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Performance feedback is pervasive in industries where new products are developed: workers

pitch concepts to managers and clients, who provide critiques and direction; prototypes are

tested at R&D labs, with focus groups, and in public demonstrations; and consumers are

the ultimate arbiters of value. Despite widespread use, the effects of feedback on innovation

in competitive environments are not fully understood: feedback is argued to be essential to

improving innovation in single-agent contracts (Manso 2011), but research on the effects of

performance disclosure in routine competitive settings (e.g., Ederer 2010) has shown that

it can weaken incentives by revealing asymmetries between competitors.

This article studies the tension between incentives and improvement in feedback provision,

which is of fundamental importance to firms in creative or research industries and any other

organization procuring or funding innovation. This tension is intrinsic to the product devel-

opment process and is especially stark in formal competitions such as innovation contests

(e.g., Taylor 1995, Che and Gale 2003, Terwiesch and Xu 2008), which are undergoing a

renaissance across private, public, and non-profit domains (Williams 2012).1 It also sur-

faces in more traditional R&D contracting environments: organizations seeking to procure

new technology often issue requests for proposals and take bids over multiple rounds, with

opportunities for feedback in between. In these settings, the sponsoring organization has

better information on performance than participants or can compel interim disclosure of

progress while a competition is underway.2 Should it make this information known?

A similar tension is present in non-innovation organizational settings, where performance

appraisals serve the dual purposes of employee development and evaluation for tournament-

like promotion and retention (Beer 1987). The observation that performance evaluation is

a near-universal practice in organizations has motivated a nascent economics literature on

the effects of feedback in promotion tournaments (Aoyagi 2010, Ederer 2010, Gershkov

and Perry 2009, Goltsman and Mukherjee 2011), but this literature is short on empirical

1Prizes have been used for centuries to encourage third parties to solve technological, commercial, and social
problems. In 2010, U.S. Federal agencies received broad authority to conduct public prize competitions,
with rewards ranging from status only (nonpecuniary) to tens of millions of dollars (OSTP 2014).

2In practice, they often do. In the 2006 Netflix contest to develop an algorithm that predicts users’ movie
ratings, entries were immediately tested and scored, with the results posted to a public leaderboard. In
the U.S. Defense Advanced Research Projects Agency’s 2005 and 2007 prize competitions to develop au-
tonomous vehicles, participants had to publicly compete in timed qualifying races before moving on to a
final round. Although these examples involve large stakes, interim scoring is also common in lower-stakes
settings, such as architecture competitions or coding contests (Boudreau et al. 2011, 2014).
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evidence and, with the exception of Wirtz (2014), does not account for the effects of feedback

on agents’ productivity. Another subliterature (Choi 1991, Gill 2008, Rieck 2010, Bimpikis

et al. 2014, Halac et al. 2015) studies disclosure policies in the context of patent races and

innovation contests, but it too is exclusively theoretical and has excluded the possibility of

feedback-driven improvement. I seek to augment the literature on both dimensions.

In this article, I use a sample of over four thousand winner-take-all logo design competitions

to study the dual effects of feedback on the quantity and quality of agents’ output. I first

show that feedback causes players to advantageously select into continued participation and

improves the quality of subsequent entries, but disclosure of intense competition discourages

effort from even the top performers. A principal seeking a high-quality product thus faces a

tradeoff between participation and improvement in deciding whether to provide its agents

with feedback. To better understand this tradeoff, I estimate a structural model of the

setting and use the results to simulate tournaments with alternative feedback mechanisms.

The results suggest that feedback provision on net significantly increases the number of

high-quality designs generated, implying that feedback can be a valuable tool for generating

innovation despite its potentially adverse effects on incentives.

The article begins by developing a simple, illustrative model of a winner-take-all innovation

contest to clarify the forces at play. In this model, a principal seeks a new product design

and solicits candidates through a tournament, awarding a prize to the best entry. Players

take turns submitting ideas, each of which receives immediate, public feedback revealing its

quality. Partial-equilibrium predictions echo previous theoretical findings for other settings,

particularly those of Ederer (2010): revelation of agents’ performance can be motivating

for high-performers, but in general it will tend to disincentivize effort by exposing leaders

and laggards. Yet feedback also helps agents improve at later submissions, increasing their

productivity at each draw and potentially offsetting the detriment to participation. Within

this framework, I characterize feedback as having two effects: a selection effect, which drives

players with poor reviews or facing fierce competition to quit, and a direction effect, which

guides continuing players towards increasingly better designs.

The article then transitions to an empirical study of 4,294 commercial logo design tourna-
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ments from a widely-used online platform. In these contests, a firm solicits custom designs

from freelance designers, who compete for a winner-take-all prize awarded to the preferred

entry. The contests in this sample typically offer prizes of a few hundred dollars and attract

around 35 players and 115 designs. An essential feature of the setting is that the sponsor

can provide real-time feedback on players’ submissions in the form of 1- to 5-star ratings,

which allow players to evaluate the quality of their own work and the competition they

face. The first hints of a tension between incentives and the quality of new submissions

are apparent from correlating feedback provision with contest outcomes: contests in which

a higher fraction of designs are rated attract fewer players and designs, but are also more

likely to see the sponsor award an otherwise retractable prize.

Using data at the contest-player and design level, I first provide evidence of the hypothesized

effects. To identify an effect on quality, I examine (i) ratings on players’ second designs, as a

function of whether their first design was rated in advance; and (ii) improvements between

consecutive submissions by a player when new feedback is provided but her latent perfor-

mance history is unchanged. I find that feedback improves subsequent entries, especially

when the previous design was poorly-rated: for a player whose first design is rated 1-star,

the probability that she improves with her second design goes from 26 percent to 51 percent

when that rating is observed in advance (for those whose first design is rated 2-stars: 27 to

41 percent; for 3-stars: 17 to 26 percent; for 4-stars: 6 to 11 percent).

For evidence of an effect on incentives, I estimate the probability that a player continues

participating (i) after her first rating, and (ii) at later points, as a function of ratings

observed at the time. The likelihood of continuation is increasing monotonically in own

ratings, with high performers continuing at a 50 percent higher rate than low performers

following the first rating. Yet even high performers can be driven away if their probability

of winning is exposed to be close to zero or one. Although these effects are clearly present,

the results do not resolve the extent of the tradeoff between incentives and improvement,

or which of the two dominates. Because this question cannot be directly answered with the

data in hand, I turn to structural estimation and simulation for insight.

I develop a theoretically-motivated procedure to estimate the success function and the key
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unobserved parameter of the model: the cost of effort. The estimated costs are relaxed to

vary by player and contest and are identified from players’ first-order conditions. In effect,

I calculate the expected payoff to each player’s final design in a contest and the expected

benefit of an additional, unentered design, and argue that the cost must be bounded by

these two quantities. Because the contests in the sample typically attract dozens of players

and hundreds of designs, the difference in the gains to a player’s nth design and (n+ 1)th

design will typically be small, and the estimated bounds tight.

After validating the estimated costs against other features of the data, I use the estimates

to simulate contests under policies that isolate the impacts of selection and direction. I also

simulate contests in which no designs are rated (no feedback), all designs are rated (full

feedback), and a random subset are rated (partial feedback, according to the frequencies

observed in the data), to see how the effects of feedback vary with its frequency. As a final

comparison, I simulate contests with private feedback, in which players can only see their

own ratings and must infer their competitors’ performance.

The simulations show that feedback reduces total participation but on net significantly

increases the number of high-quality submissions. This effect grows with the frequency

with which feedback is provided: partial feedback increases top-rated designs 4.5-fold, and

full feedback 5.5-fold. These results suggest that private feedback might achieve the best

of both worlds, allowing players to improve without exposing performance differences. The

simulation of private feedback shows that this is indeed the case: despite that players

expect intensifying competition, shrouding competitors’ precise performance increases the

total number and number of high-quality designs produced.

The simulations also reveal that direction has the dominant effect on the number of high-

quality designs generated. When feedback only influences incentives (without concurrently

making players more productive), the number of top-rated designs increases marginally, as

a result of advantageous selection. In contrast, when improvement is enabled and selection

suppressed, the number of top-rated designs explodes, increasing nearly 9-fold: in effect,

players learn to make increasingly better designs, and because they grow symmetric over

time and performance differences are shrouded, they continue participating longer than they
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otherwise would. With both channels activated, the net effect of feedback is an attenuated

but still large increase in the number of top-rated submissions.

Two implications follow. First, feedback can be quite valuable in competitive settings when

it improves the quality or productivity of agents’ effort. But feedback that merely selects

for high performers will have a limited effect on high-quality output if they cannot leverage

that feedback to improve their work. The key to getting the most out of a feedback policy

in this setting is thus to provide guidance while limiting attrition. The second implication

is that perseverence is substantially more important to successful innovation in this setting

than talent or luck: less talented players who respond to feedback will eventually outperform

more talented players who ignore this feedback or otherwise fail to improve.

The article is organized as follows. Section 1 discusses the literature in more depth and

presents the theory. Section 2 introduces the empirical setting. Section 3 provides reduced-

form evidence of the effects of feedback on participation and improvement. Sections 4 and

5 develop the structural model and characterize the cost estimates. Section 6 presents the

results of the simulations. Section 7 concludes.

1 Feedback in Innovation Contests

Existing Literature on Feedback in Tournaments

Rank-order tournaments have been the subject of a considerable amount of research since

the seminal contributions of Tullock (1980) and Lazear and Rosen (1981), and the framework

has been used to characterize competition in a wide variety of settings, most often workplace

promotion. Interim evaluation in dynamic tournaments is a recent addition to the literature,

motivated by the observation that “between 74 and 89 percent of organizations have a formal

appraisal and feedback system” (Ederer 2010, citing Murphy and Cleveland 1995) and a

battery of examples of performance evaluation in other settings.

This literature generally predicts that feedback will cause relative low-performers to reduce

their investment and can cause high-performers to exert more or less effort. Ederer (2010)

has developed a nuanced view of the problem, showing that feedback can be motivating
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for high-performers, who learn their high productivity, but disclosure of asymmetries will

discourage effort from both players, implying a tradeoff between what he terms “motiva-

tion” and “evaluation” effects. Such a result follows naturally from research on the effects

of asymmetries on effort in tournaments, which consistently finds that incentives of both

favorites and underdogs are reduced by unbalanced competition (e.g., Baik 1994, Brown

2011). Though a similar sorting effect arises in the present article, the existing literature

restricts attention to two-player competition. When there are many high-performing con-

testants, feedback may dampen incentives even if they are equally capable, as it reveals a

crowded competition where the returns to effort are near zero.

The empirical evidence is both scarcer and more varied. In one example, Ederer and Fehr

(2009) conduct an experiment in which agents select efforts over two periods and find that

second-period effort declines in the revealed difference in first-round output. In another,

Eriksson et al. (2009) conduct an experiment in which competitors earn points for solving

math problems and find that maintaining a leaderboard does not have significant effects

on total attempts but can drive poor performers to make more mistakes, possibly from

adopting risky strategies in trying to catch up. Azmat and Iriberri (2010) examine the

effects of including relative performance information in high schoolers’ report cards on

their subsequent academic performance, which has a tournament-like flavor. The evidence

suggests that this information has heterogeneous but on average large, positive effects on

treated students’ grades, which the authors attribute to increased effort.

The theoretical literature has also studied feedback or disclosure in patent races and inno-

vation contests. Choi (1991) models a patent race and shows that information on rivals’

interim progress has offsetting effects: it exposes a discouraging technological gap, but also

changes perceptions of the success rate of R&D, which can be encouraging for laggards.

Bimpikis et al. (2014) find similar results for R&D contests. Continuing the trend, Rieck

(2010) shows that enforced secrecy yields the highest expected innovation in R&D contests,

as disclosure only serves to introduce asymmetry.

However, in none of these examples is feedback used by agents to improve the quality of

innovation or success rates. In a setting where the goal is to realize high-quality innova-
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tion, feedback helps workers learn, re-optimize with new strategies, and ultimately improve

their product. The principal focus of this part of the article is thus to bring attention to

the value of feedback as guidance, as Wirtz (2014) does for organizational settings, while

acknowledging the potential adverse effects on incentives.3

Theoretical Underpinnings

Suppose a risk-neutral principal seeks a new product design.4 Because R&D is risky and

designs are difficult to objectively value, the principal cannot contract directly on perfor-

mance and instead sponsors a tournament to solicit prototypes from J risk-neutral agents,

who enter designs in turns. At a given turn, a player must choose whether to continue par-

ticipating and if so, what idea to develop next, with each submission receiving immediate,

public feedback. At the end of the tournament, the sponsor awards a winner-take-all prize

P to its preferred entry. The sponsor seeks to maximize the value of the winning design.

To hone intuition, suppose each player enters at most two designs. Let each design be

characterized by the following latent value νjt, which only the sponsor observes:

νjt = ln (βjt) + εjt, εjt ∼ i.i.d. Type-I E.V. (1)

where j indexes players and t indexes designs. In this model, βjt represents the design’s

quality, which may not be known ex-ante and is revealed by the sponsor’s feedback. The

design’s value to the sponsor, νjt, is increasing and concave in its quality, and the design

with the highest ν wins the contest. The εjt term is an i.i.d. random shock, which can be

interpreted as idiosyncracies in the sponsor’s tastes at the time a winner is chosen. Player

j’s probability of winning then takes the following form:

Pr (player j wins) =
βj1 + βj2

βj1 + βj2 + µj
(2)

3As Manso (2011) shows, this type of guidance is essential to motivating innovation in single-agent settings.
Wirtz (2014) offers a similar rationale for feedback in tournament settings. In both cases, the instructive
effect of feedback is to inform the agent whether to keep her current technology or explore another.

4Some primitives of the model, and portions of the associated text, are borrowed from Gross (2016).

7



where µj ≡
∑

k 6=j (βk1 + βk2) is player j’s cumulative competition. This success function is

effectively a discrete choice probability, obtaining directly from the primitives.

Further suppose designs are either high-quality (βH) or low-quality (βL). Each player enters

a first design, drawn i.i.d. from a distribution Fβ(·), yielding a high-quality design with

probability q or low-quality with probability 1− q. Players who enter a second design must

decide whether to tweak their first design with minor modifications, resulting in an entry

with the same β and a new draw of ε, or whether to draw an entirely new design from Fβ(·),

both at a common cost c. Players can abstain from a second design at no cost.5

Because βH>E [β]>βL, players who learn they have a high first draw (βH) will re-use that

design, whereas those with a low first draw (βL) will re-draw from Fβ(·). Absent feedback,

all players will re-draw, as the expected returns to a new draw exceed that of a tweak (see

Appendix A). With these behaviors in mind, the first proposition characterizes the effects of

feedback on the quality of a player’s second design, which I term a direction effect: feedback

guides players towards higher-quality subsequent draws.

