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Abstract

Massively parallel processors introduces new de-

mands on software systems with respect to perfor-

mance, scalability, robustness and portability. The in-

creased complexity of the memory systems and the in-

creased range of problem sizes for which a given piece

of software is used poses serious challenges for software

developers. The Connection Machine Scienti�c Soft-

ware Library, CMSSL, uses several novel techniques to

meet these challenges. The CMSSL contains routines

for managing the data distribution and provides data

distribution independent functionality. High perfor-

mance is achieved through careful scheduling of opera-

tions and data motion, and through the automatic se-

lection of algorithms at run{time. We discuss some of

the techniques used, and provide evidence that CMSSL

has reached the goals of performance and scalability for

an important set of applications.

1 Introduction

The main reason for large scale parallelism is per-

formance. Most scalable architectures are constructed

out of mass produced, state{of{the{art components

available at a fraction of the cost of the custom made,

low integration{level parts used in conventional super-

computers. In order for scalable architectures, in the

form of massively parallel processors, MPPs, to deliver

on the promise of extreme performance compared to

conventional supercomputer architectures, a compara-

ble level of e�ciency in resource use is necessary.

Scalable architectures are available in sizes from a

few processors to several thousand processors. Pro-

grams for production use on a large number of nodes

may be developed on few nodes, or even on a single

node. Software must be designed to operate on sys-

tems that may vary in size by as much as four orders

of magnitude. This level of scalability must be accom-

plished transparently to the user, i.e., without change

the same program must execute not only correctly but

also e�ciently over this range in processing capacity

and corresponding range in problem size. Moreover,

programs should not have to be recompiled for various

system sizes. This requirement will be even more im-

portant in the future, since over time the assignment of

processing nodes to tasks is expected to become much

more dynamic than today.

Robustness of software both with respect to perfor-

mance and numerical properties are becoming increas-

ingly important. Todays high performance micropro-

cessors used in MPPs have a processing capacity that

exceeds the ability of MOS memories to deliver and ac-

cept data. By 1995, the speed of a high performance

microprocessor may exceed that of DRAM (Dynamic

Random Access Memory) chips by a factor of 10 or

more. The memory system in each node will become

more complex. In addition, the distributed nature of

the total memory compounds the complexity of the

memory system. It is imperative that software sys-

tems deliver a large fraction of the available perfor-

mance over a wide range of problem sizes transpar-

ently to the user. Small changes in array sizes should

not impact performance in a signi�cant way. Robust-

ness with respect to performance in this sense is more

demanding on the software systems for MPPs than on

conventional architectures. Much of these demands

must be resolved at run{time.

Robustness with respect to numerical properties is

also becoming increasingly important. The same soft-

ware may be used for problem sizes over a very wide

range. Condition numbers for many numerical meth-

ods are signi�cantly worse for large problems than for

small problems. As a minimum, condition estimators

must be provided to allow users to assess the numer-

ical quality of the results. It will also be increasingly

necessary to furnish software for ill{conditioned prob-

lems, and whenever possible, automatically choose an

appropriate numerical method. Some parallel methods

do not have as good a numerical behavior as sequen-

tial methods, and this disadvantage is often increasing



with the degree of parallelism. Much research is needed

before the choice of algorithm with respect to numeri-

cal properties and performance can be automated.

The Connection Machine Scienti�c Software Li-

brary, the CMSSL, today has about 250 user callable

functions covering a wide range of common operations

in scienti�c and engineering computation. The library

is designed for languages with an array syntax, which

allows a richer functionality for each routine (through

overloading) than in a conventional Fortran 77 (F{77)

library. For instance, whereas one routine is required

for each data type in libraries such as the BLAS or LA-

pack, a single routine su�ces in CMSSL. Hence, the

approximately 250 CMSSL routines are equivalent to

about 1,000 F{77 routines (for 
oating{point compu-

tations).

In the next section we state the major design goals

for the CMSSL. The remaining sections discusses in

some detail the techniques used to achieve the goals.

Section 3 brie
y introduces the software architecture

followed by a discussion of language issues in Section

4. A single call to a CMSSL routine su�ces to spec-

ify identical high{level operations on a collection of

operands. This multiple{instance capability provides

the basis for high performance without reliance on so-

phisticated interprocedural data dependence analysis.

