

HARVARD LIBRARY Office for Scholarly Communication

ALD of Manganese Silicate

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Gordon, Roy G., Lu Sun, Qiang Chen, Jin-Seong Park, Sang Bok Kim. 2015. ALD of Manganese Silicate. In Proceedings of the AVS Atomic Layer Deposition Conference, Portland, Oregon, June 28 - July 1.
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:34325478
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP

ALD of Manganese Silicate

Roy G. Gordon,^{1,2*} Lu Sun,² Qiang Chen,³ Jin-Seong Park⁴ and Sang Bok Kim¹

¹Department of Chemistry and Chemical Biology ²School of Engineering and Applied Sciences Harvard University, Cambridge, MA, USA ³Beijing Institute of Graphic Communication, Beijing, China ⁴Hanyang University, Seoul, Korea

*Email: gordon@chemistry.harvard.edu

Outline

Potential Applications of Manganese Silicate ALD Process for Manganese Oxide, MnO ALD Process for Manganese Silicate

Properties of Manganese Silicate

Potential Applications of MnSi_xO_v

Copper wires in computer chips could use MnSi_xO_v as a

barrier to diffusion of copper, water and oxygen
adhesion promoter between copper and insulators
nucleating layer for vapor deposition of copper

Manganese Precursors

melting point: 60 °C boiling point: 120 °C / 0.02 torr

manganese(II) bis(*N*,*N*'-di-*tert*-butylacetamidinate)

melting point: 107 °C boiling point: 100 °C/ 0.07 torr

Saturation Curve for Manganese Oxide Saturated for doses > 10⁻⁵ moles/cycle

Saturation Curve for Manganese Oxide Saturated for doses > 10⁻⁵ moles/cycle

Thickness per Cycle for Manganese Oxide nearly constant from 200 to 340 °C

Rutherford Backscattering Spectroscopy => Stoichiometry MnO Adding O₂ cycles => MnO₂

X-Ray Photoelectron Spectroscopy < 1% C or N impurities

XRD shows polycrystalline MnO

Precursors for Silicon and Oxygen

tris-*tert*-butoxysilanol (TBS)

melting point: 63 - 65 °C boiling point: 205 - 210 °C/ 760 torr

tris-tert-pentoxysilanol (TPS)

melting point: < 20 °C boiling point: 96-99 °C/ 2-3 torr

ALD Conditions for Manganese Silicate

Substrate: SiO₂/Si UV ozone cleaning: 2 min Drying at 350°C: 1 hour

Mn amidinate source =105°C Si/O source (TPS)=120°C

T(substrate)= 350°C

Cycle times (s): 1/30/4/30 (Mn(amd)/purge/TPS/purge)

growth per cycle = 0.43 nm

High growth per cycle due to a catalytic mechanism similar to that of aluminum-catalyzed silica: Dennis Hausmann, Jill Becker, Shenglong Wang, Roy G. Gordon, Science 298, 402 (2002)

Saturation Curve for MnSi_xO_y vs. Silicate Precursor

STEM EDX Mapping of Elements

Composition by Rutherford Backscattering Spectroscopy

Cycles	Mn 10 ¹⁵ at/cm^2	Si 10 ¹⁵ at/cm^2	O 10 ¹⁵ at/cm^2	Mn:Si:O
10	2.32	6.2	24	1 : 2.7 : 10
20	5.56	15	47	1 : 2.7 : 8
50	15.4	41	117	1 : 2.7 : 7.6

Stoichiometry ~ $MnSi_{2.7}O_{7.6}$ so Mn is oxidized to Mn^{4+}

Cu diffusion test

anneal samples in N_2 for 1h at 450 C, use Ni etchant to remove Cu film, then EDX

CV tests after electric field at room temperature

Effectiveness of MnSi_xO_y as a Cu Diffusion Barrier

Composition	Structure	Cu Barrier	Diffusion Pathway
SiO ₂	amorphous	no	open tetrahedral network
MnSi _{2.7} O _{7.6}	amorphous	yes	paths blocked by Mn ions
MnO	polycrystalline	no	grain boundaries

Acknowledgements

Precursors supplied by Dow Chemical, Sigma-Aldrich and Strem Chemical

The work was supported as part of the Center for the Next Generation of Materials by Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science

Facilities at Harvard's Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), previously supported by the U. S. National Science Foundation