Proposition 1. Feedback yields greater quality improvements over a player’s initial entry,

with low performers in expectation improving more than high performers. In notation:

(a) E [βj2 − βj1|Feedback] > E [βj2 − βj1|No feedback]

(b) Conditional on feedback, E
[
βj2 − βj1|βj1 = βL

]
> E

[
βj2 − βj1|βj1 = βH

]
The rest of this section provides two illustrative results in partial equilibrium which demon-

strate feedback’s selection effects. First, observe that in the absence of feedback, players

are strategically symmetric, with equal probabilities of having a high or low initial draw,

whereas feedback introduces the possibility of asymmetries. Proposition 2 shows that these

asymmetries reduce players’ incentives to enter a second design, resembling Ederer’s (2010)

evaluation effect. Proposition 3 then shows that provided competition is sufficiently high,

as it typically is in the data, players with better feedback have greater incentives to continue

participating than those with worse feedback, similar to Ederer’s (2010) motivation effect.

Proofs of all propositions are provided in Appendix A.

5To simplify the exposition, I assume a common q (probability of a high-quality draw) and c (cost), though
these parameters could be relaxed to vary across players to accommodate ex-ante differences in ability or
costs – the results of this section do not depend on their precise values.
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Proposition 2. The returns to a player’s second design decline to zero as the quality of

her first design βj1 and the cumulative competition µj grow distant.

Proposition 3. There exists a level of competition µ∗ such that for all µj > µ∗,(
2βH

2βH + µj

)
−
(

βH

βH + µj

)
︸ ︷︷ ︸

Benefit to effort|pos. feedback

> q

(
βL + βH

βL + βH + µj

)
+ (1− q)

(
2βL

2βL + µj

)
−
(

βL

βL + µj

)
︸ ︷︷ ︸

Benefit to effort|neg. feedback

Intuitively, we might expect that negative feedback will induce quitting: players with poor

feedback are not only fighting an uphill battle, but they are also more likely to produce

lower-quality ideas. Conversely, distant favorites can be equally unmotivated to exert effort,

as victory is nearly assured – though this scenario is less likely to occur in a large field of

competitors. In settings with many players, an additional result emerges: high-performers

who face heavy competition will also have low incentives for effort, because competition

flattens the payoffs to the point where marginal returns fall below cost.

Though these results abstract from the effects of strategic interactions, more explicit consid-

eration would only tend to reinforce them. Effort from leaders would then yield indirect ben-

efits by discouraging followers, similar to the Fudenberg et al. (1983) notion of ε-preemption

in the context of patent races, but this benefit would dissipate when competition is very

high and future efforts already deterred.

2 Graphic Design Contests

I use a sample of 4,294 commercial logo design contests from a popular online platform to

study the effects of feedback in a competitive product development setting. The platform

hosts hundreds of contests each week in several categories of design, with logos being the

modal category and thus a natural choice for analysis. Note that a firm’s choice of logo

is also nontrivial, as it is the defining feature of its brand, which can be one of its most

valuable assets and is how consumers will identify it for years to come.

In these contests, a firm (the sponsor, typically a small business) solicits custom designs

from freelance designers (players) in exchange for a fixed prize awarded to its favorite entry.
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The sponsor publishes a design brief describing its business, its customers, and what it

seeks to communicate with its logo; specifies the prize structure; sets a deadline for entries;

and opens the contest to competition. While the contest is open, players can enter as many

designs as they want, at any time they want, and sponsors can provide players with real-time

feedback on their submissions in the form of 1- to 5-star ratings and written commentary.

Players can see competing designs and the distribution of ratings on these designs, but not

the ratings on specific competing designs. Copyright is enforced. At the end of the contest,

the sponsor picks the winning design and receives the design files and full rights to their

use. The platform then transfers payment to the winner.

Appendix B describes the dataset in detail. For each contest in the sample, I observe the

design brief; the beginning and ending dates; the prize amount; and whether the prize is

committed. Though multiple prizes are possible, the sample is restricted to contests with a

single, winner-take-all prize. I further observe every submission, the identity of the designer,

his or her history on the platform, the time and order in which the design was entered, the

rating it received (if any), the time at which the rating was given, and whether it won the

contest. I also observe when players withdraw designs from the competition, but I assume

withdrawn entries remain in contention, as sponsors can request that any withdrawn design

be reinstated. Because I do not observe written feedback for all contests, I assume the

content of written commentary is fully summarized by the rating.6

The player identifiers allow me to track players’ activity over the course of each contest and

across contests in other design categories dating back to the platform’s creation. I use the

precise timing information to reconstruct the state of a contest at the time each design is

submitted. For every design, I calculate the number of preceding designs in the contest of

each rating. I do so both in terms of the prior feedback available (observed) at the time of

submission as well as the feedback eventually provided. To account for the lags required to

produce a design, I define preceding designs to be those entered at least one hour prior to a

given design and similarly require that feedback be provided at least one hour prior to the

given design’s submission to be considered observed when it was made.

6Written feedback is observed for a small subset of the sample. Where observed, comments are only given
to a small fraction of designs in a contest (on average, 12 percent), far less than are rated, and typically
echo the rating given, suggesting they do not play an important role in this setting.
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Characteristics of the Sample

The average contest in the sample lasts nine days, offers a $295 prize, and attracts 116

designs from 37 players; on average, 56 percent of these are rated (Table 1). A contest will

typically generate just over three 5-star designs. By default, the sponsor retains the option

of not awarding the prize to any design if none are to its liking, but the sponsor can forgo

this option and commit to awarding the prize when it creates the contest. Though only 23

percent of contests have a committed prize, 89 percent are awarded.

[Table 1 about here]

The median contest entrant submits two designs and receives one rating. The median player

entered 2 contests within this sample and produced 6 designs, though these distributions are

heavily skewed, with many players entering only one or two contests and a few participating

frequently over extended periods. Only 10 percent (1,488) of these players win a contest in

the sample, implying the presence of repeat winners.

Table 2 shows the distribution of ratings. Fifty-eight percent of the designs in the sample

(285,082 of 496,041) are rated, with a median and modal rating of three stars. Only five

percent of rated designs in the data receive the top, 5-star rating, suggesting that sponsors

reserve this category for their most preferred entries. Indeed, as Appendix Table D.2 shows,

a disproportionate number (almost 40 percent) of winning designs are rated five stars, and

nearly 75 percent are rated four or more stars. Although the ratings convey a substantial

amount of information about a design’s odds of success, they do not perfectly predict them:

1- and 2-star designs occasionally win contests – albeit with very low frequency (0.4 and

1.0 percent of awarded contests in the sample, respectively) – suggesting that an element

of luck remains until the end. Explanations for why low-rated designs sometimes win, or

more generally why 5-star designs do not always win, include last-minute changes of heart

or differences of opinion between the member of the sponsoring organization administering

the ratings and the person or committee selecting the winner.

[Table 2 about here]
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Correlations of Contest Characteristics with Outcomes

To shed light on how the sampled contests operate and how different levers affect outcomes,

Table 3 relates contest-level outcomes with contest characteristics. The specifications in

columns (1) to (3) regress the number of players, designs, and designs per player on the

prize value, contest duration, length of the design brief, number of materials provided to

be included in the design, and fraction of designs rated, as well as the average cost of

participating players (estimated in later sections). Most of these variables are fixed by the

sponsor before the contest begins, and although the fraction of entries rated and players’

costs are in part endogenously determined during the contest, in practice they largely reflect

the sponsor’s type (engaged or aloof) and the difficulty of the project.

[Table 3 about here]

An additional $100 in prize value on average attracts around 15 more players and 55 more

designs. The effects of feedback can be similarly powerful: relative to a sponsor who rates

no designs, one who rates every design will typically attract 14 fewer players and 20 fewer

designs. Other features have more modest effects.

Column (4) models the probability that a sponsor awards an uncommitted prize, implying

that the contest produced a design good enough to be awarded. Feedback dramatically

increases this probability, suggesting that feedback is critical to the development of high-

quality work. In light of the aforementioned evidence that feedback reduces participation,

this result provides the first indication of a tension between attracting more effort versus

higher-quality effort. Contests with larger prizes, shorter descriptions, and lower costs are

also more likely to be awarded, though the size of these effects is considerably smaller

than the effects of feedback: the impact of full feedback (relative to no feedback) on the

probability the prize is awarded is nearly equal to that of a $300 prize increase – a more

than doubling of the average and median prize in the sample.
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3 Reduced-form Evidence of Selection and Direction

Effects of Feedback on Quality

In evaluating the effects of feedback on the quality of new submissions, a natural starting

point is to examine the distribution of ratings on a player’s second design, conditional on

whether her first design was rated before the second was entered. As Figure 1 shows, the

overall mass of the ratings distribution shifts upwards when feedback is observed in advance

– although this pattern could potentially be confounded by selection if sponsors are more

likely to give timely feedback to the high-performing players.

[Figure 1 about here]

To eliminate this concern, I condition the comparison on the first design’s rating. Figure 2

shows the distribution of ratings on a player’s second design, conditional on the rating that

has or will be given on her first design and whether observed in advance.

[Figure 2 about here]

Table 4 provides the accompanying differences in means and shows that players improve

at significantly higher rates when they observe feedback in advance. Among players with

a 1-star design, 51 percent score a higher rating on their second entry when they observe

feedback in advance, versus 26 percent among those who do not (Panel A). For players with

a 2-star design, the percentages are 41 and 27 percent; for players with a 3-star design, 26

and 17 percent; and for players with a 4-star design, 11 and 6 percent, with all differences

precisely estimated and significant the one percent level. Panel B shows the estimated effect

on the second design’s rating in levels, conditional on weak improvement.

[Table 4 about here]

These comparisons could nevertheless still be confounded if the players who are most likely

to improve disproportionately wait for feedback before entering a second design. To ad-

dress this concern, Appendix C provides robustness checks examining pairs of consecutive

submissions by a given player, in a given contest, between which the player’s information

13



set may change due to feedback but her latent ratings history remains the same. As in the

results for initial ratings, I find that newly-arrived ratings equal to or higher than the rating

on the previous design results in a greater likelihood of improvement, whereas revelation

of lower ratings has a precisely-estimated zero effect. Absent new information, the next

submission tends to be of roughly the same quality as the prior submission, but feedback

has large effects: players who enter 1- or 2-star designs and then receive a 5-star rating

on an earlier submission tend to improve by over a full point more than they otherwise

would. The magnitude of these effects expectedly declines the better the prior submission,

reflecting the difficulty of improving from a high initial value.

Effects of Feedback on Participation

I again look to the first rating a player receives to identify the effects of feedback on effort

choices. I focus on a player’s first rating because it is typically the first indication of the

sponsor’s preferences and thus ex-ante unpredictable, and because the median player enters

only two designs and receives one rating. Appendix C nevertheless reports estimates from

an analogous examination of second ratings, with similar results.

Figure 3 provides descriptive evidence of these effects. The figure shows the distribution of

the number of designs a player enters after receiving her first rating, conditional on whether

that first rating is 1-star (left-most panel), or 4- or 5-stars (right-most panel). A majority

(69.5 percent) of players whose first rating is the lowest possible rating will subsequently

stop investing in that contest. In contrast, the majority (61.2 percent) of players who receive

a high rating will subsequently enter at least one more design.

[Figure 3 about here]

To formalize this evidence, I estimate the effect of each player’s first rating and the com-

petition observed at the time it is made on the probability that the player subsequently

abandons the contest, projecting an indicator for abandonment on indicators for each rating

she may have received as well as indicators for the highest rating on competing designs.
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Table 5 estimates variants of the following specification:

Abandonjk = β0 +
5∑
r=1

βr · 1(Rjk = r) +
5∑
r=1

γr · 1(R̄−jk = r)

+ δ · Timingjk +Xjkθ + ζk + ϕj + εjk

where Abandonjk indicates that player j entered no designs in contest k after her first

rating; Rjk is the player’s first rating; R̄ijk is the highest rating on any competing designs

at that time; Timingjk measures the fraction of the contest elapsed at the time of that

first rating; Xjk is a vector of controls; and ζk and ϕj are contest and player fixed effects,

respectively. Although it is likely the case that players with no observed activity after

their first rating made a deliberate choice to stop investing, this measure cannot distinguish

players who immediately abandon from those who “wait and see” and later abandon, though

the distinction is immaterial for the purposes of this exercise.

[Table 5 about here]

Columns (1) to (3) estimate linear probability models with contest, player, and contest and

player fixed effects, respectively. Linear models are used in order to control for these fixed

effects (especially player fixed effects), which may not be estimated consistently in practice

and could thus render the remaining estimates inconsistent in a binary outcome model.

Column (4) estimates a logit model with only contest fixed effects. The linear model with

two-way fixed effects (Column 3) is the preferred specification.

The probability that a player continues investing is monotonically increasing in her first

rating. The magnitudes are large: players with a 5-star first rating remain active at a

precisely-estimated 50 percentage point higher rate than those with a 1-star first rating.

High-rated competition also makes it more likely that a player abandons after her first

rating. Together, these results demonstrate that feedback generates advantageous selection,

with the high-rated players more likely to continue competing and low performers opting

out after receiving low marks, but by revealing high-rated competition, feedback can have

the perverse consequence of driving highly-rated players away.
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To bring the effects of asymmetry into focus, I estimate a similar model replacing the

indicators with a quadratic in a player’s probability of winning upon receiving her first

rating, which can be computed from the conditional logit model estimated later in the

article (Section 4). Table 6 shows results from a similar arrangement of specifications:

linear models with contest, player, and contest and player fixed effects in Columns (1) to

(3), and a logit model with contest fixed effects in Column (4).

[Table 6 about here]

The tendency to abandon is definitively convex in a player’s probability of winning, reaching

a minimum near a win probability of 0.5, and a maximum at the outer bounds of a win

probability of 0 and 1. The estimates are statistically similar across all specifications and

concord with theoretical predictions that incentives for effort are greatest when agents are

running even with their competition (e.g., Baik 1994).

Results in Context

The collective evidence shows that feedback has the desirable effect of improving the qual-

ity of future submissions and nudging poor performers out of contention, reducing wasteful

effort and concentrating incentives for the remaining participants. But feedback can simul-

taneously reduce incentives for high-performers to participate, relative to incentives in a

state of ignorance, by revealing or enabling high-quality competitors.

The principal thus faces a fundamental tradeoff between participation and improvement.

Given that sponsors who provide the most feedback are the most likely to award a retractable

prize (recall Table 3), it would seem that feedback has a large enough effect on quality to

be desirable. Yet the reduced form is ultimately inconclusive and cannot discern how much

of the increase in quality is due to better players or better designs. The distinction is not

only important for understanding how to deliver feedback, but also revealing of the relative

contributions of ability versus improvement to success in this setting.

If selection or direction were constrained, of if feedback were provided at varying frequency

or made private, what would be the effects on total and high-quality output? To answer
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these questions, I develop a procedure to estimate effort costs and use the estimates to

simulate and evaluate alternative feedback mechanisms.

4 Structural Model

The empirical model borrows ideas from the empirical auctions literature, which uses the-

oretical insights to estimate unobserved distributions of bidder values, and it is flexible in

that costs are allowed to vary by contest and player, reflecting the fact that some contests

are more demanding than others and that players have heterogeneous reservation wages.