The multiple{instance feature is discussed in Section

5. Scalability and robustness with respect to perfor-

mance both depend heavily on the ability to automat-

ically select appropriate schedules for operations and

data motion, and proper algorithms. These issues are

discussed in Section 6. The data distribution inde-

pendent functionality of CMSSL is discussed brie
y in

Section 7. A summary is given in Section 8.

2 Design goals of CMSSL

The ultimate goal for the CMSSL is to provide high

level support for most numerical methods for the solu-

tion of partial di�erential equations and for optimiza-

tion. CMSSL intends to support traditional numer-

ical methods, hierarchical and multi{scale methods,

and multipole and other fast N{body algorithms. The

CMSSL support for these methods means functions at

a su�ciently high level that architectural characteris-

tics are essentially transparent to the user, yet that

a high performance can be achieved. Speci�c design

goals for the CMSSL, established about four years ago,

were

1. Scalability across system and problem sizes.

�Multiple{instance capability, i.e., operation on

whole arrays in a way analogous to the way

Operation M
op/s E�ciency

per node %

Local

`

2

{norm 126 98

Matrix{vector 115 90

Matrix{matrix 115 90

Global

`

2

{norm 126 98

Matrix{vector 80 63

Matrix{matrix 83 65

LU{factorization 61 48

Unstructured grid 37 29

Table 1: Peak local and global performance per node

and e�ciencies achieved for a few di�erent types of

computations on the CM{5. 64{bit precision.

the language intrinsics operate on array data.

� Data distribution independent functionality.

2. Consistency with languages with an array syntax,

such as Fortran 90, Connection Machine Fortran

(CMF) and C*.

3. Functionality supporting traditional numerical

methods used in scienti�c and engineering

computation.

4. High Performance.

5. Robustness.

6. Portability.

7. Support for all four conventional 
oating{point

data types.

All of the goals enumerated above had an impact on

the architecture of the CMSSL. The requirements for

the multiple{instance capability and data distribution

independent functionality are critical for scalability in

a real sense, i.e., system and problem size independent

codes that execute at acceptable e�ciency for a wide

range of system and problem sizes. The requirements

of scalability and consistency with languages with an

array syntax impacted the user interfaces. Today, the

library exists on the Connection Machine systems CM{

2, CM{200, and CM{5. The CM{5 version consists of

about 0.5 million lines of code, and so does the CM{2

and CM{200 version. Each version has about 250 user

callable functions.

Table 1 gives a few examples of how the goal of high

performance is met by the CMSSL. The table entry for

unstructured grid computations actually represents a

complete application [14], while the other entries rep-

resent library functions by themselves.

Tables 2 and 3 provide excellent examples of how

the goal of scalability is met by the CMSSL, as well

as the CM{5 architecture over a range of a factor of

a thousand in system size. To �rst order, the perfor-

mance per node is independent of the system size, thus



Number Dense matrix operations

of nodes `

2

{norm MV MM LU-fact

1 126 83 62 68

32 126 80 71 61

64 125 74 72 60

128 125 76 78 60

256 125 68 77 59

512 125 68 83 59

1024 58

Table 2: Performance in M
op/s per node over a range

of CM{5 system sizes. 64{bit precision.

Number Unstructured grid computations

of nodes ENSA

1

TeraFrac

2

MicMac

3

32 25 26 30

64 25 26 31

128 26 24 29

256 24 25 32

512 24 25 32

1024 26

Table 3: Performance in M
op/s per node over a range

of CM{5 system sizes. 64{bit precision.

demonstrating excellent scalability. For some compu-

tations, like matrix multiplication, the e�ciency ac-

tually increases as a function of system size. For the

unstructured grid computations the performance de-

creases by about 5%, an insigni�cant amount.

3 Software Architecture

For scienti�c and engineering computations, the ar-

chitectural dependence of user codes with respect to

performance is traditionally captured in the BLAS

(Basic Linear Algebra Subprograms) [2, 3, 10]. E�-

cient implementations of this set of routines are archi-

tecture dependent, and for most architectures written

in assembly code.

