
Matrix Multiplication on Hypercubes Using
Full Bandwidth and Constant Storage

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ho, Ching-Tien, S. Lennart Johnsson, and Alan Edelman. 1991.
Matrix Multiplication on Hypercubes Using Full Bandwidth and
Constant Storage. Harvard Computer Science Group Technical
Report TR-19-91.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811001

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154871941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Matrix%20Multiplication%20on%20Hypercubes%20Using%20Full%20Bandwidth%20and%20Constant%20Storage&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25811001
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Matrix Multiplication on Hypercubes

Using Full Bandwidth and Constant

Storage

Ching-Tien Ho

S. Lennart Johnsson

Alan Edelman

TR-19-91

April 1991

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

To appear in Proceedings of the 6th Distributed Memory Computing Conference.

Matrix Multiplication on Hypercubes

Using Full Bandwidth and Constant Storage

Ching-Tien Ho S. Lennart Johnsson Alan Edelman

IBM Almaden Research Center Harvard University and Dept. of Mathematics

650 Harry Road Thinking Machines Corp. Univ. of California at Berkeley

San Jose, CA 95120 Cambridge, MA Berkeley, CA 94270

ho@ibm.com johnsson@think.com edelman@math.berkeley.edu

Abstract

For matrix multiplication on hypercube multiproces-

sors with the product matrix accumulated in place a

processor must receive about P

2

=

p

N elements of each

input operand, with operands of size P�P distributed

evenly over N processors. With concurrent communi-

cation on all ports, the number of element transfers

in sequence can be reduced to P

2

=

p

N logN for each

input operand. We present a two-level partitioning of

the matrices and an algorithm for the matrix multipli-

cation with optimal data motion and constant storage.

The algorithm has sequential arithmetic complexity

2P

3

, and parallel arithmetic complexity 2P

3

=N . The

algorithm has been implemented on the Connection

Machine model CM-2. For the performance on the

8K CM-2, we measured about 1.6 G
ops, which would

scale up to about 13 G
ops for a 64K full machine.

1 Introduction

The multiplication of matrices is an important oper-

ation in many computationally intensive scienti�c ap-

plications. E�ective use of the communication band-

width is critical for maximumperformance. The com-

munication needs are minimized by a good choice of

address map, i.e., data placement, and routing al-

gorithms that minimize path lengths and congestion

once an address map is given. We consider matrix

multiplication on a Boolean n-cube. With su�ciently

high data motion capability at each node, communi-

cation may be performed on all ports concurrently,

and the full communications bandwidth of the net-

work used.

Cannon [2] has given an algorithm for the multiplica-

tion of square matrices on two-dimensional meshes.

Since a two-dimensional mesh is a subgraph of a

Boolean cube [12], [5], it is possible to use Cannon's

algorithm on a Boolean cube by emulating a mesh [6].

Dekel, Nassimi and Sahni [3] have described an al-

gorithm (termed the DNS algorithm thereafter) for

the multiplication of square matrices on a Boolean

cube. Both the DNS and Cannon's algorithms as-

sume that the number of matrix elements is equal to

the number of processors. A generalization of Can-

non's algorithm to matrices of arbitrary shapes and

sizes is given in [7] and [8]. Cannon's algorithm may

use up to four communication (unidirectional) chan-

nels per processor concurrently. The DNS algorithm

only use two (bidirectional) channels at a time. The

algorithm presented below concurrently use all log

2

N

(bidirectional) channels in an N -processor Boolean

cube, while preserving a constant storage, i.e., O(

P

2

N

)

for P � P matrices.

The paper is organized as follows. In the next section,

we introduce a few basic results regarding the speci�c

communication operations used in the multiplication

algorithms. In Section 3, we generalize the DNS al-

gorithm to the multiplication of two P � P matrices

on a Boolean n-cube, con�gured as a product cube

of

p

N �

p

N processors, and show how the Boolean

cube bandwidth can be fully utilized. We conclude in

Section 4.

