing. Cambridge University Press, Cambridge, UK,

second edition, 1992.

[14] R. Tanese. Distributed genetic algorithms. In Proceedings of the Third International

Conference on Genetic Algorithms, 1989.

[15] M. van de Panne and E. Fiume. Sensor-actuator networks. In SIGGRAPH '93 Con-

ference Proceedings, pages 335{342, Anaheim, CA, August 1993. ACM SIGGRAPH.

[16] D. Whitley. The genitor algorithm and selection pressure: Why rank-based allocation

of reproductive trials is best. In Proceedings of the Third International Conference on

Genetic Algorithms, 1989.

[17] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics, 22(4):159{168,

August 1988.

A Test Suite of Spacetime Constraint Problems

A.1 Sarah Sigma

Sarah Sigma (Figure 17) is an unbranched, four-rod creature whose task was to jump as

high as possible. The evaluation criterion was the maximum height achieved by the lowest

joint during a period of 50 time steps. The joint angle ranges on Sarah are quite limited,

so the motions that result are predictable. There is an initial compress phase (squash),

followed by a rapid expansion phase (expand), which propels Sarah into the air. Once in

the air, Sarah compresses again (compress), increasing the height of its lowest joint.

A.2 Willy Worm

Willy Worm (Figures 18-19) is an asymmetric, unbranched, three-rod creature with a large

degree of freedom in its joint angle movement. The task given Willy is forward locomotion

(walk as far as possible) within the time allotted. The evaluation criterion was the maximum

horizontal distance achieved by the center of mass. This is an example of a multi-modal

problem in which the various solutions are entirely distinct. There are two motions which

are commonly observed (both shown here): ipping and shu�ing.

18

Time

Squash

Time

Expand

Compress

Time

Figure 17: Sarah Sigma jumping.

19

Touch

Time

Pull

Time

Time

Leap

Time

Pull

Figure 18: Willy Worm shu�ing.

20

Time

Touch

Flop

Time

Time

Pull

Reach

Time

Time

Figure 19: Willy Worm ipping forward.

21

A.3 Beryl Biped

Beryl Biped (Figure 20) is a branched, �ve-rod character with two jointed legs and a rigid

torso, roughly modelling a two-dimensional legged humanoid whose task is forward locomo-

tion. Rod masses are of human proportion. Beryl's success was measured by the maximum

horizontal distance achieved by the center of mass during the course of a simulation. The

resulting motion shown here is a cyclic, bipedal locomotion.

A.4 Mr. Star-Man

Mr. Star-Man (Figures 21-22) is a branched, �ve-rod creature, in which all rods are of equal

length and mass. Joint-angle ranges are con�ned to one of the quadrants de�ned relative

to its top \torso" rod, so that rods cannot cross each other. Given the task of forward

locomotion,the two main classes of resulting motions (both shown here) are cartwheeling

and shu�ing.

A.5 Five-Rod Fred

Five-Rod Fred (Figures 23-24) is an unbranched creature consisting of �ve equal-length

rods. The middle rods are of equal mass, but the terminal rods are �ve times heavier. Each

joint allows its pair of connected rods to be at most 30 degrees from collinear. In addition

to an inchworm-like crawling motion which was anticipated when given the task of forward

locomotion, this creature yielded some of the most interesting motions developed by the

system, including a ipping motion which results in forward momentum, culminating with

a roll at the end.

22

Extend "left"

Time

leg

Time

Pull "right" leg

Extend "right" leg

Time

Time

Figure 20: Beryl Biped walking.

23

Reach

Time

Time

Gather

Reach

Time

Gather

Time

Time

Reach

Figure 21: Mr. Star-Man shu�ing.

24

Time

Time

Time

Time

Figure 22: Mr. Star-Man cartwheeling.

25

Time

Gather

Time

Reach

Gather

Time

Time

Figure 23: Five-Rod Fred crawling.

26

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Figure 24: Five-Rod Fred ipping and rolling.

27