On distributed memory architectures, a distributed

BLAS [6, 8, 12] (DBLAS) is required in addition to

a local BLAS (LBLAS) in each node [9]. Moreover,

a set of communication routines are required for data

motion between nodes. But, not all (high{level) al-

1

ENSA is an Euler and Navier{Stokes �nite element code

[4] developed at the Division of Applied Mechanics, Stanford

University

2

TeraFrac is a solid mechanics code developed at the Divi-

sion of Engineering, Brown University, Technical University of

Denmark, Lyngby, and Thinking Machines Corp. [13].

3

MicMac is a solid mechanics code developed at the Depart-

ment of Mechanical Engineering, Cornell University and Think-

ing Machines Corp. [1].

gorithms parallelizes well, and there is an algorithmic

architectural dependence. Architectural independence

of application programs requires higher level functions

than the LBLAS, DBLAS, and communication rou-

tines. Hence, the CMSSL includes a subset of functions

corresponding to traditional libraries, such as Linpack,

Eispack, LApack, FFTpack and ITpack to mention a

few.

3.1 External architecture

The externally visible architecture of the CMSSL is

similar to that of conventional libraries, as seen from

the following list of categories of routines

� Distributed and local BLAS (DBLAS and LBLAS)

Level{1

Level{2

Level{3

� Sparse DBLAS

for regular grids

for irregular grids

� Banded direct equation solvers

� Dense direct equation solvers

� Iterative solvers

� Eigenanalysis

� Fast Fourier Transforms

� Ordinary di�erential equation solvers

� Statistical routines

� Communication functions

for regular grids

irregular grids

global operations

� Stencil/convolution compiler

� Compiled routing

The communication routines are unique to dis-

tributed memory machines. The CMSSL also contains

tools in the form of two special compilers; a stencil

compiler and a communications compiler.

Novel ideas in the CMSSL can be found at all levels:

in the internal architecture, in the algorithms used, in

the automatic selection of algorithms at run{time, and

in the local operations in each node.

3.2 Internal architecture

The CMSSL supports a global shared address space

as well as node level programming. Used in the global

mode, CMSSL accepts distributed data structures. In-

ternally, the CMSSL consists of a set of library rou-

tines executing in each node, a set of communication

functions, and code that implements operations on dis-

tributed data using the local functions and the commu-

nication routines. The communication functions are



either part of the Connection Machine Run{Time Sys-

tem, CMRTS, or part of the CMSSL. All communica-

tion functions that are part of the CMSSL are directly

user accessible, and so are the functions in each node.

For the global programming model the distributed na-

ture of the data structures is transparent to the user.

CMSSL calls are consistent with this model. The in-

ternal structure of the CMSSL has the following oper-

ational characteristics

� Extraction of data distribution information.

� Algorithm selection.

� Execution through calls to

Local routines

Communication routines

It follows from the internal architecture of the

CMSSL that it also has the ability to serve as a nodal

library. In fact, through the multiple{instance capabil-

ity, with each instance constrained to a node, only the

nodal portion of the library is invoked. In a separately

compiled nodal version of the CMSSL, the global data

structure information is not required.

4 Languages with array syntax

Library routines operate on data structures de�ned

in a high{level language in a calling program, whether

used for input to, or output from, a routine. The most

essential hardware characteristics with respect to per-

formance is the memory architecture and the existence

of pipelines. However, most high level languages ab-

stract away the memory hierarchy. Memory is rep-

resented as a linearized address space with presumed

uniform access time. This feature is a major draw-

back in programming for performance, since compil-

ers and run{time systems often are not able to resolve

e�ciently the di�erence between this model and real

memory systems.

In languages with an array syntax, such as Fortran

90, many array operations are made primitive opera-

tions through operator overloading. For instance, the

addition of two arrays is simply expressed as A + B,

irrespective of the rank and shape of the two arrays.

No explicit enumeration of array elements is required.

The array shapes are known from the declaration of

the arrays. Similarly, the array type is also known

from the array declaration.

In compliance with this property of array languages,

arrays are passed to CMSSL routines by reference to an

array descriptor that contains the information about

shape and data type as well as about data distribution.

Thus, neither is the shape information passed explic-

itly in the form of arguments, nor is the type passed

explicitly through routine names or arguments. This

form of overloading considerably simpli�es CMSSL in-

terfaces compared to conventional libraries, such as,

the BLAS, Linpack, Eispack, and LApack, at the same

time as it reduces the number of required interfaces.