The main assumptions are (i) that each player has a constant cost in a given contest and

(ii) that players compete until this cost exceeds the expected benefit. With a consistently

estimated success function, a given player’s cost in a given contest will be set-identified in

a sample with any number of contests or players. The bounds of the identified set converge

on a point as the number of players or designs in a contest grows large (as they do in this

article), irrespective of the number of contests in the sample.

The estimation proceeds in two steps. In the first step, I estimate a logistic success function

that translates players’ effort into their probability of winning. I then combine the success

function with non-parametric frequencies of ratings on a player’s next design, conditional

on her prior history in the contest, to calculate the expected payoff to each player’s last

design in a contest and the “extra” design that the player chose not to enter. Under the

assumption that the game ends in a complete information Nash equilibrium, these quantities

place bounds on cost: a player’s cost must be less than the expected benefit from her final

design but greater than the expected benefit of an additional, unentered design. The logic

behind this procedure is closely related to that of Haile and Tamer (2003), who use an

analogous approach with drop-out bid levels to put bounds on the distribution of latent

bidder values in symmetric English auctions.

Denote the rating of design i from player j in contest k as Rijk, and let Rijk = ∅ when the

sponsor declines to rate ijk. Ratings provide players with information on two unknowns:

(i) the likelihood of a given design winning the contest, conditional on the competition, and
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(ii) how well her next design is likely to be rated, should she decide to make one. To make

the intuition concrete, consider the following cases:

1. Rijk = 5. The design is outstanding and has a very high chance of winning the contest.

The player has caught onto a theme that the sponsor likes. The player’s subsequent

designs are likely to be highly rated as well. (Though note that the marginal increase

to the player’s odds of winning the contest from another submission fall dramatically,

because she already entered a design that is a strong contender. Any other five-star

designs she enters will substantially cannibalize ijk’s odds.)

2. Rijk = 1. The design is not good and is unlikely to win. The player hasn’t yet figured

out what the sponsor likes, and her next design will likely be poorly rated as well.

3. Rijk = ∅. The player receives no feedback on her design. She has no new information,

and the distribution of ratings on her next design is roughly unchanged.

In the model below, I formalize this intuition. The empirical model treats the design

process as a series of experiments that adapts to feedback from the sponsor, as in the

theoretical model of Section 1 and in Gross (2016). Players use feedback to determine

the probability that the rated design wins the contest, refine their experimentation, and

set expectations over the ratings on any subsequent designs. Using the non-parametric

distribution of ratings on a design in conjunction with a conditional logit model translating

those outcomes into contest success, players then (1) calculate the expected benefit of

another design, (2) compare it to their contest-, player-specific cost, and (3) participate

until the costs exceed the benefits. The cost of design is set-identified from this stopping

choice. I take the midpoint of the set as a point estimate.

The estimated cost will be the cost of making a single design and will be that which

rationalizes the stopping choices observed in the data. I assume that this cost is constant

for each player throughout a given contest. Design costs primarily reflect the opportunity

cost of the time and resources a player expends in the activity of designing a logo. They

thus reflect differences in reservations wages, which figure prominently when players can

enter from anywhere in the world. But the estimated costs may also reflect (and net out)
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any unobserved payoffs in the form of learning, practice, and portfolio-building, all of which

motivate players’ participation. There may also be an unobserved payoff that accrues to the

winner, such as a new client relationship; the expected value of this benefit will be captured

in the estimates as well. Finally, the estimates will also reflect any level bias that a player

has over the process determining her probability of winning. In effect, I will be measuring

the costs that players behave as if they face.

Details: Framework and Estimation

Estimating the success function

Let i index submissions, j index players, and k index contests. Suppose every contest k has

Jk > 0 risk-neutral players, each of whom makes Ijk > 0 submissions. Let Ik =
∑

j∈Jk Ijk

be the total number of designs in contest k. Players in contest k compete for a prize Pk.

As in the theoretical model, I assume the sponsor awards the prize to its preferred design.

Formally, let νijk be the latent value of design ijk to the sponsor of contest k, and suppose

that this value is a function of the design’s rating and an i.i.d. Type-I E.V. error. With six

possibilities for ratings, a design’s value can be written parsimoniously as the sum of fixed

effects for each rating and an error term:

νijk = γ∅1(Rijk = ∅) + γ11(Rijk = 1) + . . .+ γ51(Rijk = 5) + εijk ≡ ψijk + εijk (3)

This specification is closely related to the theoretical model in equation (1), with the main

difference being a restricted, discrete domain for quality. The error term represents un-

predictable variation in the sponsor’s preferences and explains why 5-star designs do not

always win. Although the number and content of designs in the sponsor’s choice set varies

between contests, designs always share a common attribute in their rating, which is assumed

to fully characterize the predictable component of a design’s quality, including any written

commentary provided to players but not observed in the dataset. The choice set is assumed

to satisfy I.I.A.; in principle, adding a design of any rating to a given contest would reduce
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competing designs’ chances of winning proportionally.7 For contests with an uncommitted

prize, the choice set includes an outside option of not awarding the prize, whose value is

normalized to zero. Under this model, player j’s probability of winning is:

Pr(j wins k) =

∑
i∈Ijk e

ψijk∑
i∈Ik e

ψik + 1(Uncommitted prize)

This success function can be estimated as a conditional logit model (McFadden 1974) using

the rating and win-lose outcome of every design in the sample. The estimates are provided

in Appendix Table D.1, from which several patterns emerge. First, the value of a design is

monotonically increasing in its rating, with only a 5-star rating on average preferred to the

outside option, and the fixed effects are precisely estimated. To produce the same change

in the success function generated by a 5-star design, a player would need 12 4-star designs,

137 3-star designs, or nearly 2,000 1-star designs. As a measure of fit, the predicted odds-on

favorite wins almost half of all contests in the sample. These results demonstrate that this

simple model fits the data quite well and in an intuitive way, suggesting that ratings provide

considerable information about a player’s probability of winning.

Calculating the expected benefit from a design

To compute the expected benefit to a given player of entering an additional design, I con-

sider all of the ratings it may receive (ratings of 1 to 5, or no rating), calculate the in-

cremental change in the success function under each possibility, and take the weighted

average, weighting by the non-parametric probability of obtaining each rating conditional

on a player’s history in the same contest, which flexibly incorporates learning.

Let sijk be a state variable characterizing the eventual ratings on all of player j’s designs

in contest k made prior to her ith design. In other words, it’s the true quality of all of j’s

submissions prior to her ith one, to the best anyone will ever know. sijk can be summarized

7I also test the I.I.A. assumption by removing subsets of designs from each contest and re-estimating the
model. The results are statistically and quantitatively similar when the choice set is deliberately varied.
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with the following six-dimensional vector:

sijk =

[∑
x<i

1(Rxjk = ∅),
∑
x<i

1(Rxjk = 1), . . . ,
∑
x<i

1(Rxjk = 5)

]

In practice, a player’s earlier designs aren’t always rated before she makes her next one.

Because sijk incorporates all information on j’s past designs that will ever be known, we

can think of it as the ratings history under omniscience. However, players’ experimentation

choices must be made on the basis of prior, observed ratings. Let s̃ijk be the ratings on

previous submissions that player j observes at the time of her ith submission in contest k.

Writing R̃xjk, x < i as the rating on submission x < i observed by a player at the time of

her ith submission, we can write the observable ratings history as:

s̃ijk =

[∑
x<i

1(R̃xjk = ∅),
∑
x<i

1(R̃xjk = 1), . . . ,
∑
x<i

1(R̃xjk = 5)

]

The sum of the entries in the vector s̃ijk will equal the sum of those in sijk, but in general

the null rating count will be higher for s̃ijk, as some submissions made prior to i that will

eventually be rated will not yet have been rated at the time of the ith submission.

With a sample of 496,041 submissions, the non-parametric distribution of the rating on j’s

ith submission, conditional on her observable ratings history, s̃ijk can be estimated as:

f̂(Rijk = r|s̃ijk) =

∑
`∈Ik,k∈K 1(R`k = r|s̃`k = s̃ijk)∑

`∈Ik,k∈K 1(s̃`k = s̃ijk)

d−→ f(r|s̃ijk)

In words, the probability that player j’s ith design in contest k is rated r, given an observable

ratings history of s̃ijk, can be estimated from the data as the fraction of all designs in the

data made in state s̃ijk that received the rating r. With a small, discrete sample space,

these probabilities can be easily estimated without the kernel methods required for non-

parametric estimation of continuous distributions.

The distribution f̂(·) nevertheless suffers a curse of dimensionality due to the large het-

erogeneity in ratings histories. To reduce the dimensionality, I re-define sijk and s̃ijk to

indicate whether a player has received each rating, as opposed to counts of each rating.

21



This adjustment is designed to make the non-parametric estimation tractable (with 26 = 64

cells) while retaining the most important information in the ratings history. Under this

construction, s̃ijk can be re-defined as follows:

s̃ijk =

[(∑
x<i

1(R̃xjk = ∅) > 0

)
,

(∑
x<i

1(R̃xjk = 1) > 0

)
, . . . ,

(∑
x<i

1(R̃xjk = 5) > 0

)]

Figure 4 illustrates some examples of f̂(·). The top panel shows the distribution on a player’s

first design in a contest, and the bottom panel shows the distribution on a player’s second

design conditional on the first design receiving (from left to right): 1 star, no rating, and

5 stars. The results are intuitive: Players with high ratings enter better designs, players

with low ratings enter worse designs, and players with no feedback draw from the same

distribution with their second design as with their first. I thus assume players know the

distributions f(·|s̃) (or can infer them from intuition, experience, and examination of past

contests) and plug in their observable ratings history, s̃ijk, when they do the cost-benefit

calculation to decide whether to continue participating.

[Figure 4 about here]

Heterogeneity in ability likely exists even prior to feedback. To account for this possibility,

I model players with no feedback as drawing from ability-specific distributions. For these

cases, I estimate these distributions conditional on players’ quartile for average ratings in

previous contests, adding an additional category for players who have no previous contests.

In effect, this allows players with a good track record to draw their first design from a

higher-quality bucket. However, once players have feedback on designs in a given contest,

the estimation only conditions on feedback received in that contest, and players’ track record

in prior contests is no longer relevant to the estimation.

The expected rating on an additional design Ijk + 1, at the time player j makes it, is:

E
[
RIjk+1,jk

]
=
∑
r

r · f(r|s̃Ijk+1,jk) ,

the weighted average of all possible ratings, weighted by the probability of each. The
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expected increase in the player’s odds of winning from the additional design, in a committed-

prize contest and holding the competition constant, can similarly be written as follows:

E [∆Pr (j wins k)] =
∑
r

(
∆Pr(j wins k)|RIjk+1,jk = r

)
· f(r|s̃Ijk+1,jk)

=
∑
r

(
eβr +

∑
i∈Ijk e

ψijk

eβr +
∑

i∈Ik e
ψik
−
∑

i∈Ijk e
ψijk∑

i∈Ik e
ψik

)
· f(r|s̃Ijk+1,jk)

The first term in the parentheses is the probability of winning with an additional design

rated r, whereas the second term is the probability of winning without it. Their difference

is the increase in player j’s odds from that design, which is weighted by the probability of

an r-star rating and summed to get its expected value. The expected benefit of the design

is this incremental probability multiplied by the prize:

E
[
MBIjk+1,jk

]
= E [∆Pr(j wins k)] · Pk

Estimating costs from stopping choices

Having obtained a success function from the sponsor’s choice problem, and derived a non-

parametric procedure for predicting quality, estimation requires two final assumptions:

• Players exert effort if the expected benefit exceeds the cost

• Players do not exert effort if the cost exceeds the benefit

The appeal of these assumptions is self-evident: they impose minimal requirements on the

agents and are nearly axiomatic in economic modeling. To make the logic concrete, con-

sider the final moments of a contest. If designs can be made and entered in an infinitesimal

amount of time (an assumption which, although hyperbolic, is perhaps not a bad approx-

imation), then a contest should end in Nash equilibrium: given her ratings history and

the ratings on competing designs, no player wants to enter any further designs. I similarly

assume that a player’s final design is a best response to competitors’ play.

The implication is that the expected benefit of each player’s final design exceeds her cost,

whereas the expected benefit of an additional design does not. These conditions allow me
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to place bounds on costs. Given the level of participation in these contests, the incremental

benefit of an additional entry is usually small, and the estimated bounds therefore tight. I

thus assume each player’s contest-specific effort cost to be bounded below by the expected

benefit of the “extra” design that she does not to make (Ijk + 1) and bounded above by the

ex-ante expected benefit of her final design (Ijk), as follows:

Cjk ∈
[
E[MBIjk+1,jk] , E[MBIjk,jk]

]

Bootstrapped standard errors

As functions of the MLE parameters and non-parametric frequencies, the estimated bounds

are themselves random, taking the distribution of the convolution of their components. The

maximum likelihood estimates are known to be normally distributed. A player’s predicted

success function at a given vector of ratings is thus the ratio of a sum of log-normals over

a sum of log-normals. This ratio is calculated for the “final” design, subtracted from a

similar quantity at the “extra” design, multiplied by the non-parametric probability of a

given rating, and summed over all possible ratings to obtain the bounds. Randomness will

therefore enter from two sources: the MLE parameters and the non-parametric frequencies.

I use a block-bootstrap to obtain standard errors. To do so, I subsample entire contests

from the dataset with replacement, re-estimate the logit parameters and non-parametric

frequencies within the subsample, and use these estimates to re-calculate bounds on cost

for every contest-player in the original dataset. My baseline bootstrap consists of 200

replications. As Section 5 shows, the bounds are estimated precisely, and the identified set

for each contest-player’s cost is narrow relative to the midpoint.

Assumptions and Identification

Identification of players’ design costs hinges on four assumptions:

1. The cost of effort is constant for a given player in a given contest.

2. The latent quality of each design is linear in its rating and an i.i.d. logit error.
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3. The players know the distribution of ratings on their next design conditional on
past ratings, as well as the process generating the odds of each design winning.

4. Players exert effort up to the point where E[MB] ≤ MC.

The first assumption is more an approximation than an assumption per se. The second

assumption implies that all available information about quality is captured by a design’s

rating, and the reason the top-rated design does not win every contest boils down to luck:

in practice, the sponsor may change its mind, or different people might administer ratings

versus award winners. Although the third assumption can be debated, these distributions

are both intuitive and available to any player that has competed in or browsed past contests.

The fourth assumption derives from economic theory.

For the purposes of estimation, I further assume that:

5. At the time of their final submission, players have foresight over the
state of the competition they will face at the end of the contest.

This final assumption is necessary for the agents to be able to compute the success function

and evaluate the returns to effort. On average, the majority of players in a contest exit in

the last quarter. Because the distribution of ratings in the contest is publicly available, I

assume that players know or can forecast the competition they will face at its conclusion.

