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Abstract 

Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide 

(Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-

Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous 

Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that 

activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, 

preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. 

In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states 

depending on growth conditions. These observations suggest the importance of growing 

Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of 

Sn during growth to achieve dopant activation.  

  



3 

 

Many optoelectronic devices incorporate a transparent conducting oxide (TCO) to transport 

charge carriers and photons to and from active semiconductor layers. An outstanding materials 

challenge is to develop a wide-bandgap TCO with both small electron affinity and high donor 

concentration (Fermi energy), enabling a low-loss electron-selective contact for emerging 

materials with high conduction-band energies including GaN, Cu2O, and n-type silicon. 

For this purpose, beta-phase gallium oxide (-Ga2O3) has recently emerged as a promising 

candidate TCO. With an electron affinity of 3.7 eV,1 bandgap of 4.8 eV2 and transmissivity 

above 80% in the wavelength range of 300 to 1000 nm,3 Ga2O3 appears to be an excellent 

candidate wide-bandgap TCO with low electron affinity. Ga2O3 can be doped with tin, achieving 

donor concentrations above 1019 cm-3 when grown in bulk-crystal form3 and above 1018 cm-3  

when deposited by molecular-beam epitaxy (MBE) in the 540 to 600°C range.4 However, thin 

films deposited using atomic-layer deposition (ALD) and pulsed-laser deposition (PLD) at more 

moderate temperatures in the 100 to 200°C range have not exhibited high Sn dopant activation; 

as observed in this work, these films are typically highly resistive, even with a concentration of 

1020 cm-3 Sn dopants. Identifying a means to achieve higher Sn dopant activation in low-

temperature ALD- or PLD- deposited films could increase the industrial relevance of Ga2O3:Sn 

for cost-sensitive applications including field-effect transistors,4 solar cells,5–7 gas sensors,8 and 

lasers.9 Determining the chemical states of active and inactive Sn dopants in Ga2O3 is a first and 

necessary step toward developing intuition and theory to guide thin-film synthesis. 

Herein, the chemical state of Sn dopants in -Ga2O3 bulk crystals and amorphous (a-) Ga2O3 

thin films deposited by ALD and PLD is investigated. Synchrotron-based X-ray absorption 

spectroscopy (XAS), a probe of local atomic structure and chemical state, is employed to define 

requirements for successful dopant activation. It is found that Sn dopant activation correlates 
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with Sn chemical state and Ga2O3 matrix crystallinity. The local structures of the metal cations in 

these different samples provide insights into how dopant atoms are incorporated into the host 

Ga2O3 lattices and govern electrical conductivity. 

β-Ga2O3:Sn single crystal (SC) is purchased commercially from Tamura Corporation and is 

grown from the melt using the edge-defined film-fed growth (EFG) method.4 In addition, a-

Ga2O3:Sn thin films are deposited using ALD and PLD methods. The ALD film is deposited at 

120 °C in a custom-built cylindrical reactor with a 30 cm long and 3 cm wide sample stage, and 

a chamber volume of 0.627 L. The Ga and Sn precursors used in the ALD process are bis(µ-

dimethylamino)tetrakis(dimethylamino)digallium6,10 and tetrakis(dimethylamido)tin(IV) 

respectively. The oxygen source is H2O. During the ALD process, the temperatures of the Ga 

and Sn precursors are maintained at 120 and 60 °C, respectively, while H2O is kept at 25 °C. 

High-purity N2 is used as a carrier gas and the dose pressure of the gallium precursor and H2O 

are estimated to be approximately 3 and 5 Torr s, respectively. The Ga2O3:Sn films are deposited 

on Si/SiO2 substrate by repeating a supercycle consisting of 19-times subcycle of Ga2O3 (bis(µ-

dimethylamino)tetrakis(dimethylamino)digallium/purge/H2O/purge) followed by 1 time subcycle 

of SnO2 (tetrakis(dimethylamido)tin(IV)/purge/ H2O/purge). Purge time is set to be 30 s. The 

deposition rate is measured to be ∼0.2 nm per subcycle. The PLD film is deposited on quartz 

substrate using Ga2O3 and SnO2 targets and the energy density of the pulsed KrF excimer laser 

(248 nm) is set to 300 mJ with a repetition rate of 10 Hz and a distance of 10 cm between the 

target and the sample substrate. The substrate is rotated during the 50 laser pulses applied to the 

Ga2O3 target, and kept at a fixed angle during 2 pulses applied to the SnO2 target. This procedure 

is repeated 400 times, resulting in a homogeneous Ga2O3 film with a Sn doping gradient across 

the sample from approximately 1 at.% to 4 at.%. The oxygen partial pressure is set to 100 µTorr 
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for the depositions at 400°C to ensure that the film is close to stoichiometric. The thickness of 

both the ALD and PLD films are about 200 nm and no post annealing is performed for both ALD 

and PLD samples. 