An example of a CMSSL interface is given below.

real, array:: y(N,M,K), x(N,K,L), A(M,L,N,K)

gen matrix vect mult(y, A, x, 2, 1, 2, 3, ier)

The array type does not appear in the routine name,

and there is no array shape information in the call.

The arguments 2, 1, 2, and 3 are due to the multiple{

instance capability of the CMSSL.

In the example above, y and x represent either single

vectors, or (multidimensional) arrays of vectors, and A

represents a matrix, or a (multidimensional) array of

matrices. The rank of the array A must be one higher

than the ranks of the arrays y and x, which are of the

same rank. The number 2 succeeding x states that the

problem axis for y is the second axes of the array y,

i.e., the elements of one instance of the vector y lays

along the axis of extent M . Similarly, the number 1

states that the problem row axis for A is axis 1 of the

array A, and the problem column axis is axis 2. The

shape of each instance of A is M � L. The problem

axis for x is axis 3 of the array x. Thus, the above call

de�nes multiple matrix{vector multiplications. Each

instance consists of the multiplication of an M � L

matrix by a vector of length L. There are N �K such

instances. The call is independent of the distribution

of the arrays. Axes not labeled as problem axes are

called instances axes.

In our implementation of the multiple{instance ca-

pability, arrays are required to have conforming shapes

with respect to the instance axes. Thus, disregarding

the problem axes of the di�erent arrays involved in an

operation, the shape of the resulting arrays must be

identical. This restriction allows for an implicit order-

ing of instances corresponding to the ordering of the

axes in the arrays.

The use of higher dimensional arrays for a collec-

tion of vectors and matrices is often the preferred data

representation in many applications. For instance, in

Quantum Chromodynamics (QCD), computations are

performed on a four{dimensional regular lattice, where

in each lattice point the state includes small matrices

and vectors. It is natural to represent the collection

of matrices as six{dimensional arrays, and the vectors

as �ve{dimensional arrays. Similarly, in �nite di�er-

ence methods for the solution of Navier{Stokes equa-



tions, a three{dimensional grid may be used for the

spatial discretization, with the state in each grid point

represented by vectors and matrices. It is natural to

represent the collection of matrices in all grid points

as �ve{dimensional arrays and the collection of grid

point vectors as four{dimensional arrays.

Finally, we remark that the CMSSL is a generic

library for languages with an array syntax. The same

library indeed supports applications written in either

CMF or C*.

5 Multiple{instance computation

The multiple{instance capability of the CMSSL is

consistent with the idea of collective computation in-

herent in languages with an array syntax. Library rou-

tines are designed to carry out a collection of high level

computations on independent sets of operands in a sin-

gle call, in the same way addition of arrays are carried

out through a single statement. To accomplish the

same task in an F{77 or C library, the call to a library

routine would be embedded in a set of nested loops.

The multiple{instance capability not only eliminates

loop nests, but also allows for parallelization and opti-

mization without a sophisticated interprocedural data

dependence analysis.

The multiple{instance feature for parallel compu-

tation is introduced for reasons analogous to the rea-

sons for introducing the level{3 BLAS for uniproces-

sors. The level{3 BLAS provides a su�cient degree of

freedom compared to the level{1 and level{2 BLAS, to

allow for a desired level of optimization for cache based

architectures.

We discuss the signi�cance of the multiple{instance

capability with respect to performance and simplicity

of user code by considering the computation of the

FFT along one of the axes of a two{dimensional array

of shape P � Q. We assume a canonical data layout

in which the set of processing nodes are con�gured

as an array of the same rank as the data array and

of a shape making the local subarrays approximately

square. The nodal array shape is N

r

� N

c

. Figure 1

illustrates the layout of a two{dimensional data array

in row and column major order on a 2�4 nodal array.

The CMRTS by default creates such canonical layouts

[15].

With the FFT performed along the P{axis, the

computations on the two{dimensional array consist of

Q independent FFT computations, each on P data ele-

ments. We consider three di�erent alternatives for the

computation:

1. Maximize the concurrency for each FFT

Column Major

A

A

1

0

3

2

5

4

7

6

Row Major

4

0

5

1

6

2

7

3

Figure 1: Data distribution on a rectangular nodal

array.

through the use of a canonical data layout for

one{dimensional arrays of size P .