Appendix D offers descriptive evidence that the information available midway through a

contest is sufficient to project the state of competition at the end of the contest reasonably

well, supporting an assumption of foresight.

5 Cost Estimates

Table 7 provides summary statistics on the estimated costs of all 160,059 contest-players

in the sample, which I calculate as the midpoint of the bounds estimated by the procedure

described above. The cost estimates range from near zero to as high as $78.09, with a mean

of $3.86 and median of $3.06. To put these numbers in context, the average prize value per

design in the sampled contests is $3.34 (median $2.86, max $58.13).
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[Table 7 about here]

Figure 5 shows the estimated bounds on cost for every contest-player in the sample. The

upper bound is shown in blue, and the lower bound in green. The red line traces the

midpoint of these bounds for each player, which is my preferred point estimate for cost.

Though confidence bands are not shown, these bounds are precisely estimated: the standard

errors on the bounds are on average around 4.1 percent of the value (median 3.7 percent,

90th percentile 5.4 percent). They are also tight, with the width of the identified set on

average being 2.3 percent of the midpoint (median 1.7 percent, 90th percentile 4.6 percent),

further motivating the midpoint as a preferred point estimate.

[Figure 5 about here]

Upon seeing these results, a natural question is whether the estimated costs are plausible.

The mean cost is around the mean per-design winnings, suggesting that the estimates are

sensible in magnitude. What of their variation? Closer inspection of contests where players

are estimated to have very high costs typically reveals why. For example, in one such contest,

players were asked to pay close attention to an unusually long list of requirements and

provide a detailed, written explanation or story accompanying each design; as a result, only

23 designs were entered, in spite of a prize in the 99th percentile of all contests. This result

is a direct consequence of the model: because the expected benefits to an additional design

will be high when participation is low, ceteris paribus, costs must be high to rationalize the

observed exit patterns. Examination of other contests yields similar intuition.

Although these estimates are inevitably approximations, their quality is evidenced by the

fact that contest and player fixed effects explain nearly all (over 77 percent) of the variation

in log costs, which should be the case if costs are primarily determined by the requirements

of the contest and the characteristics of the player, and less so by the match between contests

and players. Most of this variation (69 percent) is explained by contest fixed effects alone;

in other words, costs vary considerably more between contests than within them. A smaller

fraction (17 percent) is explained by player fixed effects alone.

To provide more systematic evidence, Table 8 correlates the mean, median, and standard

deviation of the estimated costs in each contest with contest attributes described in previous
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sections. Costs tend to be higher with larger prizes, but lower when feedback is frequently

provided. Intuitively, the results also suggest that sponsors will more readily commit to

awarding the prize in lower-cost (i.e., easier) projects.

[Table 8 about here]

Table 9 performs a similar exercise for contest-players, relating the estimated costs to past

experience (prior contests entered) and performance (historical win percentage, average rat-

ings). Each column moving left to right restricts to contest-players with successively greater

experience, and all columns include contest and player fixed effects. The table shows that

as players grow better (relative to other players and to their own past performance), they

are estimated to have higher costs, consistent with higher reservation wages and superior

outside options. The table also shows a positive correlation between experience and costs,

suggesting positive selection into extended participation on the platform – a pattern sub-

stantiated in nearly all longitudinal cuts of the data.

[Table 9 about here]

The foremost shortcoming of the cost estimates is the imprecision that results from the

dimensionality reduction in the model. Recall that the empirical model has players draw-

ing new designs and projecting outcomes on the basis of coarse ratings histories, with 64

variants. The low dimensionality is needed to make the estimation tractable, but it also

sometimes results in multiple players having the same histories at the time of their stop-

ping decisions and thus being estimated to have the same cost. This result is a reminder

that the estimates are approximations, but it is not necessarily a reason to view them with

skepticism: approximations will generally be sufficient to account for costs in regressions

(Section 2) or to simulate counterfactuals (Section 6).

Estimated costs are not strictly mechanical

The nature of this procedure raises the question of whether the estimated costs are mechani-

cal or substantive economic quantities. Recall that costs are estimated at the midpoint of the

payoffs to a player’s final design and an extra, unentered design (Pk ·∆Pr(Win|final design)
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and Pk · ∆Pr(Win|extra design)). Holding fixed the ∆Pr(Win), a one percent increase in

prize would mechanically generate a one percent increase in the costs that I estimate. How-

ever in practice, the increase in a player’s probability of winning from entering an additional

design will not be fixed: theory predicts that players will compete away the value of larger

prizes. The probability gains available at the player’s final or extra design will then be

reduced, offsetting the mechanical effect of prize increases in the cost estimation.

To test for the presence of such an offset, Appendix Table E.1 regresses the log probability

gains achieved by a player’s final design on the log prize. I find that larger prizes indeed tend

to be heavily competed away: when the prize increases by one percent, the probability gains

of players’ final submissions decline by 0.75 percent – such that the residual cost estimate

increases by only 0.25 percent. Though a perfect offset would manifest as an elasticity of

-1, it should not be expected if projects with larger prizes are also more difficult. The

previous results additionally show that costs relate to contest and player characteristics in

expected ways, with sensible magnitude, reinforcing the evidence that the estimated costs

are substantive economic quantities versus an artifact of the model.

Total expenditure and overbidding

The estimates also imply overbidding: total expenditures in a contest are often greater than

the prize, consistent with an extensive body of experimental evidence from the tournament

literature (Dechenaux et al. 2015). This overexpenditure may reflect any non-pecuniary

value to participating (e.g., experience, portfolio-building, reputation) not fully captured

in the cost estimates, and possibly errors in judgment. The dynamic setting might also

provoke overinvestment via a sequence of marginal choices.

Appendix E examines implied total expenditures in detail. Figure E.1 shows the distribution

of the ratio of total expenditures to prize value across contests, with a mean of roughly 140

percent. Table E.2 correlates this ratio with contest attributes and shows that overspending

is especially common in contests with large and committed prizes, but declines sharply when

players have more feedback (i.e., better information). Indeed, one doesn’t need a structural

model to see evidence of overbidding in high-value contests: as Figure E.2 shows, the number
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of contest submissions is strongly convex in the prize.

6 Counterfactual Feedback Mechanisms

I use these cost estimates to simulate alternative feedback policies. I first compare contest

outcomes when (i) a random subset of submissions are rated, (ii) all submissions are rated,

and (iii) ratings are private, relative to a baseline without feedback. I then activate selection

and direction independently to compare their effects.

There are thus six simulated conditions: no feedback, partial feedback, universal feedback,

private feedback, and selection enabled/improvement suppressed and vice versa.8 Within

each of these simulations, I sample 200 contests from the data and simulate (x50) three-

player, sequential-play tournaments with an indefinite horizon. Limiting the field to only

a few players reduces the dimensionality of the game sufficiently to be able to backwards-

induct the best responses of each player’s competitors and allow players to internalize these

best responses, imposing discipline on their choices. The disadvantage to this approach is

that the simulated contests have substantially fewer players than those in the sample, limit-

ing the role that selection can play on the extensive margin (number of players). However,

because the intensive margin (number of designs) features prominently, selection will still

be detectable, as the results will demonstrate.9

The formal procedure is as follows. For each simulation of a given contest, I first (randomly)

select three players in the contest and fix the order of their moves.10 The first player always

enters. Beginning with player two, I project the distribution of ratings on her next design

conditional on her prior ratings, as well as the distribution of ratings that player three and

then player one might subsequently receive, should they choose to engage. I then (i) evaluate

player one’s decision to participate or abandon conditional on the preceding outcomes for

players two and three, under a presumption of no further moves; (ii) backwards-induct

player three’s decision to participate or abandon conditional on the preceding outcome for

8Appendix F describes the implementation of each feedback condition in greater detail.
9The results are quantitatively similar when the simulations are expanded to four players (Appendix F).
Note that all simulations sample the same contests to ensure comparability.

10To further ensure comparability, the same players are selected in each iteration of each contest across
mechanisms (i.e., every simulation of contest k always models the same players).
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player two and the anticipated response of player one; and finally (iii) backwards-induct

player two’s decision to participate or abandon given the distribution of responses from her

competitors, choosing the action with the higher expected payoff.11 If applicable, I then

draw a design (in the form of a rating) for the given player, proceed to the next player, and

repeat, iterating on this procedure until every player has exited.

When no feedback is provided, it is necessary to model players’ beliefs over their relative

performance. To do so, I insert an extra layer of simulation inside the continuation decision.

I first seed potential performance histories after the same number of designs as observed at

that point in the simulation. I then randomly draw histories for all three players, calculate

the expected returns to continuation for the focal player, iterate 100 times, and take the

average – thereby circumventing the absence of closed-form beliefs with computation. When

feedback is private, I similarly insert an inner simulation of beliefs over competitors who

(in this case) are expected to be improving over time.

As in the empirical model, feedback enters players’ decision-making in two places: it deter-

mines the distribution of the rating on a player’s next design, and the value and shape of

her success function. The direction effect surfaces in the former, whereas the selection effect

is a convolution of the two: players remain active or abandon on the basis of the projected

benefit to continuation, which is a function of both the rating on the next design and the

incremental increase in the win probability that it generates. The net effects of feedback

will reflect selection, direction, and their interaction, but simulation makes it possible to

compare these effects by allowing one to vary while holding the other fixed, which is a

possibility not otherwise supported by the data.

Partial, Full, and Private Feedback

The first set of simulations compares outcomes when (i) a subset of designs are publicly

rated, (ii) all are publicly rated, and (iii) all are privately rated, against the baseline of

no feedback. In these simulations, each design will have a latent rating, and the variation

11This approach is taken due to the lack of a closed-form solution amenable to plug-in simulation. Foresight
remains partially limited in this procedure, as the player two moves ahead is forecast to behave as if she
is marginal, which is necessary to make the simulation dimensionality tractable.
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between feedback policies is in the disclosure of this rating, which is implemented as follows.

In the baseline, all ratings are concealed. With partial feedback, a random subset of designs

have their ratings concealed, according to the empirical frequency of unrated designs in the

sample, and these designs carry the same value of unrated designs as estimated in the data.

With full feedback, all ratings are immediately revealed. With private feedback, ratings are

revealed to the rated player but permanently concealed from competitors.

Table 10 shows the distribution (across contests) of total submissions under each policy,

after taking the median across iterations of each contest as a representative value.12 Total

participation in these simulations is similar to the levels observed in the data – on average

around 115 designs per contest – providing reassurance that the simulations are comparable,

despite the reduction to three players. Design counts decline as the frequency of feedback

increases, but tick upwards when ratings are private.

[Table 10 about here]

In Table 11 we see the effects of each policy on the number of players, designs, and designs

of each rating. The table shows the average percent change in median outcomes versus the

no-feedback baseline, with standard errors below. Given a pool of only three players, the

number entering is unaffected, as they generally all participate. On the intensive margin,

feedback reduces the number of submissions by 3 percent (partial) to 10 percent (full) –

effects which are similar in magnitude to those in Table 3.

[Table 11 about here]

Drilling down, we see that feedback increases the number of top-rated designs and dra-

matically reduces the number of designs of every other rating: partial feedback on average

increases the number of 5-star designs by a factor of 4.5, and full feedback by a factor of

5.5 (typically from a low base). Given these patterns, one might conjecture that private

feedback may achieve all of the benefits while limiting the drawbacks. The third column

suggests this is indeed the case: despite that players expect their competitors to be improv-

ing, shrouding their precise performance generates a modest increase in 5-star submissions,

12Throughout this section, I compare median (versus mean) outcomes for each contest to limit the influence
of occasional outliers with extreme levels of participation on the results.
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with this growth fully attributable to an across-the-board increase in participation, as the

relative frequency of each rating is unchanged.

Decomposing Selection and Direction

The second set of simulations toggles selection and direction to study their individual versus

combined effects. The selection-only variant allows players to observe ratings on all designs

at the continuation decision but does not allow them to improve. The direction-only variant

does the reverse: players can leverage their own ratings to improve but only know the total

number of designs in the contest, and not their ratings, when choosing whether to continue

exerting effort. As in the other information-less conditions, players must then form beliefs

over their own and their competitors’ performance.

Table 12 provides the results. The first two columns show the selection and direction effects

individually, and the third column shows their combined effect for comparison. When only

selection is activated, the total number of designs is essentially unchanged, but the relative

frequency of high-quality designs increases slightly (15 percent) by virtue of advantageous

selection on modest ex-ante differences in ability. When only direction is activated, the

number of high-quality designs increases nine-fold relative to no feedback. When both

channels are activated, asymmetries drive down participation, producing a tempered – but

still large – positive effect on the number of high-quality submissions and a sharp reduction

in low-quality submissions. Together, the results imply that the effect of feedback on high-

quality output is primarily attributable to improvement.

[Table 12 about here]

Understanding the Results

The driving force behind differences in participation across feedback conditions is the devel-

opment of asymmetry. In the simulations, as in the model, asymmetries reduce incentives

for effort – either when a player is so strong that success is assured, or when competition is

so severe that the player’s returns to effort have been driven to zero. Feedback introduces
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asymmetries by making agents differentially productive, and by clarifying the extent to

which agents are ahead or behind and how productive each has become. Both pieces are

necessary for asymmetry to have an effect, as players not only must develop heterogeneous

performance and productivity, but these differences must be disclosed.

Asymmetries are why full feedback tends to yield fewer submissions than partial feedback,

which in turn yields fewer submissions than no feedback: players diverge more rapidly,

and this divergence is public knowledge. It also explains why the selection-only variant

has essentially no effect on total submissions relative to no feedback: without improvement,

players will remain about as symmetric or asymmetric as when the game began. Conversely

it can also explain the growth in submissions in the direction-only variant: agents do not

know their precise performance when they must evaluate continuation at each round, and

perceive themselves to grow similar over time, with any ex-ante differences washed out by

improvement. The intuition for why private feedback increases submissions relative to the

no feedback condition is similar: players are improving and know that their competitors are

as well, but precise performance differences are shrouded.

Incentives can be especially impacted by high ratings. When competitors’ performance is

public, these shocks create asymmetries that can bring the game to a swift conclusion – and

the greater the asymmetry, the larger the impact. To demonstrate this, I examine changes

in the returns to effort around the time that each player exits. I calculate the reduction

in the returns to effort between a player’s final submission and their next turn (at which

they chose to abandon), normalize its value by the analogous change between their second-

to-last and final submission, and take the median for each player across simulations. This

quantity is a measure of the “shock”: how much did the returns to effort typically decline

immediately prior to abandonment, relative to the pace at which they had previously been

declining? Values below one will indicate that returns declined gradually towards costs until

the player dropped out, whereas values much greater than one indicate that abandonment

was precipitated by a shock. Appendix Figure F.1 provides the distribution of these ratios

across all 600 (= 200 · 3) simulated contests and players by feedback policy, confirming that

when competition is shrouded, the ratio is around or below one, whereas when competitors’

ratings are revealed, the values are greater and more dispersed.
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7 Conclusion

This article studies the effects of performance feedback in competitive environments. Al-

though feedback is widely thought to be an essential feature of product development, and

is also widely used in organizational settings, its dual effects on productivity and incentives

presents an intricate problem for the mechanism designer: feedback provides meaningful

information that both generates quality or productivity gains and creates asymmetries be-

tween competitors that dampen incentives for effort. To my knowledge, this tradeoff has

not previously been identified or studied in the economics literature.