The stoichiometry of the ALD and PLD thin films are measured using Rutherford 

Backscattering Spectroscopy (RBS) and determined to be Ga2O3.41Sn0.065 and Ga2O2.91Sn0.072 

respectively. Accordingly, the atomic wt. % of Sn for ALD and PLD thin films are estimated to 

be 2.3×1020 and 2.9×1020 cm-3 respectively. The atomic wt. % of Sn for a set of SC samples are 

obtained from Tamura Corporation for comparison. In addition, the net carrier density for SC 

Ga2O3:Sn samples determined by electrochemical capacitance-voltage (ECV) are also obtained 

from Tamura Corporation. Hall and four-point probe measurements are performed for all the 

samples using a Ga2O3:Sn/Ti (100 nm)/Au (100 nm) stack for ohmic contact11 but only the SC 

Ga2O3:Sn sample exhibits detectable signals. The Hall mobility and net carrier density (ND-NA) 

of the SC are determined to be 110 cm2/V·s and 4× 1018 cm-3 (ND-NA  by ECV = 7× 1018 cm-3) 

respectively. The ALD and PLD film structures were also analyzed with wide angle X-ray 

diffraction (XRD) on  Beamline 11-3 at the Stanford Synchrotron Radiation Lightsource (SSRL).  

Two-dimensional scattering was collected with a MAR345 image plate at grazing incidence at an 

incident energy of 12.7 keV.  Spectra were integrated between 5º < ϕ < 175º using the GSAS II 

analysis software. The resistivities for our ALD and PLD samples are estimated to be > 2000 Ω 

cm based on the detection limit of the four-point probe system. By assuming a mobility of > 0.1 

cm2/V s, the upper limit of carrier density is estimated to be 3.01016 cm-3 for our a-Ga2O3:Sn 

films. Figure 5 compares the net carrier density of all experimental samples as a function of Sn 

concentration, including data obtained from Tamura Corporation for a suite of SC samples with 

different Sn concentrations. The SC samples grown via EFG have an activation ratio close to 

 
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100%, whereas the Sn dopant atoms in our ALD and PLD deposited films are either largely un-

activated or highly compensated, as evident through their high resistivities and low carrier 

concentrations.  

We perform Ga K-edge XAS at Beamline 4-3 of the Stanford Synchrotron Radiation 

Lightsource and Sn K-edge XAS at MRCAT Beamline 10-ID of the Advanced Photon Source. In 

both measurements, the thin-film samples are measured in fluorescence mode with an incident 

beam of approximately 500   500 µm2. The K-edge fluorescence for Ga and Sn is measured by a 

Lytle detector and silicon Vortex solid-state detector respectively. Reference metallic Ga or Sn 

thin-foils are measured to account for relative energy drifts. The X-ray absorption near-edge 

structures (XANES) and extended X-ray absorption fine structures (EXAFS) are isolated by 

normalizing the absorption spectrum and subtracting the smooth atomic background absorption 

signal from the measured absorption signal using the AUTOBK algorithm in Athena with Rbkg = 

1.0 Å.12–14 After background removal, the processed data are transformed from energy space to 

k-space using the relationship, 2

0

2 /)(2 EEmk  , where k is the electron wavenumber, m is 

the electron mass, E0 is the K-edge absorption energy of the respective elements, and ħ is 

Planck’s constant. The spectra are weighted by k2 to compensate for amplitude decay. For further 

analysis, the k2-weighted spectra data are Fourier-transformed with a Hanning window as a 

bandpass filter to enhance the signal to noise ratio within windows between k = 1.5 to 10.0 Å-1.  