2. Compute each FFT without data relocation.

3. Compute all Q FFTs concurrently through

multiple{instance routines.

Alternative 1 corresponds to the following code frag-

ments:

FOR J = 1 TO Q DO

TEMP = A(:,J)

CALL FFT1(TEMP,P)

A(:,J) = TEMP

ENDFOR

SUBROUTINE FFT1(B,N)

ARRAY B(N)

FFT on a one{dimensional array

END FFT1

A temporary one{dimensional array with a canoni-

cal layout is created for each column A(:; J). The con-

currency in the computation of the FFT is maximized.

The data motion prior to the computation of the FFT

on a column is a one{to{all personalized communica-

tion (scatter) [7] within processing node rows for the

row major ordering. In one{to{all personalized com-

munication, a node sends a unique piece of data to
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Figure 2: Data redistribution for load{balanced col-

umn processing. Nodes labeled in row major order.

all other nodes. Upon completion, an all{to{one per-

sonalized communication (gather) is required within

processing node rows. The data redistribution is illus-

trated in Figure 2. The redistribution corresponds to a

change in data allocation from A(:,:) to A(:, :SERIAL)

and back to the original allocation, one column at a

time. The compiler directive SERIAL implies that the

axis is assigned to the memory of a single node. The

arithmetic speedup is limited to min(N;P ) for trans-

forms on the P{axis.

In the column major ordering, a skewing is required

prior to the one{to{all personalized communication

within columns, as well as after the all{to{one per-

sonalized communication within columns that follows

the FFT computation. The skewing step is shown in

Figure 3.

Alternative 2 corresponds to the following code frag-

ments:

FOR J = 1 TO Q DO

CALL FFT2(A,P,Q,J)

ENDFOR

SUBROUTINE FFT2(B,N,M,K)

ARRAY B(N,M)

In{place FFT on column K of array B

END FFT2

The data redistribution is avoided by computing

Column Major

A

A

1

0

3

2

5

4

7

6

7

6

5

4

3

2

1

0

Column Major

1

0

3

2

5

4

7

6

7

6

5

4

3

2

1

0

Figure 3: The skewing step in data redistribution for

load{balanced processing of columns in a column ma-

jor labeling of a two{dimensional nodal array.

each instance in{place. An obvious disadvantage with

this approach is the poor load{balance. The speedup

of the arithmetic is proportional to min(N

r

; P ) for a

transform along the P{axis.

Alternative 3 corresponds to the code fragment:

FORALL J DO

CALL FFT2(A(:,J))

ENDFOR

Using the CMSSL FFT corresponds to Alternative

3. All di�erent instances of the FFT represented by

the Q columns are treated in{place in a single call.

The concurrency and data layout issues are managed

inside the FFT routine. The CMSSL call is of the form

CALL FFT(A, DIM = 1),

where DIM speci�es the axis of the array A subject

to transformation. The actual CMSSL call has addi-

tional parameters allowing the calling program to de-

�ne the subset of axes for which forward transforms are

desired, for which axes inverse transforms are desired,

and for which axes ordered transforms are desired [16].

In summary, the qualitative features of the three

alternatives are:

.



Alternative 1. Q one{to{all and all{to{one personal-

ized communications within rows for a

row major ordering. These communi-

cations correspond to the data redis-

tribution A(:,:) to A(:, :SERIAL) and

back to A(:,:), one column at a time.

For columnmajor ordering, a skew op-

eration is required in addition to the

personalized communication. With N

nodes, the arithmetic speedup is pro-

portional to min(N;P ) for a transform

along the P{axis.

Alternative 2. In{place, single{instance computa-

tion. No excess data motion. With N

r

nodes along the P{axis, the arithmetic

speedup is proportional to min(P;N

r

).

Alternative 3. Multiple{instance, in{place computa-

tion. No excess data motion. The

arithmetic speedup is proportional to

min(N;PQ).

The third choice is clearly preferable both with re-

spect to communication and arithmetic load{balance.

Note that with a single{instance library routine and

canonical layouts, Alternative 1 would be realized.