Using large-sample field data from commercial logo design competitions, I provide reduced-

form evidence of this tradeoff, develop a procedure to estimate structural parameters, and

simulate counterfactual feedback mechanisms. The simulations suggest that feedback sig-

nificantly increases high-quality output, with gains in quality far outweighing the costs to

participation. Making feedback private yields modest incremental benefits by shrouding

information on competitors’ performance, which in turn reduces attrition. I then show

that the positive effects of feedback on the quality of innovation in this setting are entirely

the consequence of improvement, rather than selection on talent or luck. It is also likely

that this latter finding is externally valid: in many creative activities, including research,

learning-by-doing and perseverance are crucial to achieving success.

In light of the evidence in this article, a natural opportunity for future research is to further

explore the optimal frequency of feedback and differences between private and public feed-

back mechanisms. An additional opportunity might be to compare a feedback mechanism

to elimination, which is widely used in practice to pare down the competition and sharpen

incentives for remaining finalists. Finally, this article introduces a generalizable, structural

approach to empirical research on tournaments, which has historically been constrained by

a scarcity of large-sample data, and the methods developed in this article can be used or

adapted to study tournaments in smaller samples.
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Figure 1: Distribution of ratings on 2nd design, by whether 1st design’s rating observed in advance
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Notes: Figure reports the distribution of ratings on a player’s second design in a
contest conditional on whether that player’s first design was rated prior to making
the second one. The fraction rated 5 in the left panel is 0.03. The fraction rated
5 in the right panel is 0.06. The difference is significant with p=0.00.

Figure 2: Dist. of ratings on 2nd design, by rating on 1st design and whether observed in advance
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Notes: Figure shows the distribution of ratings on a player’s second design in a contest, conditioning
on (i) the rating they receive on their first design, and (ii) whether that rating was observed prior to
entering their second design. In all subfigures, the fraction of players who score a better rating on
their second design than on their first is higher when they observe feedback in advance (for players
with a 1-star: 51 percent versus 26 percent; for those with a 2-star: 41 percent versus 27 percent;
for those with a 3-star: 26 percent versus 17 percent; for those with a 4-star: 11 percent versus 6
percent). All differences are significant at the one percent level.
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Figure 3: Designs entered after a player’s first rating
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Notes: Figure shows the distribution number of designs entered by players after
receiving their first rating in a contest, by the value of that first rating. A total
of 86,987 contest-players received first ratings. Of these: 16,374 were rated 1 star
(18.8 percent); 22,596 were rated 2 stars (26.0 percent); 28,945 were rated 3 stars
(33.3 percent); 16,233 were rated 4-star (18.7 percent); and 2,839 were rated 5-star
(3.3 percent). The figure illustrates that players are much more likely to continue
participating in a contest after positive feedback.

Figure 4: Examples of non-parametric distributions f̂(·)
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Notes: Figure shows distribution of ratings for: players’ first design in a contest (top)
and players’ second design after receiving a 1-star rating on their first design (bottom
left), after no rating (bottom center), and after a 5-star rating (bottom right).
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Figure 5: Estimated design costs, with bounds, in ascending order
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Notes: Figure shows estimated costs for each contest-player in the sample. The
upper bound is plotted in blue, and the lower bound in green. The red line traces
the midpoint, which is the preferred point estimate. The figure arranges contest-
players in increasing order of this midpoint.
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Table 1: Descriptive Statistics

Panel A. Characteristics of contests in the sample
Variable N Mean SD P25 P50 P75

Contest length (days) 4,294 9.15 3.72 7 7 13
Prize value (US$) 4,294 295.22 128.12 200 250 350
No. of players 4,294 37.28 25.35 23 31 43
No. of designs 4,294 115.52 94.82 65 92 134

5-star designs 4,294 3.41 6.97 0 1 4
4-star designs 4,294 13.84 17.89 3 9 19
3-star designs 4,294 22.16 26.99 5 15 30
2-star designs 4,294 16.04 23.36 2 8 21
1-star designs 4,294 10.94 28.78 0 3 12
Unrated designs 4,294 49.14 63.36 10 34 65

Number rated 4,294 66.38 73.34 21 50 88
Fraction rated 4,294 0.56 0.33 0.3 0.6 0.9
Prize committed 4,294 0.23 0.42 0.0 0.0 0.0
Prize awarded 4,294 0.89 0.31 1.0 1.0 1.0

Panel B. Characteristics of contest-players in the sample
Variable N Mean SD P25 P50 P75

No. of designs 160,059 3.10 3.53 1 2 4
Number rated 160,059 1.78 2.95 0 1 2

Panel C. Characteristics of players in the sample
Variable N Mean SD P25 P50 P75

Total contests 14,843 10.78 32.75 1 2 7
Total submissions 14,843 33.42 107.58 1 6 21
Ever a winner? 14,843 0.10 0.30 0 0 0

Notes: Panel A reports descriptive statistics for the sampled contests. “Fraction rated” refers to
the fraction of designs in each contest that get rated. “Prize committed” indicates whether the
contest prize is committed to be paid (vs. retractable). “Prize awarded” indicates whether the prize
was awarded. The fraction of contests awarded awarded subsumes the fraction committed, since
committed prizes are always awarded. Panel B reports descriptives at the level of contest-players
(one observation per player per contest), and Panel C at the level of unique players.

Table 2: Distribution of ratings (rated designs only)

1-star 2-star 3-star 4-star 5-star Total

Count 46,983 68,875 95,159 59,412 14,623 285,052
Percent 16.48 24.16 33.38 20.84 5.13 100

Notes: Table tabulates rated designs by rating. 57.5 percent of designs
in the sample are rated by sponsors on a 1-5 scale. The site provides
guidance on the meaning of each rating, which introduces consistency in
the interpretation of ratings across contests.
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Table 3: Correlations of contest outcomes with their characteristics

(1) (2) (3) (4)
Players Designs Designs/Player Awarded

Total Prize Value ($100s) 14.741*** 54.723*** 0.116*** 0.234***
(0.659) (2.524) (0.015) (0.041)

Committed Value ($100s) 1.856* 5.652 0.010
(1.115) (4.399) (0.025)

Average Cost ($) -2.637*** -12.989*** -0.122*** -0.192***
(0.129) (0.497) (0.006) (0.014)

Fraction Rated -13.618*** -15.819*** 0.733*** 0.753***
(0.783) (2.791) (0.040) (0.105)

Contest Length 0.340*** 1.137*** 0.004 0.008
(0.068) (0.251) (0.004) (0.010)

Words in Desc. (100s) 0.076 2.962*** 0.060*** -0.157***
(0.080) (0.389) (0.005) (0.014)

Attached Materials -0.867*** -1.510** 0.051*** -0.010
(0.160) (0.604) (0.012) (0.016)

Prize Committed 1.104 3.091 -0.021
(3.282) (12.907) (0.085)

Constant 8.942*** -7.648 2.445*** 1.947***
(1.746) (6.266) (0.074) (0.178)

N 4294 4294 4294 3298
R2 0.63 0.65 0.30

Notes: Table shows the estimated effect of contest attributes on overall participation and
the probability that the prize is awarded. The final specification is estimated as a probit
on contests without a committed prize. *, **, *** represent significance at the 0.1, 0.05,
and 0.01 levels, respectively. Monthly fixed effects included but not shown. Robust SEs
in parentheses.
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Table 4: Effects of feedback: Improvement between first and second submissions

Panel A. Probability of improvement
When first design rated:

1-star 2-star 3-star 4-star
1(First rating observed) 0.251*** 0.140*** 0.087*** 0.045***

(0.015) (0.010) (0.007) (0.006)
Constant 0.258*** 0.267*** 0.171*** 0.060***

(0.006) (0.005) (0.004) (0.003)
N 8466 12653 16739 9192
R2 0.04 0.02 0.01 0.01

Panel B. Rating of second design
When first design rated:

1-star 2-star 3-star 4-star
1(First rating observed) 0.403*** 0.260*** 0.150*** 0.079***

(0.026) (0.016) (0.010) (0.010)
Constant 1.373*** 2.362*** 3.226*** 4.095***

(0.011) (0.007) (0.005) (0.005)
N 8466 11017 13072 5701
R2 0.04 0.03 0.02 0.01

Notes: Table shows the effects of observing feedback in advance of a player’s
second design in a contest on the probability that it is higher-rated than her first
entry (Panel A) and on its rating, conditional on weakly improving (Panel B).
*, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Standard errors clustered by player in parentheses.
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Table 5: Tendency to abandon after first rating, as function of rating

Dependent variable: Abandon after first rating
(1) (2) (3) (4)

Linear Linear Linear Logit
Player’s first rating==5 -0.444*** -0.394*** -0.485*** -2.311***

(0.017) (0.017) (0.020) (0.086)
Player’s first rating==4 -0.437*** -0.385*** -0.454*** -2.269***

(0.010) (0.010) (0.012) (0.055)
Player’s first rating==3 -0.280*** -0.242*** -0.290*** -1.468***

(0.008) (0.008) (0.009) (0.044)
Player’s first rating==2 -0.114*** -0.097*** -0.120*** -0.620***

(0.007) (0.007) (0.008) (0.038)
Competitors’ prior best==5 0.037*** 0.064*** 0.058*** 0.203***

(0.013) (0.011) (0.014) (0.065)
Constant 0.483*** 0.465*** 0.174 -0.898

(0.026) (0.020) (0.106) (1.130)
N 48125 48125 48125 46935
R2 0.24 0.36 0.46
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effect of a player’s first rating in a contest and the competition
at that time on the probability that the player subsequently enters no more designs.
Observations are contest-players. The dependent variable in all columns is an indicator
for whether the player abandons after her first rating. Columns (1) to (3) estimate
linear models with fixed effects; Column (4) estimates a logit model without player fixed
effects, which may render the estimates inconsistent. *, **, *** represent significance at
the 0.1, 0.05, and 0.01 levels, respectively. All specifications control for time remaining,
both in levels and as a percent of the contest duration. Standard errors clustered by
player in parentheses.
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Table 6: Tendency to abandon after first rating, as function of Pr(Win)

Dependent variable: Abandon after first rating
(1) (2) (3) (4)

Linear Linear Linear Logit
Pr(Win) -1.643*** -1.565*** -1.644*** -8.756***

(0.049) (0.053) (0.055) (0.280)
Pr(Win)2 1.565*** 1.478*** 1.537*** 8.284***

(0.055) (0.061) (0.061) (0.306)
Constant 0.398*** 0.379*** -0.052 -1.622

(0.025) (0.019) (0.085) (1.389)
N 48125 48125 48125 46935
R2 0.20 0.34 0.43
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No
Minimizer 0.52 0.53 0.53 0.53

Notes: Table shows the effect of a player’s win probability after
receiving her first rating on the probability that she subsequently
enters no more designs. Observations are contest-players. The de-
pendent variable in all columns is an indicator for whether the player
abandons after her first rating. Columns (1) to (3) estimate linear
models with fixed effects; Column (4) estimates a logit model with-
out player fixed effects, which may render the estimates inconsistent.
*, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, re-
spectively. All specifications control for time remaining, both in
levels and as a percent of the contest duration. Standard errors
clustered by player in parentheses.

Table 7: Summary statistics for estimated costs

N Mean SD Min P25 P50 P75 Max
Est. Cost 160,059 3.86 3.28 0.04 1.44 3.06 5.34 78.09

Notes: Table provides summary statistics on the distribution of effort costs estimated
by the model developed in Section 4. See text for further discussion.
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Table 8: Correlation of estimated costs with contest attributes

(1) (2) (3)
Average Cost Median Cost s.d. of Cost

Total Prize Value ($100s) 0.541*** 0.476*** 0.271***
(0.085) (0.079) (0.029)

Committed Value ($100s) -0.233** -0.203** -0.076**
(0.105) (0.101) (0.039)

Fraction Rated -2.388*** -2.581*** -0.006
(0.121) (0.124) (0.041)

Contest Length -0.075*** -0.080*** -0.013***
(0.010) (0.010) (0.003)

Words in Desc. (100s) -0.020 -0.017 -0.014***
(0.015) (0.014) (0.005)

Attached Materials 0.029 0.021 0.018**
(0.022) (0.023) (0.008)

Prize Committed -0.111 -0.180 0.051
(0.332) (0.320) (0.120)

Constant 4.318*** 4.057*** 1.364***
(0.337) (0.319) (0.113)

N 4294 4294 4294
R2 0.18 0.18 0.13

Notes: Table shows the correlation of the features of the distribution of esti-
mated costs with contest attributes. Observations are at the contest level. The
dependent variable in Column (1) is the mean cost; Column (2), median cost;
and Column (3), the standard deviation of costs is log average cost. *, **, ***
represent significance at the 0.1, 0.05, and 0.01 levels, respectively. Monthly
fixed effects included but not shown. Robust SEs in parentheses.

Table 9: Correlation of estimated costs with player attributes

(1) (2) (3) (4)
Ln(Cost) Ln(Cost) Ln(Cost) Ln(Cost)

Log(Prior contests) 0.026*** 0.021*** 0.021*** 0.030***
(0.008) (0.007) (0.008) (0.010)

Log(Historical win pct.) -0.002 -0.009 -0.012 -0.009
(0.010) (0.010) (0.011) (0.013)

Average rating 0.289*** 0.366*** 0.386*** 0.423***
(0.023) (0.026) (0.031) (0.044)

Constant -0.253 -0.505** -0.674*** -0.823***
(0.244) (0.247) (0.248) (0.264)

N 84132 81820 78406 67143
R2 0.75 0.75 0.75 0.76
Contest FEs Yes Yes Yes Yes
Player FEs Yes Yes Yes Yes
Experience 1 10 20 50

Notes: Table shows the correlation of the features of the estimated costs with
player attributes. Observations are at the contest-player level. The dependent
variable in all columns is log estimated cost. Each column restricts to contest-
players with a minimum number of contest of prior experience, given in the
final row of the table. *, **, *** represent significance at the 0.1, 0.05, and
0.01 levels, respectively. Standard errors clustered by player in parentheses.
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Table 10: Distribution of simulated contests’ submission counts under each feedback policy

Simulated Policy N Mean SD P10 P25 P50 P75 P90
No Feedback 200 113.58 115.34 24.3 36.3 64.8 157.5 252.3
Partial Feedback 200 112.50 120.50 21.8 33.0 63.8 147.5 259.3
Full Feedback 200 107.25 116.86 20.5 30.8 60.3 134.0 249.5
Private Feedback 200 120.58 123.28 23.8 37.0 69.0 165.3 281.5

Notes: Table shows the distribution of the median design count in each of 200 simulated
contests, under each feedback policy: (i) no feedback; (ii) public feedback randomly
provided to a subset of designs, according to the frequencies in the data; (iii) public
feedback provided to all designs; and (iv) private feedback provided on all designs.