The chemical states of Sn for each sample can be derived by comparing, in Figure 6, the 

respective XANES spectra with Sn metal foil, SnO powder and SnO2 powder references. The 

full XANES spectra is given in Figure S.1.15 The relative chemical shifts observed in the 

XANES spectra are due to changes in oxidation state, which alters the binding energy for 

electrons in the first shell.16 Figure 6 shows that the average charge states of Sn atoms in our SC 
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and ALD samples are similar to that of SnO2 (Sn4+). Comparing this with the resistivity data 

suggests that Sn4+ can function as an electron donor under the correct conditions. However, its 

presence does not always result in free electrons due to other reasons including the formation of 

compensating defects or formation of secondary phases. The average oxidation state in our PLD 

sample corresponds to Sn2+ (SnO) which is not likely to act as an electron donor. The presence of 

this reduced state (compared to the SC and ALD) suggests that the growth environment could be 

too reducing relative to the ALD and SC growth processes. 

Next, EXAFS is used to investigate the structural origin of Sn doping. Figure 7 shows the 

Fourier-transformed spectra plotted as the magnitude, |χ(R)|, for both the Ga and Sn K-edges. 

The first large peak in the |χ(R)| spectrum is due to only single-scattering paths from the first 

nearest neighbor (1NN) shell of atoms, and higher-order peaks are due to single- and multiple-

scattering paths involving neighboring atoms in 1NN and higher order shells. In both sets of 

spectra, the amplitudes of |χ(R)| from higher-order shells (R > 2 Å) for the ALD and PLD 

deposited samples are strongly attenuated, showing limited structural order beyond 1NN. The 

lack of long-range order is consistent with the amorphous structure as characterized by our XRD 

measurements as shown in supplemental Figure S.2.17  

To gain quantitative local structural information, the peaks are isolated and fitted using the 

EXAFS equation given by:18 

   


j jj
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 (1) 

where j indicates shells of like atoms, 2

0S  is the passive electron reduction factor, jN  is the 

coordination number of atoms in the jth shell, k is the photoelectron wavenumber, jR  is the half 
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path length,
2

j  is the Debye-Waller factor or the mean-squared disorder of neighbor distance 

and )(k is the electron mean free path. The scattering amplitude, )(kf j , and the phase shift, 

)(kj , are dependent on the atomic number of the scattering atoms. 2

0S for both Ga (1.00) and 

Sn (1.14) are determined by fitting the crystalline Ga2O3:Sn SC sample and used as constants for 

other samples. The other fitting parameters for each scattering path are the changes in the half 

path length (ΔReff), and energy shift (ΔE0). For the SC sample, the spectra is fitted up to the 

second-order peak, and the scattering paths used in the data fitting routines are calculated using 

the crystal structure of β-Ga2O3:Sn (space group C12/m1)19,20 as a starting input into the ATOMS 

and FEFF6 codes implemented in Artemis.21 In the unit cell of β-Ga2O3, there are two 

crystallographically nonequivalent Ga atoms (tetrahedral Ga1 and octahedral Ga2) and three 

nonequivalent O atoms (O1, O2 and O3). The Ga K-edge spectrum for the SC sample is modeled 

by considering equal contributions from the Ga1 and Ga2 sites,22 and the Sn K-edge spectrum is 

fitted by considering either substitutional Sn-on-Ga1 (SnGa1) or Sn-on-Ga2 (SnGa2) defects. 

Scattering path-lengths up to 3.5 Å are considered for fitting the SC sample. For the amorphous 

thin-film samples, only the first-order peak is fitted by considering Ga‒O and Sn‒O bonds in the 

1NN shell. The non-linear least squares fitting routine is subsequently performed in Artemis to 

obtain the best-fit parameters. The best-fit parameters for the Sn K-edge spectra are included in 

Table II, while those for the Ga K-edge spectra are included as supplemental materials in Table 

S.I23 as many scattering paths are involved. Both |χ(R)| and k2-weighted |χ(k)| spectra are shown 

in Figure 7 and 4 respectively. However, both the real and imaginary parts of χ(R) are included 

as supplemental materials in Figure S.324 and Figure S.4.25 

2

j
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As shown in Figure 7(a) and 4(a), the good agreement between the Ga K-edge spectrum for 

the SC β-Ga2O3:Sn and our model up to the second order shell corroborates the beta-phase nature 

of the host lattice as determined using XRD by other authors.26 By considering two different 

possibilities in which Sn atoms can be incorporated into the SC β-Ga2O3 host lattice, it is 

observed that there is a preferential substitution at the Ga2 octahedral site (SnGa2, R-factor = 0.01) 

as compared to substitution at the Ga1 (SnGa1, R-factor = 0.05). Our observation is also 

consistent with first-principles calculations by Varley et al.27 Several other studies have also 

shown that transition metals like In,28 Cr,29 and Mn30 have a preference for the octahedral site 

and can be explained by steric reasons.29,30  

For the ALD and PLD amorphous thin-films, the average coordination number to O atoms in 