For particular situations, a noncanonical layout will

alleviate the communication problem, but in many

cases the communication appears somewhere else in

the application code. Thus, we claim that our discus-

sion based on canonical layouts re
ects the situation

in typical computations.

6 Automatic algorithm selection

One of the novel features of the CMSSL is the auto-

matic selection of algorithm. An automatic selection

is made both at the local level and at the global level

for many functions. The purpose of the selection is to

maximize performance by preserving locality of refer-

ence. We discuss this feature for matrix operations,

both at the local and global level.

6.1 Local algorithm selection

We use matrix{vector multiplication to illustrate

run{time loop partitioning and loop reordering in

CMSSL. The need for these features arises from the

memory hierarchy in each node. On the CM{2, CM{

200, and CM{5, there is a single data path between

each memory unit and the 
oating{point unit with

which it is associated. Most other multiprocessors

based on standard microprocessors share this charac-

teristic. The register set forms the �rst level in the

memory hierarchy. The next level for the Connection

Machine systems is DRAM pages. DRAM is operated

in page mode, which allows one memory access per

processor cycle for accesses within a page. Access to

a di�erent page results in a page fault, which results

in a two cycle access time for the CM{2 and CM{200,

and up to a �ve cycle access time on the CM{5. A

third level of the local memory hierarchy on the CM{

5 is introduced through translation lookahead bu�ers,

TLB. Thus, the object of the loop partitioning and

loop reordering on the CM{5 is to

� maximize the use of data while in registers,

� minimize the number of DRAM page faults,

� minimize the number of TLB replacements.

Figure 4 shows the impact of DRAM page faults on

the local matrix{vector multiplication performance on

the CM{5. The matrix shape is P � Q. The multipli-

cation is performed by treating tiles of shape

^

P �

^

Q

that �ts in the register �le. For the top curve, the data

array layout is such that the innermost loop of length

^

P has stride one, while the second innermost loop is of

length

^

Q with a stride of P . For the top curve, tiles are

treated vertically before they are treated horizontally.

Thus, the matrix is scanned by vertical panels of width

^

Q. Changing the data array layout such that the stride

along the Q{axis is one for Q = 1024 yields a stride

of 1024 along the P{axis. The performance decreases

by about a factor of 3.5. Changing the loop order for

the tile such that the loop on

^

Q is innermost yields a

stride of one in the inner loop. But, this change in loop

order implies a change to an inner{product like algo-

rithm instead of an AXPY like algorithm. The per-

formance is substantially improved compared to the

AXPY like algorithm with a large stride. However,

since the inner{product is not a particularly e�cient

operation on the CM{5, the performance is not quite

as good as for stride one on the P{axis and an AXPY

like algorithm.

In the CMSSL, the best loop order/algorithm

within the tile, as well as the best order to loop over

tiles, is derived automatically from the array descrip-

tor at run{time. The ideal shape of the tile is also

determined automatically. For the example in Figure

4, the performance degradation is limited to about 30%

instead of 75%.

Another e�ect that is visible in the top curve (la-

beled \pqpq p stride 1") in Figure 4, although small,

is the e�ect of TLB thrashing. This is the reason for

the performance degradation for large values of P . Fig-

ure 5 gives an example where the e�ect of TLB thrash-

ing is much more severe. The performance is reduced

by almost a factor of two. The TLB thrashing can be
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Figure 4: The e�ciency of matrix{vector multiplica-

tion in 64{bit precision in each vector unit for a CM{5.

The matrix shape is P � Q.

reduced by introducing yet another level of loop parti-

tioning/blocking. As seen in Figure 5 the performance

can be restored to close to peak performance at a very

small expense.

In general, each call to a CMSSL routine han-

dles multiple matrix{vector multiplications, and an in-

stance loop is included in determining tile shape and

looping order. Thus, in the case of matrix{vector mul-

tiplication, the tile is a three{dimensional box of a size

that �ts in the register �le. The shape of the box is a

function of P , Q, and the number of instances, desired

vector length, looping overhead, and strides along the

di�erent axis. The looping over boxes is determined so

as to minimize DRAM page faults and TLB thrashing,

as illustrated in Figure 6.

6.2 Global algorithm selection

We again use matrix operations for illustration. The

idea that the operand with the largest number of ele-

ments should be kept stationary is very plausible for

matrix{vector multiplication. An obvious algorithm

is:

.