2 Preliminaries

In the following log denotes log

2

. The bit-wise

exclusive-or operation is denoted \�" and Z

n

=

f0; 1; � � �; n � 1g. Also, �

n

denotes a string of n in-

stances of �, where � is either 0 or 1. Let n

0

= n=2

throughout the paper. We consider matrix multipli-

cation C A � B on a Boolean n-cube where A, B

and C are P � P matrices, N = 2

n

, n is even, and

P � n

0

p

N . For clarity, we assume P is a multiple

of n

0

p

N . Note that the assumption is made only to

simplify the complexity analysis. The element in row

i and column j of matrix A is a(i; j), i; j 2 Z

P

. b(i; j)

and c(i; j) are similarly de�ned.

Let S(1; 0) = (0) and

S(n; 0) = S(n � 1; 0)jn� 1jS(n� 1; 0)

for n > 0, where \j" is the concatenation oper-

ator of two sequences. For instance, S(3; 0) =

(0; 1; 0; 2; 0;1;0). S(n; 0) is the transition sequence in

a binary-re
ected n-bit Gray code [14]. If S(n; 0) =

(x

1

; x

2

; � � � ; x

(2

n

�1)

), then we can shift modulo n to

de�ne

S(n; s) = ((x

1

+ s) mod n; (x

2

+ s) mod n; � � � ;

1

(x

(2

n

�1)

+ s) mod n); 0 � s < n:

For instance, S(3; 1) = (1; 2; 1; 0; 1;2;1). Let �(t; n; s)

be the tth element of the sequence S(n; s), 1 � t �

2

n

� 1.

The communication times are measured by the num-

ber of elements transferred in sequence. Concurrent

communication on all ports of all processors is as-

sumed possible. All communications links are bidi-

rectional.

A particular communication pattern that is used for

one phase of the matrix multiplication algorithm is

bit-inversion [15]. A bit-inversion in an n-cube implies

that processor i sends its data to processor i for all i's,

where i is the bit-complement of i.

Lemma 1 [15] A tight bound for bit-inversion with K

elements per processor on an n-cube is K.

Proof: The required bandwidth is nNK and the

available bandwidth is nN , which gives the lower

bound K. An upper bound equal to the lower bound

is given by the following algorithm. Divide the lo-

cal data set into n parts, and exchange part i, 0 �

i � n � 1, according to the sequence of dimensions

i; (i+1) mod n; � � � ; (i+n� 1) mod n. All n data sets

can be exchanged concurrently without edge con
ict.

In general, with bit-inversion on only a subset of the

processor address bits of every processor, the commu-

nications requirements are reduced, but not the lower

bound.

Lemma 2 [9] Any tight bound for communication in

a Boolean n-cube is also a tight bound for the same

communication in all disjoint n dimensional subcubes

of an n

00

dimensional cube, when the subcubes are

identi�ed by the same n dimensions, n

00

> n.

The signi�cance of this lemma is that even though only

a fraction

n

n

00

of the total bandwidth of the n

00

-cube

is used, the communication time cannot be reduced

when the communication in each subcube is optimal.

Hence, in the case of the same bit-inversion on a subset

of the bits of the address space the tight lower bound is

still K for K elements per processor. The bits subject

to inversion de�ne a subcube, and the bits not inverted

de�ne the disjoint instances of the subcubes in which

inversion is performed.

3 A block algorithm

In this section we �rst describe the DNS algorithm,

which assumes P � P matrices distributed over P

2

processors. We then generalize it to the multiplica-

tion of P � P matrices distributed uniformly over an

n-cube, factored as

p

N �

p

N , where P �

p

N . Fi-

nally, we present an algorithm that use all communi-

cation channels of an n-cube when P � n

0

p

N . For

notational convenience, we assume P is a power of two

and put P = 2

p

.

3.1 The DNS algorithm

The DNS algorithm [3] assumes that A and B are

P �P matrices and that the number of Boolean cube

processors is P

2

. The algorithmconsists of two phases:

alignment and multiplication.