Sn’s 1NN shell is found to be close to 5.0, despite the difference in charge state of the central 

absorbing Sn atoms. This suggests that our amorphous films might not be deposited in 

thermodynamic equilibrium conditions, because Sn atoms in SnO2 (Sn4+) and SnO (Sn2+) tend to 

favor octahedral and tetrahedral coordination respectively. Despite similar coordination numbers, 

the larger Sn2+ ions in the PLD thin-film increases the average Sn‒O bond-length (Reff = 2.117 Å) 

as well as the structural disorder ( 2  = 0.0128 Å-2) relative to the ALD films (Reff = 2.030 Å and 

2  = 0.0076 Å-2). The lack of long range order in both ALD and PLD thin-films suggests that a 

non-crystalline structure could represent an impediment for dopant activation. One further 

explanation for the ALD thin-film to exhibit low conductivity despite the presence of Sn4+ could 

be the formation of a compensating defect in the that reduces the number of “activated” Sn4+; 

such phenomenon has been observed in crystalline ZnO:Ga.31 Lastly, post-annealing has been 

performed in this work in an attempt to activate the dopants in ALD Ga2O3:Sn thin-films (1 hour 

in N2 atmosphere at 1000ºC). However, both the film resistivity and crystalline order did not 
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exhibit any detectable change and the authors are of the opinion that it might be necessary to 

anneal the films beyond 1000ºC to achieve crystalline Ga2O3 for dopant activation. 

In conclusion, XAS is used to investigate the differences in the local structures of conductive 

single-crystal β-Ga2O3:Sn and resistive a-Ga2O3:Sn thin-films. Our results can be used to help 

engineer Ga2O3:Sn thin-films with the favorable electrical properties of single crystal β-

Ga2O3:Sn. Our XAS analyses indicate that activated Sn dopant atoms in conductive single-

crystal β-Ga2O3:Sn are present as Sn4+, which preferentially substitutes for Ga at the octahedral 

Ga2 site as predicted by previous theoretical calculations. On the other hand, inactive Sn dopants 

in resistive a-Ga2O3 are present in either +2 or +4 charge states, depending on growth conditions. 

Lastly, XAS results indicate a lack of structural order beyond the 1NN shell in a-Ga2O3 samples, 

which might suggests that a crystalline structure might be necessary for high dopant activation. 

Consequently, achieving crystalline Ga2O3 and controlling the oxidation state of Sn during 

growth are both both appear to be necessary to obtain high Ga2O3 conductivity. 
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Captions: 

 

Figure 1: Net carrier density of β-Ga2O3:Sn single crystals, ALD a-Ga2O3:Sn film and PLD a-

Ga2O3:Sn film as a function of varying [Sn]. The deduced upper limit for a-Ga2O3:Sn films is 

indicated by the dashed line. 

 

Figure 2: Sn edge XANES spectra for (a) SC β-Ga2O3:Sn, (b) PLD a-Ga2O3:Sn and (c) ALD a-

Ga2O3:Sn samples. The dashed, dashed-dotted and dotted lines represent Sn(0) metal (dashed-

line), Sn(II)O (dashed-dotted line) and Sn(IV)O2 (dotted line) references respectively. 

 

Figure 3: Fourier-transformed EXAFS spectra plotted as the magnitude, |χ(R)|, for (a) Ga and (b) 

Sn K-edges. The dark and light grey regions represent the first and second shell fitting windows 

for the SC sample at the Sn K-edge. Note the poor fit for Sn on the Ga1 site for the SC sample. 

 

Figure 4: k2-weighted EXAFS spectra for (a) Ga and (b) Sn K-edges. Fits to both the SnGa1 and 

SnGa2 for the SC sample are shown in (b). 

 

Table I: Sn K-edge EXAFS parameters for all samples. The SC is fitted by assuming either Sn 

substitution on Ga1 and Ga2 sites. The best fit is obtained for Sn substitution at Ga2 site. 

Scattering path-lengths up to 3.5 Å are considered for fitting the SC sample. 

 

Figure S.1: Full Sn K-edges XANES spectra plotted for all samples.  