Table 11: Effects of Feedback on Outcomes of Simulated Contests

Percent change in outcome, when:
Some rated All rated Private ratings

Outcome (rel. to none rated) (rel. to none rated) (rel. to none rated)

Players 0.0% n.a. 0.0% n.a. 0.0% n.a.
(0.0%) (0.0%) (0.0%)

Designs -3.1% *** -9.8% *** 4.9% ***
(0.8%) (0.7%) (0.5%)

Num. 5-star 448.6% *** 551.0% *** 689.1% ***
(22.4%) (24.0%) (22.8%)

Num. 4-star 66.3% *** 70.4% *** 98.5% ***
(1.8%) (1.9%) (1.8%)

Num. 3-star -11.3% *** -23.6% *** -8.0% ***
(1.1%) (0.8%) (1.0%)

Num. 2-star -43.7% *** -59.7% *** -47.3% ***
(0.9%) (0.6%) (0.8%)

Num. 1-star -64.0% *** -75.7% *** -67.3% ***
(0.6%) (0.4%) (0.6%)

Notes: This table illustrates the effect of feedback on principal outcomes in simulated contests.
Two hundred contests were randomly selected from the sample, three players randomly chosen,
and 50 three-player simulations performed for each contest. Simulations were performed under
four scenarios: (i) no feedback; (ii) public feedback randomly provided to a subset of designs,
according to the frequencies in the data; (iii) public feedback provided to all designs; and (iv)
private feedback provided on all designs. In all cases, feedback is made available immediately
after the player submits the design. In the private feedback scenario, players know the number of
submissions from each competitor but not their ratings; when ratings are not known, the model
simulates beliefs over relative performance. In order to reduce the effects of outlier simulations,
I trim to median (rather than mean) simulated outcomes for each contest under each feedback
policy. Columns show the average percent change in the given outcome relative to a baseline
with no feedback. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Standard errors of these averages in parentheses.
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Table 12: Effects of Feedback on Outcomes of Simulated Contests

Percent change in outcome, when:
Selection only Direction only Combined effects

Outcome (rel. to no feedback) (rel. to no feedback) (rel. to no feedback)

Players 0.0% n.a. 0.0% n.a. 0.0% n.a.
(0.0%) (0.0%) (0.0%)

Designs 1.3% * 35.0% *** -9.8% ***
(0.7%) (0.7%) (0.7%)

Num. 5-star 14.9% *** 892.7% *** 551.0% ***
(2.2%) (29.3%) (24.0%)

Num. 4-star 4.8% *** 137.8% *** 70.4% ***
(1.4%) (2.8%) (1.9%)

Num. 3-star 0.1% 14.8% *** -23.6% ***
(0.8%) (1.2%) (0.8%)

Num. 2-star -0.5% -27.5% *** -59.7% ***
(0.8%) (1.3%) (0.6%)

Num. 1-star -1.5% * -46.7% *** -75.7% ***
(0.9%) (1.3%) (0.4%)

Notes: This table separates feedback’s effects on quality and participation in the simulated contests.
Effects are isolated by running simulations in which feedback is allowed to enter players’ decisions
to continue or drop out but not influence experiment outcomes (Column 1) and vice versa (Column
2). Two hundred contests were randomly selected from the sample, three players randomly chosen,
and 50 three-player simulations performed for each contest. In order to reduce the effects of outlier
simulations, I trim to median (rather than mean) simulated outcomes for each contest under each
feedback policy. Columns show the average percent change in the given outcome relative to a baseline
with no feedback. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively.
Standard errors of these averages in parentheses.
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A Proofs of Propositions

Proposition 1: Feedback yields greater quality improvements over a player’s initial entry, with low per-

formers in expectation improving more than high performers. In notation:

(a) E [βj2 − βj1|Feedback] > E [βj2 − βj1|No feedback]

(b) Conditional on feedback, E
[
βj2 − βj1|βj1 = βL

]
> E

[
βj2 − βj1|βj1 = βH

]
Proof:

The proof of this proposition follows directly from the model’s assumptions. Note that the j subscript is

unnecessary and omitted throughout the proof.

As the text notes, when the value of β1 is revealed, if β1 =βH , the player will reuse this design, such that
E[β2] = βH , and if β1 = βL, the player will re-draw, such that E [β2] = qβH+(1− q)βL. Absent feedback,
players will always re-draw. To see this, observe that:

q2
(

2βH

2βH+µ

)
+ 2q (1−q)

(
βH+βL

βH+βL+µ

)
+ (1−q)2

(
2βL

2βL+µ

)
︸ ︷︷ ︸

E[Pr(Win)|No feedback,re-draw]

> q

(
2βH

2βH+µ

)
+ (1−q)

(
2βL

2βL+µ

)
︸ ︷︷ ︸

E[Pr(Win)|No feedback,tweak]

for all q ∈ (0, 1). As a result, we have that:

• With feedback:

1. E
[
β2 − β1|Feedback, β1 = βH

]
= 0

2. E
[
β2 − β1|Feedback, β1 = βL

]
=
(
qβH + (1− q)βL

)
− βL = q

(
βH − βL

)
Thus, by the law of total expectation,

E [β2 − β1|Feedback] = q (1− q)
(
βH − βL

)
• Without feedback:

1. E
[
β2 − β1|No feedback, β1 = βH

]
=
(
qβH + (1− q)βL

)
− βH = (1− q)

(
βL − βH

)
2. E

[
β2 − β1|Feedback, β1 = βL

]
=
(
qβH + (1− q)βL

)
− βL = q

(
βH − βL

)
Thus, by the law of total expectation,

E [β2 − β1|No feedback] = q (1− q)
(
βL − βH

)
+ q (1− q)

(
βH − βL

)
= 0

Because q ∈ (0, 1), we can conclude that:

1. E [β2 − β1|Feedback] > E [β2 − β1|No feedback]

2. E
[
β2 − β1|β1 = βL

]
> E

[
β2 − β1|β1 = βH

]
together proving both parts of the proposition.
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Proposition 2: The returns to a player’s second design decline to zero as the quality of her first design βj1

and the cumulative competition µj grow distant.

Proof:

In notation, and dropping the j subscript, the proposition asserts that E[ β1+β2

β1+β2+µ ]− β1

β1+µ→0 as β1→∞ or

µ→∞, holding the other fixed – a standard result in the tournament literature. Formally:

Case 1: Player with a low first draw (βL)

The expected increase in the player’s probability of winning from a second draw is:

q

(
βL + βH

βL + βH + µ

)
+ (1− q)

(
2βL

2βL + µ

)
−
(

βL

βL + µ

)

As βL −→∞, this quantity approaches q
(
βL+βH

βL+βH

)
+ (1− q)

(
2βL

2βL

)
−
(
βL

βL

)
= 0

As µ −→∞, this quantity approaches 1
µ

(
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− βL

)
−→ 0

Case 2: Player with a high first draw (βH)

The expected increase in the player’s probability of winning from a second draw is:(
2βH

2βH + µ

)
−
(

βH

βH + µ

)

As βH −→∞, this quantity approaches
(

2βH

2βH

)
−
(
βH

βH

)
= 1− 1 = 0

As µ −→∞, this quantity approaches 1
µ

(
2βH − βH

)
= βH

/µ −→ 0

Proposition 3: There exists a level of competition µ∗ such that for all µj > µ∗,(
2βH

2βH + µj

)
−
(

βH

βH + µj

)
︸ ︷︷ ︸

Benefit to effort|pos. feedback

> q

(
βL + βH

βL + βH + µj

)
+ (1− q)

(
2βL

2βL + µj

)
−
(

βL

βL + µj

)
︸ ︷︷ ︸

Benefit to effort|neg. feedback

Proof:

The statement can be rewritten as follows: ∃ µ∗ such that ∀ µ > µ∗,[(
2βH

2βH + µ

)
− q

(
βL + βH

βL + βH + µ

)
− (1− q)

(
2βL

2βL + µ

)]
−
[(

βH

βH + µ

)
−
(

βL

βL + µ

)]
> 0

To support this claim, I derive the shape of the expression above and show that it is always positive beyond

some fixed, implicitly-defined level of competition. First, note that as µ −→ 0 or µ −→ ∞, the expression

goes to 0, by the same arguments as in the proof to Proposition 2.
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The derivative of the expression is

∂

∂µ

[(
2βH

2βH + µ

)
− q

(
βL + βH

βL + βH + µ

)
− (1− q)

(
2βL

2βL + µ

)]
−
[(

βH

βH + µ

)
−
(

βL

βL + µ

)]
=

[(
−2βH

(2βH + µ)2

)
− q

(
−βL − βH

(βL + βH + µ)2

)
− (1− q)

(
−2βL

(2βL + µ)2

)]
−
[(

−βH

(βH + µ)2

)
−
(
−βL

(βL + µ)2

)]

As µ −→ 0, the derivative goes to[
q

(
1

βL + βH

)
+ (1− q)

(
1

2βL

)
−
(

1

2βH

)]
−
[(

1

βL

)
−
(

1

βH

)]
=

[
q

(
1

βL + βH

)
+ (1− q)

(
1

2βL

)
− 1

2βH

]
−
[

1

βL
− 1

βH

]
<

[
q

(
1

βL + βL

)
+ (1− q)

(
1

2βL

)
− 1

2βH

]
−
[

1

βL
− 1

βH

]
=

1

2

[
1

βL
− 1

βH

]
−
[

1

βL
− 1

βH

]
= −1

2

[
1

βL
− 1

βH

]
< 0 , since βH > βL

As µ −→∞, the derivative goes to

1

µ2

[
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− 2βH + βH − βL

]
=

1

µ2

[
q
(
βL + βH

)
+ (1− q)

(
2βL

)
− βH − βL

]
=

1

µ2

[
qβH − qβL −

(
βH − βL

)]
=

1

µ2

[
(q − 1)

(
βH − βL

)]
−→ 0−

Additionally, the expression can be shown to have at most three roots, and only one positive, real root. To

demonstrate this, set the expression equal to zero:[(
2βH

2βH + µ

)
− q

(
βL + βH

βL + βH + µ

)
− (1− q)

(
2βL

2βL + µ

)]
−
[(

βH

βH + µ

)
−
(

βL

βL + µ

)]
= 0

To simplify the notation, redefine H = βH and L = βL. Additionally, let

A = 2H + µ

B = H + L+ µ

C = 2L+ µ

D = H + µ

E = L+ µ

We can then rewrite the equation as the following:

[2H ·BCDE]− [q(H + L) ·ACDE]− [(1− q)(2L) ·ABDE]− [H ·ABCE] + [L ·ABCD] = 0
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Rearranging more terms, we get:

[H ·BCE (2D −A)]− [L ·ABD (2E − C)] + [q ·ADE ((2B − C)L− (C)H)] = 0

Observe that 2D −A = 2E − C = µ, and that 2B − C = A. Then simplifying further:

µ [H ·BCE]− µ [L ·ABD] + qADE (AL− CH) = 0

Now observe that AL− CH = µ(L−H). We continue simplifying:

µ [H ·BCE]− µ [L ·ABD] + µ [qADE (L−H)] = 0

[H ·BCE]− [L ·ABD] + [qADE (L−H)] = 0

[H ·BCE]− [L ·ABD]− [qADE (H − L)] = 0

which is now cubic in µ (reduced by algebra from what was ostensibly quartic).

Additionally, it can be shown that

BCE = µ3 + (H + 4L)µ2 +
(
3HL+ 5L2

)
+
(
2HL2 + 2L3

)
and by symmetry,

ABD = µ3 + (4H + L)µ2 +
(
3HL+ 5H2

)
+
(
2H2L+ 2H3

)
such that

H ·BCE = Hµ3 +
(
H2 + 4HL

)
µ2 +

(
3H2L+ 5HL2

)
+
(
2H2L2 + 2HL3

)
L ·ABD = Lµ3 +

(
4HL+ L2

)
µ2 +

(
3HL2 + 5H2L

)
+
(
2H2L2 + 2H3L

)
and the difference between them being

H ·BCE − L ·ABD = (H − L)µ3 +
(
H2 − L2

)
µ2 +HL (3(H − L) + 5(L−H))µ+ 2HL

(
L2 −H2

)
= (H − L)µ3 +

(
H2 − L2

)
µ2 +HL (3(H − L)− 5(H − L))µ+ 2HL

(
L2 −H2

)
= (H − L)

[
µ3 + (H + L)µ2 − 2HLµ− 2HL (H + L)

]
Now note that

ADE = µ3 + (3H + L)µ2 +
(
3HL+ 2H2

)
µ+ 2H2L

Returning to above, we can then write

[H ·BCE]− [L ·ABD]− [qADE (H − L)] =
[
µ3 + (H + L)µ2 − 2HLµ− 2HL (H + L)

]
− q

[
µ3 + (3H + L)µ2 +

(
3HL+ 2H2

)
µ+ 2H2L

]
= 0
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and in the final simplification,

(1− q)µ3

+ ((1− 3q)H + (1− q)L)µ2

−H (2qH + 3qL+ 2L)µ

−2HL ((1 + q)H + L) = 0

By the rule of signs, the polynomial has exactly one positive, real root.

The difference between the benefits to a second design after positive feedback relative to the benefits after

negative feedback is thus (i) zero with no competition, (ii) decreasing and negative as competition initially

grows, (iii) later increasing and turning positive, and (iv) eventually decreasing and asymptoting towards

zero as competition grows infinitely large, as in the figure below. Beyond a fixed, intermediate (and typically

relatively low) µ, this difference will therefore always be positive.

µ

Difference

5



B Dataset Construction

The sample for this paper consists of all publicly viewable logo design contests on the platform from July

2010 through June 2012 with a single, winner-take-all prize and no mid-contest rule changes. Although the

complete dataset includes contests in other design categories dating back to the platform’s inception, logo

design is the modal contest category and is thus a natural choice for analysis. The focal sample begins

over two years after the platform was created, by which point it was a well-known, established player in the

graphic design industry, most of its features were set, and its growth had begun to stabilize.

Variables

The dataset includes information on the characteristics of contests, contest-players, and designs:

• Contest-level variables include: the contest sponsor, features of the project brief (title, description,

sponsor industry, materials to be included in logo), start and end dates, the prize amount (and whether

committed), and the number of players and designs of each rating.

• Contest-player-level variables include: his/her experience in previous contests on the platform (number

of contests and designs entered, contests won, prize winnings, recent activity), average ratings from

previous contests, and that player’s participation and performance in the given contest.

• Design-level variables include: the design’s owner, its submission time and order of entry, the feedback

it received, the time at which this feedback was given, and whether it was eventually withdrawn.1 In

contrast to Gross (2016), I do not have the designs themselves for this sample.