Alignment:

a(i; j) a(i; i � j), 8i; j 2 Z

P

;

b(i; j) b(i � j; j), 8i; j 2 Z

P

:

Multiplication, step t, 0 � t � P � 1:

a(i; j) a(i; j � 2

�(t;p;0)

), if t 6= 0, 8i; j 2 Z

P

;

b(i; j) b(i � 2

�(t;p;0)

; j), if t 6= 0, 8i; j 2 Z

P

;

c(i; j) a(i; j) � b(i; j) + c(i; j), 8i; j 2 Z

P

:

With one element per processor and (i; j) being a pro-

cessor address, the column index of an element of A is

the same as the row index of an element of B for every

processor (i; j) after the alignment phase, and for each

step of the multiplication phase. Moreover, for any

integer, complementing the bits of its binary encod-

ing according to the transition sequence in a binary-

re
ected Gray code, such as the sequence S(p; 0) for

a p-bit number, produces every integer that can be

encoded in p bits precisely once. Hence, during the

course of the algorithm, processor (i; j) receives all

the elements of row i of matrix A and column j of

matrix B appropriately synchronized.

Replacing �(t; p; 0) by �(t; p; s), 1 � s � p � 1, yields

a matrix multiplication algorithm that for each t per-

forms an exchange in dimension (�(t; p; 0)+ s) mod p

instead of dimension �(t; p; 0). This observation is the

basis for de�ning an algorithm that fully uses the com-

munications bandwidth of the Boolean cube.

3.2 Naive extension

Each processor holds a 2

p�n

0

� 2

p�n

0

submatrix (con-

secutive assignment [6]). The data assignment is de-

�ned by the address map

(w

r

p�1

w

r

p�2

� � �w

r

p�n

0

| {z }

rp

r

w

r

p�n

0

�1

� � �w

r

0

| {z }

vp

r

j

w

c

p�1

w

c

p�2

� � �w

c

p�n

0

| {z }

rp

c

w

c

p�n

0

�1

� � �w

c

0

| {z }

vp

c

):

All operands have corresponding address maps. Vir-

tual processor address bits (labeled vp) de�ne local

storage addresses, whereas the real processor address

bits (labeled rp) de�ne di�erent physical processors.

The superscripts \r" and \c" denote \row" and \col-

umn", respectively. The exchange operation de�ned

by the exclusive-or operation on the virtual proces-

sor address bits reorders data in the local storage of

all processors, but there is no exchange between real

processors. An exclusive-or operation on bits in the

real processor �eld implies an exchange of all data be-

tween pairs of processors. The local address map is

preserved.

2

Lemma 3 The alignment on the bits in the virtual

processor address �eld, and the steps of the multipli-

cation phase corresponding to bits in this address �eld

de�nes a complete matrix multiplication on blocks of

size 2

p�n

0

� 2

p�n

0

.

Lemma 3 follows from the recursive nature of the

binary-re
ected Gray code. This block matrix multi-

plication can be replaced by any suitable matrix mul-

tiplication algorithm in each node, without a�ecting

the part of the algorithm requiring interprocessor com-

munication. For instance, a block, matrix-vector, or

SAXPY [13] based algorithm may be used depending

on the architecture of each node.

Theorem 1 The multiplication of two square matri-

ces of size P � P on an n-cube, 2p � n, can be per-

formed by applying the DNS algorithm [3] to the real

processor address �eld, and by employing any suitable

matrix multiplication algorithm for the local blocks of

size 2

p�n

0

� 2

p�n

0

, assuming consecutive assignment

of matrix elements to real processors.

The time complexity of the algorithm is,

1. Communication:

� Alignment: n

0

P

2

N

.

� Multiplication: (

p

N � 1)

P

2

N

.

2. Arithmetic:

2P

3

N

.

The alignments of the matrices A and B are assumed

to take place concurrently in the above estimates. The

arithmetic time is reduced in proportion to the num-

ber of processors, but the largest communication term

only in proportion to the square root of the number

of processors. The data motion for the matrix A only

uses one cube dimension per processor, and so does

the data motion for B. A total of two cube dimen-

sions are used for each processor, in each step of the

multiplication algorithm. The communications capa-

bility of Boolean cubes of many dimensions is poorly

utilized.

3.3 A block algorithm using all cube di-

mensions

By partitioning the matrixA into 1�n

0

blocks and the

matrix B into n

0

� 1 blocks the matrix multiplication

is transformed into n

0

rank

P

n

0

updates. The idea in

the algorithm below is to perform the communication

for the di�erent high rank updates concurrently. That

is n

0

communication channels per processor are used

for both A and B. The full communications band-

width is used. We refer to the P �

P

n

0

blocks of A

and the

P

n

0

� P blocks of B as big blocks in order to

distinguish this blocking from the big blocks assigned

to individual processors, the small blocks. The naive

block algorithm modi�ed as described below is used

for the multiplication of each pair of big blocks.