Align the input vector with a row of the matrix

Broadcast the input vector along columns

Perform local matrix{vector multiplication

Reduce along rows

Align the result with the allocation of the output

vector.

Depending upon the relative layouts of the matrix

and the vectors, no alignment may be required. How-
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ity of reference.



ever, with the canonical layout an alignment is re-

quired for both vectors, since a one{dimensional nodal

array shape is used by default for vectors, while a two{

dimensional nodal array shape is used for the matrix.

(Except for matrices of extreme shape, this is indeed

optimal [5].) For a one{dimensional nodal array shape

also for the matrix, either the broadcast or the commu-

nication for the reduction is unnecessary. For the ideal

(also the default) layout, the matrix{vector multipli-

cation in the CMSSL is implemented using all{to{all

communication [11].

For matrix{matrixmultiplication, it is intuitive that

if one of the operands, say the multiplier, has many

rows and columns, while the multiplicand only has two

columns, an algorithm very similar to that used for

matrix{vector multiplication should be used. Thus,

for the computation C  A � B, where C and B are

vector{like, B should be aligned with A and broadcast

and partial products accumulated spatially and aligned

with C. Similarly, if C and A are vector{like, but B

has a moderate aspect ratio, B should be stationary

and A be aligned and broadcast. And, if both A and

B are vector{like, but C has a moderate aspect ratio,

then C should be stationary and A and B aligned and

broadcast [12].

In the CMSSL, a choice of algorithm as indicated

above is made automatically in the matrix multiplica-

tion routine. The user need not be concerned with

specifying what particular algorithm to choose for

what matrix shapes and what machine size. For the

CM{200, the result is shown in Figure 7. In the bottom

part of the plot, where the performance is relatively


at, a matrix{vector type algorithm is used, while an

algorithm with the matrix C stationary is used where

the performance increases rapidly as a function of the

matrix size [12].

7 Data distribution independent func-

tionality

The data distribution independent functionality of

the CMSSL is accomplished without any information

being passed explicitly in a call to a library routine,

as shown in the following example. Both calls to

gen matrix vector mult produce the same answers, but

the performance will di�er.

DIMENSION A(81,81,4096), x(81,4096), y(81,4096)

.

.

.

CALL GEN MATRIX VECTOR MULT(y, A, x, 1, 1, 2, 1, ier)
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Figure 7: Performance of the matrix multiplication

function in the Connection Machine Scienti�c Software

Library for the multiplication of a P � P matrix by a

P�R matrix on Connection Machine system CM{200,

64{bit precision.

CMF$LAYOUT A(:SERIAL,:SERIAL,),x(:SERIAL,),y(:SERIAL,)

DIMENSION A(81,81,4096), x(81,4096), y(81,4096)

.

.

.

CALL GEN MATRIX VECTOR MULT(y, A, x, 1, 1, 2, 1, ier)

Whenever the data layout is required either for cor-

rectness or performance, the library routines retrieve

this information from the array descriptor.

8 Summary

The CMSSL has been designed for performance,

scalability, robustness and portability. The architec-

ture with respect to functionality follows the approach

in scienti�c libraries for sequential architectures. In-

ternally, the CMSSL consists of a nodal library and a

set of communication and data distribution functions.

CMSSL provides data distribution independent func-

tionality and has logic for automatic algorithm selec-

tion based on the data distribution for input and out-

put arrays and a collection of algorithms together with

performance models.

The goals of scalability and performance have

largely been achieved as shown in Tables 1, 2 and 3.

Particular emphasis has been placed on reducing the

problem sizes o�ering half of peak performance. Table

4 shows how this goal has been met for a few level{

1 LBLAS. Robustness with respect to performance is

achieved through the automatic selection of algorithm

as a function of data distribution for both low level

and high level functions.



Function Number of instances

1 2 3 4 5 7 10 16 32

DSCAL 16 10 8 5 4 3 3 2 1

DAXPY 11 7 6 3 3 2 2 1 1

DDOT 35 27 10 6 4 3 3 2 2

DNORM2 44 32 13 7 6 5 5 4 3

Table 4: Problem size for half of peak performance for

BLAS functions local to a CM{5 node.
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