The full dataset – most of which is not used in this paper – consists of nearly all contests with public bidding

completed since the birth of the platform in 2008, or about 80 percent of all contests on the platform through

August 1, 2012. I use these contests to re-construct players’ history on the platform up to each contest that

they enter in my primary sample and over the entire four-year period.

Note that designs are occasionally re-rated: five percent of all rated designs are re-rated an average of 1.2

times each. Of these, 14 percent are given their original rating, and 83 percent are re-rated within 1 star of

the original rating. I treat the first rating on each design to be the most informative, objective measure of

quality, since research suggests first instincts tend to be most reliable and ratings revisions are likely made

relative to other designs in the contest rather than an objective benchmark.

1However, the “withdrawn” indicator is unreliable, as all of a user’s designs are flagged as withdrawn whenever the
user deletes her account from the website – including designs in completed contests. In the analysis, I assume
withdrawn entries remain in contention, as sponsors can ask for any withdrawn design to be reinstated.
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C Improvement and Abandonment after Later Ratings

C.1 Improvement after Later Ratings

Though the paper leverages the arrival of a player’s first rating in a contest for identification, similar effects

can be discerned at later points in a contest. Table C.1 examines the effects of later feedback on improvement,

comparing pairs of consecutive submissions by a given player, in a given contest, between which the player’s

information changes but her latent ratings history remains the same.

Table C.1: Effects of feedback: Improvement between any consecutive submissions

Panel A. Probability of improvement
When previous design rated:

1-star 2-star 3-star 4-star
∆1(Obs. 5-star rating) 0.184 0.389*** 0.426*** 0.274***

(0.155) (0.114) (0.047) (0.030)
∆1(Obs. 4-star rating) 0.290*** 0.358*** 0.222*** 0.001

(0.055) (0.030) (0.016) (0.007)
∆1(Obs. 3-star rating) 0.258*** 0.137*** 0.030*** -0.007

(0.036) (0.020) (0.008) (0.012)
∆1(Obs. 2-star rating) 0.147*** 0.119*** -0.050*** -0.013

(0.030) (0.012) (0.014) (0.018)
∆1(Obs. 1-star rating) 0.195*** -0.028 -0.026 -0.017

(0.015) (0.026) (0.024) (0.029)
Constant 0.253*** 0.290*** 0.215*** 0.105***

(0.006) (0.005) (0.003) (0.003)
N 13012 19955 32637 21785
R2 0.04 0.02 0.01 0.01

Panel B. Rating of subsequent design
When previous design rated:

1-star 2-star 3-star 4-star
∆1(Obs. 5-star rating) 1.336** 1.396*** 0.695*** 0.324***

(0.553) (0.307) (0.073) (0.033)
∆1(Obs. 4-star rating) 0.999*** 0.708*** 0.260*** 0.012

(0.155) (0.065) (0.020) (0.010)
∆1(Obs. 3-star rating) 0.576*** 0.194*** 0.057*** 0.010

(0.083) (0.032) (0.011) (0.018)
∆1(Obs. 2-star rating) 0.212*** 0.194*** -0.020 0.009

(0.056) (0.018) (0.022) (0.032)
∆1(Obs. 1-star rating) 0.303*** 0.041 -0.004 -0.019

(0.027) (0.044) (0.037) (0.049)
Constant 1.373*** 2.396*** 3.282*** 4.147***

(0.012) (0.007) (0.005) (0.004)
N 13012 17796 27025 15360
R2 0.05 0.04 0.02 0.01
Notes: Table shows the effects of newly-arrived feedback on the probability that
a given design is higher-rated than that player’s previous submission (Panel A)
and on its rating, conditional on weakly improving (Panel B). These effects are
identified by comparing the ratings on successive entries by a given player, in
a given contest, where the player has the same latent ratings at the time of
both entries but experiences change in her information set between the two as
a result of newly-arrived feedback. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels. Standard errors clustered by player in parentheses.
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The table shows that newly-arrived feedback equal to or greater than the previous design’s rating increases

the likelihood of improvement (Panel A), while lower ratings have a precisely-estimated zero effect. Absent

new information, the next submission tends to be of roughly the same quality as the prior submission (Panel

B, constant), but feedback has large effects, the magnitude of which decreases the better the player’s prior

submission, reflecting the difficulty of improving from a high initial value.

C.2 Abandonment after Later Ratings

We can also explore whether the incentive effects of feedback are present at later points in a contest. Figure

C.1 shows the distribution of the number of designs a player enters after her second rating, conditional on

that rating being one star or four to five stars, as a counterpart to Figure 3 from the paper. While the

majority (63.6 percent) of players receiving a 1-star rating will drop out, the majority (60.0 percent) of those

receiving a 4- or 5-star rating will enter more designs. For comparison, recall that the analogous frequencies

for first ratings were 69.5 percent and 61.2 percent, respectively.

Figure C.1: Designs entered after a player’s second rating

Notes: Figure shows the distribution number of designs entered by players after
receiving their second rating in a contest, by the value of that second rating. A
total of 50,229 contest-players received second ratings. Of these: 7,690 were rated
1 star (15.3 percent); 12,182 were rated 2 stars (24.3 percent); 17,032 were rated 3
stars (33.9 percent); 11,043 were rated 4-star (22.0 percent); and 2,282 were rated
5-star (4.5 percent). The figure illustrates that players are much more likely to
continue participating in a contest after positive feedback, similar to the results
for first ratings.
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Table C.2 formalizes these results, as in Table 5 for the first rating. Recall the specification:

Abandonjk = β0 +

5∑
r=1

βr · 1(Rjk = r) +

5∑
r=1

γr · 1(R̄−jk = r)

+ δ · Timingjk +Xjkθ + ζk + ϕj + εjk

where Abandonjk now indicates that player j entered no designs in contest k after her second rating; Rjk

is the player’s second rating; R̄ijk is the highest rating on any competing designs at that time; Timingjk

is the fraction of the contest elapsed at the time of that rating; Xjk is a vector of controls; and ζk and

ϕj are contest and player fixed effects, respectively. The table provides the same sequence of specifications

presented the body of the paper: linear models with contest, player, and contest and player fixed effects in

Columns (1) to (3), and a logit model with contest fixed effects in Column (4).

Table C.2: Tendency to abandon after second rating, as function of rating

Dependent variable: Abandon after second rating
(1) (2) (3) (4)

Linear Linear Linear Logit
Player’s second rating==5 -0.266*** -0.265*** -0.316*** -1.408***

(0.024) (0.029) (0.031) (0.119)
Player’s second rating==4 -0.266*** -0.255*** -0.309*** -1.410***

(0.016) (0.018) (0.020) (0.078)
Player’s second rating==3 -0.191*** -0.173*** -0.211*** -1.019***

(0.014) (0.016) (0.017) (0.069)
Player’s second rating==2 -0.096*** -0.083*** -0.112*** -0.516***

(0.013) (0.015) (0.016) (0.064)
Competitors’ prior best==5 0.039 0.069*** 0.054* 0.323**

(0.024) (0.021) (0.029) (0.127)
Constant 0.420*** 0.365*** -0.383* -1.053

(0.039) (0.034) (0.203) (0.735)
N 25996 25996 25996 24139
R2 0.27 0.38 0.51
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No

Notes: Table shows the effect of a player’s second rating in a contest and the competition
at that time on the probability that the player subsequently enters no more designs. Ob-
servations are contest-players. The dependent variable in all columns is an indicator for
whether the player abandons after her second rating. Columns (1) to (3) estimate linear
models with fixed effects; Column (4) estimates a logit model without player fixed effects,
which may render the estimates inconsistent. *, **, *** represent significance at the 0.1,
0.05, and 0.01 levels, respectively. All specifications control for the player’s first rating and
the time remaining, both in levels and as a percent of the contest duration. Standard errors
clustered by player in parentheses.

The effect of second ratings on the probability that a player enters more designs is similar to those of

first ratings, albeit a bit attenuated at the top. However, players with more positive feedback are again

significantly more likely to remain active than those with poor initial feedback, and high-rated competition

continues to make it more likely that a player abandons.
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Table C.3 reestimates the model above as a quadratic in the probability of winning after the second rating,

as in Table 6 for first ratings. The tendency to abandon remains significantly convex in a player’s probability

of winning, and is still minimized near a win probability of 50 percent.

Table C.3: Tendency to abandon after second rating, as function of Pr(Win)

Dependent variable: Abandon after second rating
(1) (2) (3) (4)

Linear Linear Linear Logit
Pr(Win) -1.208*** -1.195*** -1.311*** -6.698***

(0.058) (0.065) (0.074) (0.332)
Pr(Win)2 1.109*** 1.068*** 1.199*** 5.955***

(0.069) (0.076) (0.086) (0.396)
Constant 0.345*** 0.298*** -0.554*** -1.118

(0.036) (0.028) (0.207) (0.763)
N 25996 25996 25996 24139
R2 0.26 0.37 0.50
Contest FEs Yes No Yes Yes
Player FEs No Yes Yes No
Minimizer 0.54 0.56 0.55 0.56

Notes: Table shows the effect of a player’s win probability after receiv-
ing her second rating on the probability that she subsequently enters
no more designs. Observations are contest-players. The dependent
variable in all columns is an indicator for whether the player abandons
after her second rating. Columns (1) to (3) estimate linear models
with fixed effects; Column (4) estimates a logit model without player
fixed effects, which may render the estimates inconsistent. *, **, ***
represent significance at the 0.1, 0.05, and 0.01 levels, respectively. All
specifications control for the time remaining, both in levels and as a
percent of the contest duration. Standard errors clustered by player
in parentheses.
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D Inputs and Assumptions of Cost Estimation

D.1 Estimating the Success Function

Recall that the latent value of a design is modeled in Section 4 as a function of its rating, specified by fixed

effects, and an i.i.d. Type-I extreme value error term:

νijk = γ∅1(Rijk = ∅) + γ11(Rijk = 1) + . . .+ γ51(Rijk = 5) + εijk ≡ ψijk + εijk

and that the sponsor is assumed to select the design with the highest latent value. As the text describes, I

estimate this model using the win-lose outcome of every design in the sample. Table D.1 provides the results

and translates them to the implied β (= exp(γ)) from the closely-related theoretical model in Section 1: these

are the values entering the numerator and denominator of the success function. Rather than paraphrasing

the discussion of this table in the text, I copy it below, for reference:

Several patterns emerge [from Table D.1]. First, the value of a design is monotonically increasing

in its rating, with only a 5-star rating being on average preferred to the outside option, and

the fixed effects are precisely estimated. To produce the same change in the success function

generated by a 5-star design, a player would need 12 4-star designs, 137 3-star designs, or

nearly 2,000 1-star designs – so competition effectively comes from the top. As a measure of

fit, the predicted odds-on favorite wins almost half of all contests in the sample. These results

demonstrate that this simple model fits the data quite well and in an intuitive way, suggesting

that ratings provide considerable information about a player’s probability of winning.

Table D.1: Conditional logit of win-lose outcomes on ratings

Model: Latent design value νijk = γ5 + γ4 + γ3 + γ2 + γ1 + γ∅ + εijk

Fixed effect Est. S.E. t-stat Implied β (eqs. 1-2)
Rating==5 1.53 0.07 22.17 4.618
Rating==4 -0.96 0.06 -15.35 0.383
Rating==3 -3.39 0.08 -40.01 0.034
Rating==2 -5.20 0.17 -30.16 0.006
Rating==1 -6.02 0.28 -21.82 0.002
No rating -3.43 0.06 -55.35 0.032

Notes: Table provides estimates from conditional logit estimation of the win-
lose outcome of each design as a function of its rating. Outside option is not
awarding the prize, with utility normalized to zero. The design predicted by
the model as the odds-on favorite wins roughly 50 percent of contests.

The results of this exercise make it possible to compute predicted probabilities of winning for any player at

any ratings history, and are they used towards this end in several parts of the paper, including regressions

(Section 3), cost estimation (Section 5), and simulations (Section 6).
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Table D.2 below sheds more light on the source of the conditional logit estimates. The table shows a cross-

tabulation of contests, by the highest rating granted (columns) and the rating of the winning design (rows).

The table shows that sponsors typically select the highest-rated design as winner, especially when the highest

rating is 4- or 5-stars, but sponsors also often select unrated designs or the outside option. Occasionally (but

rarely) 1- or 2-star designs are also awarded.

Table D.2: Frequency of contests, by highest rating and winning rating

Rating of Highest rating in contest
winner Unrated 1-star 2-star 3-star 4-star 5-star Total

Not awarded 66 4 12 92 202 85 461
Unrated 142 5 10 59 347 276 839
1-star . . . 3 6 5 14
2-star . . 3 11 16 8 38
3-star . . . 43 146 53 242
4-star . . . . 836 379 1,215
5-star . . . . . 1,485 1,485

Total 208 9 25 208 1,553 2,291 4,294

Notes: Table shows the frequency of contests in the sample by the highest rating granted
and the rating of the winning design. There are 4,294 contests in the sample, out of which
3,833 (=4,294-461) were awarded.

D.2 Foresight and the Predictability of Outcomes

The structural model assumes that at the time of their final submission, players can predict the competition

they will face at the end of a contest. Two pieces of information are required to support this claim: the

distribution of exit times and the quality of the predictions that can be made at those times.

Figure D.1 shows the cumulative distribution of a player’s first and last designs in a contest (blue and red

lines, respectively), calculated over the fraction of the contest elapsed. The figure shows that players tend to

exit in the later stages of a contest: roughly half of all contest-players exit a given contest after 80 percent

of the contest has transpired and nearly two-thirds after 50 percent has transpired.

Figure D.1: Empirical CDFs of player entry and exit
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Though players tend to exit in later stages, the question remains as to how well they can forecast the terminal

state of competition at that time. Table D.3 shows the goodness-of-fit (R2) of a regression of the terminal

number of competing designs of each rating on the number observed after a given fraction of the contest

has elapsed. This method can predict the total number of competing designs with a high degree of accuracy

(R2 = 0.88) when only half of the contest has elapsed, and even better (R2 = 0.97) when 80 percent of the

contest has elapsed. Given that competition tends to come from the top, we may be more interested in the

quality of forecasts over top-rated competitors: predictions of the terminal number of 5-star designs at the

50 percent mark and 80 percent mark have R2 = 0.67 and R2 = 0.90, respectively.

Table D.3: Predictability of final number of competing designs of each rating

Percent of contest elapsed All Unrated 1-star 2-star 3-star 4-star 5-star

50 0.88 0.66 0.37 0.68 0.69 0.55 0.67
60 0.91 0.77 0.50 0.75 0.83 0.84 0.82
70 0.95 0.76 0.42 0.82 0.87 0.85 0.73
80 0.97 0.83 0.85 0.88 0.89 0.90 0.90
90 0.98 0.94 0.97 0.88 0.92 0.88 0.90

Notes: Table provides R2 from regressions of the final number of competing designs of each rating
on the number observed after a given fraction of the contest has elapsed. Observations are individual
submissions; for each submission I record the number of competing designs at that time and seek
to project the state of competition when the contest concludes. The high fit suggests that future
competition can be reasonably well forecast in the latter half of any contest, when the majority of
players stop competing, supporting the modeling assumption of foresight.
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E Additional Discussion of Cost Estimates

E.1 Evidence that costs are not mechanical

Given the nature of the model, a natural question is whether the estimated costs are mechanical or substan-

tive. As the paper explains, one way to evaluate this question is to examine whether larger prizes are more

heavily competed, such that the prize won’t directly, mechanically increase costs.