3.3.1 Data allocation

Each big block is allocated to the processors with con-

secutive assignment [6] (as in the preceding section).

The address map for A is

(w

r

p�1

w

r

p�2

� � �w

r

p�n

0

| {z }

rp

r

w

r

p�n

0

�1

� � �w

r

0

| {z }

vp0

r

j

w

c

p�1

w

c

p�2

� � �w

c

p��

| {z }

vp1

c

w

c

p���1

� � �w

c

p���n

0

| {z }

rp

c

w

c

p���n

0

�1

� � �w

c

0

| {z }

vp0

c

)

and for B it is

(w

r

p�1

w

r

p�2

� � �w

r

p��

| {z }

vp1

r

w

r

p���1

� � �w

r

p���n

0

| {z }

rp

r

w

r

p���n

0

�1

� � �w

r

0

| {z }

vp0

r

j

w

c

p�1

w

c

p�2

� � �w

c

p�n

0

| {z }

rp

c

w

c

p�n

0

�1

� � �w

c

0

| {z }

vp0

c

)

assuming that n

0

is a power of two and � = logn

0

.

This assumption is only made for notational conve-

nience in the address map. The small blocks are de-

�ned by the �elds labeled vp0. The small block size

for A is

P

p

N

�

P

n

0

p

N

, and for B it is

P

n

0

p

N

�

P

p

N

. Big

blocks are identi�ed by the �eld labeled vp1. The con-

catenated rp and vp0 �elds de�ne the big blocks. Each

such block is distributed uniformly over all

p

N �

p

N

processors.

By Lemma 3 the alignment and subsequent exchange

and multiplication operations related to the vp0

c

�eld

of A and vp0

r

�eld of B de�ne a block matrixmultipli-

cation local to every processor. Note that the lengths

of the two �elds vp0

c

and vp0

r

are the same. The ex-

change on the vp1 �eld is a local memory move. This

exchange implies that in the next several steps a new

pair of big blocks will be multiplied.

3.3.2 Alignment

The dimension of the least signi�cant bit is zero.

The number of 1-bits in the binary representation

of i is jjijj. jSj denotes the cardinality of a set S.

Let D(i) be the ordered set of dimensions (in an in-

creasing order) for which the corresponding bits of

the binary representation of i are one. For example,

D((10110)) = f1; 2; 4g. Clearly, jD(i)j = jjijj.

The alignment is performed on the processor address

�elds alone, i.e., after the alignment processor (k; `)

has column indices

(� � � � � �

| {z }

vp1

c

k � `

| {z }

rp

c

� � � � � �

| {z }

vp0

c

)

of the matrix A, and row indices

(� � � � � �

| {z }

vp1

r

k � `

| {z }

rp

r

� � � � � �

| {z }

vp0

r

)

3

of the matrix B, where � � � � �� denotes all numbers

that can be represented by that bit-�eld. The ma-

trices are properly aligned. For a processor in row k

and column `, the alignment of A involves the set of

cube dimensions D(kj0

n

0

) (the higher-order n

0

cube

dimensions are used for the encoding of rows) and the

alignment of B involves the set of cube dimensions

D(`). Clearly, D(kj0

n

0

) \ D(`) = �. Note that the

set of dimensions involved in the alignment operation

does not depend on the id of big block.

The number of processor dimensions involved in the

alignment ofA is jD(kj0

n

0

)j = jjkjj for processor row k.

The number of dimensions involved in the alignment

of B is jj`jj for processor column `. The data volume

that needs to be communicated per processor is

P

2

N

for

A and B. The naive block algorithmdoes not fully use

the communication bandwidth of the Boolean cube.

We constrain the alignment of a row to be con�ned

to its row subcube, and the alignment of a column to

be con�ned to its column subcube. By Lemma 1 and

Lemma 2 the minimum number of element transfers

in sequence under this constraint is

P

2

N

for A and B.

The alignment of each operand is sped up by a factor

of n

0

by concurrent communication within subcubes,

compared to the algorithm in the preceding section.

Lemma 4 A lower bound for the alignment of A and

B on a Boolean n-cube is

P

2

N

.