 

Figure S.2: Wide angle XRD spectra for the ALD and PLD Ga2O3:Sn films. Data are plotted in 

Q, which is defined as Q = [4π*sin(θ)]/λ or Q = 2π/d, where λ is X-ray wavelength and d is the d-

spacing. Position of selected diffraction planes are also indicated by the vertical lines. 

 

Figure S.3: Magnitude (thin solid line) and real part (thick solid line) of the fitted Fourier-

transformed EXAFS spectra for (a) Ga and (b) Sn K-edges.   

 

Figure S.4: Magnitude (thin solid line) and imaginary part (thick solid line) of the fitted Fourier-

transformed EXAFS spectra for (a) Ga and (b) Sn K-edges.   

 

Table S.I Ga K-edge EXAFS parameters for all samples. Scattering path-lengths up to 3.5 Å are 

considered for fitting the SC sample. 
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Figure 5: Net carrier density of β-Ga2O3:Sn single crystals, ALD a-Ga2O3:Sn film and PLD a-

Ga2O3:Sn film as a function of varying [Sn]. The deduced upper limit for a-Ga2O3:Sn films is 

indicated by the dashed line. 
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Figure 6: Sn edge XANES spectra for (a) SC β-Ga2O3:Sn, (b) PLD a-Ga2O3:Sn and (c) ALD 

a-Ga2O3:Sn samples. The dashed, dashed-dotted and dotted lines represent Sn(0) metal 

(dashed-line), Sn(II)O (dashed-dotted line) and Sn(IV)O2 (dotted line) references respectively. 

 

  



17 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

SC

PLD|
(R

)|
 [

Å
-3
]

R +r [Å]

ALD

SC

PLD

ALD

0 1 2 3 4 5 6

 Sn
Ga2

 Sn
Ga1

(b) Sn K-edge(a) Ga K-edge

 

R +r [Å]  
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(b) Sn K-edges. The dark and light grey regions represent the first and second shell fitting 

windows for the SC sample at the Sn K-edge. Note the poor fit for Sn on the Ga1 site for the 

SC sample. 
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Figure 8: k2-weighted EXAFS spectra for (a) Ga and (b) Sn K-edges. Fits to both the SnGa1 and 

SnGa2 for the SC sample are shown in (b). 
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Table II: Sn K-edge EXAFS parameters for all samples. The SC is fitted by assuming either Sn 

substitution on Ga1 and Ga2 sites. The best fit is obtained for Sn substitution at Ga2 site. 

Scattering path-lengths up to 3.5 Å are considered for fitting the SC sample. 

  

 Site Shell Path Description N Reff [Å] ΔE0 [eV] [Å-2] R-Factor 

SC 

 

First 

[Sn1] – O1,1 – [Sn1] 1 1.90(1) 

5(2) 0.000(2) 0.05 Ga1 [Sn1] – O2,1 – [Sn1] 1 1.88(1) 

 [Sn1] – O3,1 – [Sn1] 2 1.84(1) 

Ga2 

First 

[Sn2] – O1,1 – [Sn2] 2 1.959(3) 

3.6(3) 0.0010(5) 

0.01 

[Sn2] – O2,1 – [Sn2] 1 1.996(3) 

[Sn2] – O2,2 – [Sn2] 2 2.062(3) 

[Sn2] – O3,1 – [Sn2] 1 1.940(3) 

Second 

[Sn2] – Ga1,1 – [Sn2] 1 3.37(2) 

3.6(3) 

0.007(1) 

[Sn2] – Ga1,2 – [Sn2] 2 3.42(2) 

[Sn2] – Ga1,3 – [Sn2] 2 3.47(2) 

[Sn2] – Ga1,4 – [Sn2] 2 3.55(2) 

[Sn2] – Ga2,1 – [Sn2] 2 3.06(1) 

[Sn2] – Ga2,2 – [Sn2] 2 3.09(1) 

[Sn2] – O1,2  – [Sn2] 1 3.34(6) 

0.02(1) 

[Sn2] – O1,3  – [Sn2] 1 3.48(6) 

[Sn2] – O2,3  – [Sn2] 2 3.63(6) 

[Sn2] – O3,2  – [Sn2] 1 3.42(6) 

[Sn2] – O3,3  – [Sn2] 1 3.34(6) 

[Sn2] – O3,4  – [Sn2] 2 3.46(6) 

ALD  First [Sn] – O3,1 – [Sn] 5.0(2) 2.030(3) 4.4(3) 0.0076(6) 0.005 

PLD  First [Sn] – O3,1 – [Sn] 5.1(2) 2.117(4) 8.2(3) 0.0128(8) 0.008 

2
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Supplemental Figures: 

Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy  
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Figure S.1: Full Sn K-edges XANES spectra plotted for all samples.  
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Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy  

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1
1
2

1
1
-2

1
1
1

1
1
0

2
0
-1

 ALD
 PLD

 

 

In
te

n
s
it
y
 [

A
rb

. 
U

n
it
s
]

Q [Å
-1

]

0
0
1

 
Figure S.2: Wide angle XRD spectra for the ALD and PLD Ga2O3:Sn films. Data are plotted 

in Q, which is defined as Q = [4π*sin(θ)]/λ or Q = 2π/d, where λ is X-ray wavelength and d is 

the d-spacing. Position of selected diffraction planes are also indicated by the vertical lines.  
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Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy  
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Figure S.3: Magnitude (thin solid line) and real part (thick solid line) of the fitted Fourier-

transformed EXAFS spectra for (a) Ga and (b) Sn K-edges.   
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Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy  
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Figure S.4: Magnitude (thin solid line) and imaginary part (thick solid line) of the fitted 

Fourier-transformed EXAFS spectra for (a) Ga and (b) Sn K-edges.   
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Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy  

Table S.I Ga K-edge EXAFS parameters for all samples. Scattering path-lengths up to 3.5 Å are 

considered for fitting the SC sample. 

 Site Shell Path Description N Reff [Å] ΔE0 [eV] [Å-2] R-Factor 

SC 

Ga1 

First 

[Ga1] – O1,1 – [Ga1] 1 1.85(2) 

5.7(5) 0.008(1) 

0.03 

[Ga1] – O2,1 – [Ga1] 1 1.88(2) 

[Ga1] – O3,1 – [Ga1] 2 1.84(2) 

Second 

[Ga1] – Ga1,1 – [Ga1] 2 3.04(2) 

-10.3(8) 0.0001(1) 

[Ga1] – Ga2,1 – [Ga1] 1 3.264(4) 

[Ga1] – Ga2,2 – [Ga1] 2 3.307(4) 

[Ga1] – Ga2,3 – [Ga1] 2 3.346(4) 

[Ga1] – Ga2,4 – [Ga1] 2 3.443(4) 

[Ga1] – O1,2  – [Ga1] 2 3.24(4) 

5.7(5) 0.0001(1) 

[Ga1] – O1,3 – [Ga1] 1 3.33(4) 

[Ga1] – O1,4  – [Ga1] 2 3.55(4) 

[Ga1] – O2,2  – [Ga1] 1 3.39(8) 

[Ga1] – O3,2  – [Ga1] 2 3.42(2) 

[Ga1] – O3,3  – [Ga1] 2 3.49(2) 

Ga2 

First 

[Ga2] – O1,1 – [Ga2] 2 1.95(2) 

5.7(5) 0.008(1) 
[Ga2] – O2,1 – [Ga2] 1 2.00(2) 

[Ga2] – O2,2 – [Ga2] 2 2.05(2) 

[Ga2] – O3,1 – [Ga2] 1 1.94(2) 

Second 

[Ga2] – Ga1,1 – [Ga2] 1 3.27(2) 

-10.3(8) 0.0001(1) 

[Ga2] – Ga1,2 – [Ga2] 2 3.31(2) 

[Ga2] – Ga1,3 – [Ga2] 2 3.35(2) 

[Ga2] – Ga1,4 – [Ga2] 2 3.44(2) 

[Ga2] – Ga2,1 – [Ga2] 2 3.037(4) 

[Ga2] – Ga2,2 – [Ga2] 2 3.071(4) 

[Ga2] – O1,2  – [Ga2] 1 3.48(4) 

5.7(5) 0.0001(1) 

[Ga2] – O1,3  – [Ga2] 1 3.62(4) 

[Ga2] – O2,3  – [Ga2] 2 3.63(8) 

[Ga2] – O3,2 – [Ga2] 1 3.42(2) 

[Ga2] – O3,3  – [Ga2] 1 3.47(2) 

[Ga2] – O3,4  – [Ga2] 2 3.60(2) 

ALD - First [Ga] – O3,1 – [Ga] 4.2(1) 0.037(2) 5.0(2) 0.0059(3) 0.003 

PLD - First [Ga] – O3,1 – [Ga] 3.9(1) 0.032(3) 5.3(3) 0.0051(5) 0.006 

 

2