Table E.1 regresses the log probability gains achieved by a player’s final design or an extra design on the log

prize. The estimates reveal that large prizes are competed away: when the prize increases by one percent,

the probability gains of players’ final submissions decline by 0.75 percent, with the remaining 0.25 percent

being reflected in a higher cost. Though a perfect offset would manifest as an elasticity of -1, it should not

be expected if projects with larger prizes are also more difficult, as other results suggest. This evidence

supports the assertion that the estimates are meaningful rather than mechanical.

Table E.1: Evidence that players compete away prize increases

Log of win probability gains acheived by:
Final design Extra design

Log prize -0.773*** -0.760***
(0.006) (0.006)

Constant -0.337*** -0.431***
(0.034) (0.034)

N 160059 160059
R2 0.11 0.11

Notes: Table shows the correlation between the prize and the estimated
probability gains (i) achieved by players’ final designs, and (ii) available
from players’ next, unentered designs. The estimates reveal that large
prizes are competed away, as players respond to larger prizes by exerting
effort up to a point where the marginal gains to effort, in terms of the
probability of winning, become small. *, **, *** represent significance at
the 0.1, 0.05, and 0.01 levels, respectively. Robust SEs in parentheses.

E.2 Discussion of overbidding

The cost estimates also imply an aggregate expenditure in each contest, calculated by multiplying each

contest-player’s cost by their number of submissions and summing. When this sum exceeds the prize value,

players have in the aggregate overbid. This section examines overbidding, as reflected in the ratio of total

expenditures to prize value, and relates this phenomenon to contest attributes.
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Figure E.1 shows the distribution of this expenditure ratio across all 4,294 contests in the sample (mean of

1.44, median 1.38). The estimates thus imply that prizes are typically overdissipated, consistent with the

laboratory-based literature on lottery-type contests (Dechenaux et al. 2015), which has found that despite

inconsistency with Nash equilibrium predictions, overdissipation is ubiquitous in practice. It is nevertheless

worth noting that nearly 30 percent of contests are estimated to be underbid.

Figure E.1: Distribution of ratio of total expenditures:prize value

Notes: Figure shows density of the ratio of estimated total expenditures:prize
for all contests in the sample (mean 1.44, median 1.38). Total expenditures
are calculated by multiplying the cost estimates by each contest-player’s num-
ber of submissions in the sample, and aggregating by contest. Consistent with
previous research, the prize is frequently overdissipated, in some cases sub-
stantially (see Decheneaux et al. 2015).

Table E.2 correlates the expenditure ratio with contest attributes. This ratio increases strongly with prize

commitment and prize value, despite the fact that larger prizes would mechanically tend to reduce it.

Empirically, the estimate implies that with every $100 increase in the prize, another 16 percent of the total

is expended – a pattern already evident in the raw data, which show that total submissions are strongly

convex in the prize (Figure E.2). The table also shows that overbidding declines sharply with feedback,

which clarifies the returns to investment and helps players make better choices.
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Table E.2: Correlation of expenditure ratio with contest characteristics

(1) (2) (3)
Exp. Ratio Exp. Ratio Exp. Ratio

Total Prize Value ($100s) 0.177*** 0.170*** 0.164***
(0.011) (0.012) (0.012)

Committed Value ($100s) -0.006 -0.006
(0.023) (0.023)

Fraction Rated -0.478*** -0.491***
(0.027) (0.028)

Prize Committed 0.171** 0.173**
(0.076) (0.075)

Contest Length 0.004
(0.003)

Words in Desc. (100s) 0.011***
(0.003)

Attached Materials -0.011*
(0.006)

Constant 0.918*** 1.170*** 1.120***
(0.032) (0.040) (0.044)

N 4294 4294 4294
R2 0.12 0.18 0.19

Notes: Table shows correlation of contest attributes with prize dissipation,
measured as ratio of total expenditures to prize value. *, **, *** represent
significance at the 0.1, 0.05, and 0.01 levels, respectively. Monthly fixed
effects included but not shown. Robust SEs in parentheses.

Figure E.2: Designs submitted vs. prize value in sampled contests

Notes: Figure plots submissions against prize value, with a fitted
quadratic (significantly convex at the one percent level, with t >
5). Each dot is one contest in the sample.
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F Simulation Documentation and Robustness Checks

F.1 Detailed description of simulation procedure

Recall from the paper that each simulation run simulates sequential choices of three players until all three

have dropped out. At each turn, a player evaluates the likely outcomes of their next draw and the returns

it will generate (conditional on the best responses of her competitors), and decides whether to make that

next draw or quit. If the player continues, a new rating is drawn, according to the conditional distribution

of ratings at the given history. If the player quits, she is deactivated from future turns.

The two basic building blocks of the simulations are thus:

• The continuation decision

• The draw/assignment of ratings

The simulations vary in the information available at each of these points. Fundamentally, the simulations

are differentiated by four parameters (this is how they are coded):

1. Are a player’s prior ratings observed at the continuation decision?

2. Are competitors’ ratings observed at the continuation decision?

3. Are a player’s prior ratings observed when the next design is drawn?

4. Are no designs rated, all rated, or only a (random) subset rated?

I further assume in all simulations that players at all points know the information structure of the game they

are playing. The possible information structures are summarized below, in increasing order of complexity:

• Full feedback: Players know their own and their competitors’ ratings at all times.

• Partial feedback: The same, with the one exception that a subset of designs are randomly not rated.

Unrated submissions contribute to a player’s probability of winning with the same weight as estimated

in the data (see Appendix D), but I assume that they also have some latent rating on the 1 to 5 scale,

which I assign according to empirical frequencies of ratings given in the data. The fact that we don’t

observe the “true quality” of unrated designs in the data necessitates this assumption – in effect, I

assume that a random subset of designs have their true rating shrouded.

• No feedback: Players do not know their own ratings or their competitors’ ratings at any time. As

with the partial feedback simulation, I draw latent ratings for each submission, but these ratings

do not enter players’ simulated decision-making: all they know is the number of designs they and

their competitors have submitted. In this case, players must form beliefs over the latent state of

the competition. Because there is no closed form for such beliefs, I insert an inner simulation as

follows. First, I seed potential own performance histories and competitor performance histories after

X-many submissions. At the player’s (X+1)th turn, I randomly draw from these histories, evaluate

the expected returns to the player’s next submission in the way described above, repeat this process

100 times, and take the average. This average is then compared against the player’s cost, and if

the difference is positive, they continue. In this way, we can circumvent the absence of closed form

beliefs over the state of the competition with computation. Note that because the distribution of

ratings on each player’s first draw is conditioned on their historical performance to account for ex-ante

heterogeneity in ability, I seed potential performance histories conditional on this ability measure, and

draw from the appropriate pool for each player/competitor when simulating beliefs.
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• Private feedback: Players know their own ratings at all times, but they do not know their competitors’

ratings at any time – all that they know is the number of designs their competitors have submitted.

As with no feedback, they must form beliefs over their competitors’ performance, but in this case

they know that their competitors have visibility on their ratings and are improving accordingly. I

therefore seed competitor performance histories through X submissions, permitting improvement. In

contrast to no feedback, where these performance histories were seeded by making each sequential

ratings draw from a distribution that is conditioned on having no prior ratings, under private feedback

the performance histories are seeded by making draws from distributions conditional on however the

seeded competitor has performed up through X submissions. Then: at each player’s turn, I randomly

draw competitors from these histories, evaluate the expected returns to the player’s next submission

in the way described above, repeat this process 100 times, and take the average. This average is then

compared against that player’s cost, and if the difference is positive, they continue.

• Selection-only: Players know their own ratings and their competitors’ ratings at the continuation

decision, but their ratings do not influence the next draw: in effect, every new submission is drawn

from a blank slate (i.e., as if they have no prior ratings). Players know that they and their competitors

are making draws from this distribution when they make their continuation decision – this is what is

meant by the earlier statement that at all times, “players know what game they and their competitors

are playing.” The purpose of this simulation is to isolate the effects of feedback on participation,

independent of its effects on players’ productivity at each draw.

• Direction-only: Players do not know their own ratings or their competitors’ ratings at the continuation

decision, but they do know their own ratings when making the next draw (the inverse of selection-only).

In the absence of information, they are again modeled with beliefs. I seed own performance histories

and competitor performance histories by making draws from distributions conditional on however

the seeded player/competitor has performed up through X submissions (similar to the procedure for

private feedback); then, at the continuation decision, I draw from these histories, evaluate the expected

returns to the next submission, repeat 100 times, and take the average. This average is then compared

against that player’s cost, and if the difference is positive, they continue.

The following table summarizes the key distinctions between these mechanisms:

Table F.1: Distinguishing features of each simulated feedback policy

Continuation Decision Ratings draw

Own ratings Comp. ratings Simulate Own ratings What’s

observed? observed? beliefs? observed? rated?

No feedback No No Yes No None

Partial feedback Yes Yes No Yes Subset

Full feedback Yes Yes No Yes All

Private feedback Yes No Yes Yes All

Selection only Yes Yes No No All

Direction only No No Yes Yes All

The body of the paper discusses how asymmetries reduce incentives for effort, and in turn are the source of

differences in total participation across simulated feedback conditions. The text further notes that symmetry

is especially affected by the occurrence of high ratings, and especially by 5-star ratings, which are orders of

magnitude more valuable than others but also rare. For evidence of the effect that these shocks can have, I
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examine changes in the returns to effort around the time each simulated player exits. Concretely, I calculate

the reduction in the returns to effort between a player’s final submission and the turn at which they chose

to abandon, normalized by the analogous change between their second-to-last and final submission. As the

text explains, this ratio measures how much more or less the returns to effort declined immediately prior to

abandonment, relative to the pace at which they were previously falling, with values < 1 indicating gradually

declining returns, and values > 1 suggesting that abandonment was precipitated by a shock.

Figure F.1 plots the distribution of the median ratio for each contest-player under each feedback policy.

When competition is shrouded, this ratio is around or below one (means of 0.81, 0.91, and 0.63, in the no

feedback, private feedback, direction-only conditions, respectively). When competition is public, the ratio

is significantly larger than unity (means of 4.84, 2.46, and 26.35 in the partial feedback, full feedback, and

selection-only conditions). The lowest values thus arise in the direction-only simulation, where players grow

similarly strong over time and continuation must be decided entirely on the basis of beliefs – whereas the

highest values arise in the selection-only simulation, where players are relatively weak and unable to improve,

and high ratings can have an unusually large impact on outcomes.

Figure F.1: Shocks to returns to effort at abandonment

Notes: Figure shows the distribution of “shocks” to players’ incentives for effort at the time of
abandonment under each simulated feedback policy. Shocks are computed as the ratio of (i) the
change in a player’s returns to effort between her final submission and her next turn (at which she
chose to drop out), over (ii) the analogous change between her second-to-last and final submission.
This quantity measures how rapidly the returns to effort typically declined immediately prior to
abandonment, relative to the pace at which they were previously declining. Values below one
indicate that returns declined gradually towards costs until the player dropped out, whereas values
much greater than one indicate that abandonment was precipitated by a competitive shock. Each
subfigure plots the distribution across 600 (= 200 · 3) simulated contests and players, where for
each contest-player the plotted value is the median ratio across simulations.
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F.2 Simulations with 4 players

The simulations in Section 6 restrict each contest to three players, to reduce the dimensionality of the game

in order to backwards-induct strategies and internalize competitors’ best into each player’s decision-making.

To evaluate sensitivity to this restriction, this appendix presents results from simulations with four players

(further enlarging the field is both programatically and computationally infeasible).

Tables F.2 and F.3 provide the four-player counterparts to Tables 11 and 12 in the paper. It can be seen

that the results are statistically and quantitatively similar to those for three-player simulations.

Table F.2: Effects of Feedback on Outcomes of Simulated Contests

Percent change in outcome, when:

Some rated All rated Private ratings

Outcome (rel. to none rated) (rel. to none rated) (rel. to none rated)

Players 0.0% n.a. 0.0% n.a. 0.0% n.a.

(0.0%) (0.0%) (0.0%)

Designs -0.9% -6.4% *** 10.6% ***

(0.7%) (0.7%) (0.6%)

Num. 5-star 473.1% *** 589.7% *** 725.1% ***

(23.1%) (22.8%) (21.4%)

Num. 4-star 71.8% *** 78.3% *** 112.5% ***

(1.8%) (2.1%) (1.9%)

Num. 3-star -11.0% *** -22.3% *** -3.8% ***

(1.0%) (0.9%) (1.0%)

Num. 2-star -44.9% *** -60.6% *** -47.3% ***

(0.7%) (0.5%) (0.7%)

Num. 1-star -64.9% *** -75.7% *** -68.0% ***

(0.6%) (0.4%) (0.5%)

Notes: This table illustrates the effect of feedback on principal outcomes in simulated contests
when the simulations are extended to 4 players. In order to reduce the effects of outlier sim-
ulations, I trim to median (rather than mean) simulated outcomes for each contest under each
feedback policy. Columns show the average percent change in the given outcome relative to a
baseline with no feedback. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels,
respectively. Standard errors of these averages in parentheses.
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Table F.3: Effects of Feedback on Outcomes of Simulated Contests

Percent change in outcome, when:

Selection only Direction only Combined effects

Outcome (rel. to no feedback) (rel. to no feedback) (rel. to no feedback)

Players 0.0% n.a. 0.0% n.a. 0.0% n.a.

(0.0%) (0.0%) (0.0%)

Designs 2.1% *** 44.4% *** -6.4% ***

(0.7%) (0.9%) (0.7%)

Num. 5-star 10.8% *** 904.3% *** 589.7% ***

(1.9%) (29.0%) (22.8%)

Num. 4-star 4.3% *** 152.8% *** 78.3% ***

(1.1%) (3.0%) (2.1%)

Num. 3-star 1.0% 22.8% *** -22.3% ***

(0.8%) (1.3%) (0.9%)

Num. 2-star 0.2% -22.0% *** -60.6% ***

(0.8%) (1.4%) (0.5%)

Num. 1-star -0.4% -41.5% *** -75.7% ***

(0.9%) (1.3%) (0.4%)

Notes: This table separates feedback’s effects on quality and participation in the simulated contests
when the simulations are extended to 4 players. In order to reduce the effects of outlier simulations,
I trim to median (rather than mean) simulated outcomes for each contest under each feedback
policy. Columns show the average percent change in the given outcome relative to a baseline with
no feedback. *, **, *** represent significance at the 0.1, 0.05, and 0.01 levels, respectively. Standard
errors of these averages in parentheses.
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