Proof: Consider the

N

4

processors in rows f1�

n

0

�1

g

and columns f1�

n

0

�1

g, i.e., the processors to which the

lower right quarter submatrix of each operand is allo-

cated. These

N

4

processors form a (n�2)-dimensional

subcube. Each processor in the subcube needs to ex-

change

P

2

N

elements with the subcube storing the lower

left quarter submatrix of A, and

P

2

N

elements with the

subcube storing the upper right quarter submatrix of

B. The total number of elements that must be sent

out of the subcube is

P

2

2

. The total number of links

that connect to processors outside the subcube is 2

N

4

.

3.3.3 Multiplication

Lemma 5 [11] A lower bound for the data transfer

time of the matrices A and B during multiplication is

P

2

n

0

N

(

p

N � 1).

Proof: Every processor needs to receive

P

2

N

elements

of A from each of (

p

N � 1) processors. The lower

bound for this all-to-all broadcasting within row sub-

cubes is

P

2

n

0

N

(

p

N�1) [11]. But, since all row subcubes

perform the same communication and are fully utilized

for this lower bound the subcube lower bound is also

the total lower bound by Lemma 2. The bound for

B is derived similarly, and since the set of dimensions

used for the broadcasting of A and B are disjoint the

lemma follows.

For the multiplication phase the binary-re
ected Gray

code exchange sequence accomplishes an all-to-all

broadcasting [11] within columns for B, and within

rows for A. Any sequence with this property applied

to both A and B in the same order is acceptable. The

exchange sequence S(n

0

; s), 1 � s � n

0

� 1, is as ap-

propriate as S(n

0

; 0). It follows that n

0

pairs of blocks

can be exchanged concurrently. The total data trans-

fer time for the multiplication phase is

P

2

n

0

N

(

p

N � 1)

for the matrix A and B.

For the rank

P

n

0

algorithm big block column m of A

multiplies block row m of B. All small blocks of big

block m of A and B are subject to the exchange se-

quence S(n

0

;m). Let A(k; `;m) be the small block

assigned to processor (k; `) of big block m of matrix

A. The multiplication phase for big block column m

of A and block row m of B involves the data motion

de�ned by

A(k; `;m) A(k; `� 2

�(t;n

0

;m)

;m);

8m 2 Z

n

0

; 8k; ` 2 Z

p

N

concurrently;

B(k; `;m) B(k � 2

�(t;n

0

;m)

; `;m);

8m 2 Z

n

0

; 8k; ` 2 Z

p

N

concurrently:

The index for time, t, ranges from 1 to

p

N � 1.

Note that the communication for exchanges of A and

B can be performed concurrently. Moreover, since

�(t; n

0

;m

1

) 6= �(t; n

0

;m

2

);m

1

6= m

2

for all t, the com-

munication can be performed concurrently also for all

m 2 Z

n

0

. In any communication step all cube dimen-

sions are used.

Theorem 2 The data transfer time for the described

algorithm with concurrent communication on all ports

of a Boolean n-cube is

P

2

N

+

P

2

n

0

N

(

p

N�1), which is op-

timal within a small constant factor with the operands

distributed uniformly over the processors con�gured as

a product of two n

0

-cubes.

4 Concluding Remarks

We have presented an algorithm for multiplying two

P � P matrices on a Boolean n-cube where n is even

and P � n

p

N=2. The algorithm has a parallel arith-

metic complexity 2P

3

=N , a communication complex-

ity <

P

2

N

+

2P

2

n

p

N

and the minimal storage requirement

O(

P

2

N

). The previous DNS algorithm, while having

the same arithmetic complexity and minimal storage

requirement, has communication complexity a factor

of n=2 higher than our algorithm. Our algorithm has

4

been implemented on the Connection Machine model

CM-2. For the performance on the 8K CM-2, we mea-

sured about 1.6 G
ops, which would scale up to about

13 G
ops for a 64K full machine.

Note that if the storage is su�ciently large to allow

all-to-all broadcasting within rows and columns to be

performed by spanning tree algorithms then n steps

su�ce, and the communications bandwidth can be

fully utilized [11]. But, the storage requirement per

processor is proportional to

P

2

p

N

, i.e., a factor of

p

N

higher than for the algorithm presented here, and is

unlikely to be useful in practice.

It should be noted that the algorithm here can be

generalized to non-square matrices distributed over an

N processor cube con�gured into N

1

�N

2

. The choice

ofN

1

; N

2

depends on the aspect ratios of the two input

matrices. See [10] for a detailed discussion.

It is also possible to generalize Cannon's algorithm

such that the full communication bandwidth of the

cube is used. The generalization can be made since

there exists n edge-disjoint Hamiltonian cycles in a

2n-cube, [4], [1], [16]. The matrices are assigned to

the processors by a two-level partitioning, as in the

algorithm described here. The storage per processor

is the same as for our algorithm. However, the lo-

cal control at each processor is more complicated, be-

cause the known method for constructing the n edge-

disjoint Hamiltonian cycles is quite complex (double

recursion), and the path encoding is complicated.

References

[1] Jacques Aubert and Bernadette Schneider. De-

composition de la somme cartesienne d'un cycle

et de l'union de deux cycles hamiltoniens en cy-

cles hamiltoniens. Descrete Mathematics, 38:7{

16, 1982.

[2] L.E. Cannon. A Cellular Computer to Implement

the Kalman Filter Algorithm. PhD thesis, Mon-

tana State Univ., 1969.

[3] Eliezer Dekel, David Nassimi, and Sartaj Sahni.

Parallel matrix and graph algorithms. SIAM J.

Computing, 10:657{673, 1981.

[4] Marsha Foregger. Hamiltonian decompositions

of products of cycles. Descrete Mathematics,

24:251{260, 1978.

[5] Geo�rey C. Fox, S.W. Otto, and A.J.G. Hey. Ma-

trix algorithms on a hypercube i: Matrix multi-

plication. Technical Report Caltech Concurrent

Computation Project Memo 206, California Insti-

tute of Technology, dept. of Theoretical Physics,

October 1985.

[6] S. Lennart Johnsson. Communication e�cient

basic linear algebra computations on hypercube

architectures. J. Parallel Distributed Computing,

4(2):133{172, April 1987.

[7] S. Lennart Johnsson. Data parallel program-

ming and basic linear algebra subroutines. In

John R. Rice, editor, Mathematical Aspects of

Scienti�c Software, volume IMA series, 14, pages

183{196. Springer Verlag, 1987. YALE/DCS/RR-

584, September 1987, Technical Report DP87-1,

TMC-64, Thinking Machines Corp, 1987.

[8] S. Lennart Johnsson and Ching-Tien Ho. Al-

gorithms for multiplying matrices of arbi-

trary shapes using shared memory primi-

tives on a Boolean cube. Technical Report

YALEU/DCS/RR-569, Dept. of Computer Sci-

ence, Yale University, October 1987.

[9] S. Lennart Johnsson and Ching-Tien Ho. Shu�e

permutations on Boolean cubes. Technical Re-

port YALEU/DCS/RR-653,Department of Com-

puter Science, Yale University, October 1988.

[10] S. Lennart Johnsson and Ching-Tien Ho. Mul-

tiplication of arbitrarily shaped matrices using

the full communications bandwidth on Boolean

cubes. Technical Report YALEU/DCS/RR-721,

Department of Computer Science, Yale Univer-

sity, July 1989.

[11] S. Lennart Johnsson and Ching-Tien Ho. Span-

ning graphs for optimum broadcasting and per-

sonalized communication in hypercubes. IEEE

Trans. Computers, 38(9):1249{1268, September

1989.

[12] S. Lennart Johnsson and Peggy Li. Solutionset

for AMA/CS 146. Technical Report 5085:DF:83,

California Institute of Technology, May 1983.

[13] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and

F.T. Krogh. Basic Linear Algebra Subprograms

for Fortran Usage. ACM TOMS, 5(3):308{323,

September 1979.

[14] E.M. Reingold, J. Nievergelt, and N. Deo. Com-

binatorial Algorithms. Prentice-Hall, Englewood

Cli�s. NJ, 1977.

[15] Quentin F. Stout and Bruce Wagar. Passing mes-

sages in link-bound hypercubes. In Michael T.

Heath, editor, Hypercube Multiprocessors 1987.

Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1987.

[16] Alan Wagner, 1988. Personal communication.

5

