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Abstract 

 

Do children draw upon abstract representations of number when they perform 

approximate arithmetic operations? In this study, kindergarten children viewed 

animations suggesting addition of a sequence of sounds to an array of dots, and they 

compared the sum to a second dot array that differed from the sum by one of three ratios. 

Children performed this task successfully with all the signatures of adults’ nonsymbolic 

number representations: accuracy modulated by the ratio of the sum and the comparison 

quantity, equal performance for within- and cross-modality tasks and for addition and 

comparison tasks, and performance superior to that of a matched subtraction task. The 

findings provide clear evidence for nonsymbolic numerical operations on abstract 

numerical quantities in children who have not yet been taught formal arithmetic. 

 

Keywords 

Numerical cognition, number concepts, arithmetic 
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Nonsymbolic, approximate arithmetic in children: 

Abstract addition prior to instruction 

  

A wealth of evidence suggests that human infants, children, adults in diverse 

cultures, and nonhuman animals share a capacity to represent number. Preschool children 

can compare the cardinal values of large sets of elements, even when the particular 

elements in the two sets differ in modality and format (Barth, La Mont, Lipton, & Spelke, 

2005). Moreover, non-human animals, human infants, and human children and adults 

with no school-based instruction in arithmetic can add and subtract large numbers of 

visual forms or event sequences (Brannon, Wusthoff, Gallistel, & Gibbon, 2001; 

McCrink & Wynn, 2004; Pica, Lemer, Izard, & Dehaene, 2004; Flombaum, Junge, & 

Hauser, 2005; Barth et al., 2005, 2006; Slaughter, Kamppi, & Paynter, 2006; Cordes, 

Gallistel, Gelman, & Latham, 2007; McCrink & Dehaene, 2007). Finally, 5-year-old 

children can perform approximate addition and subtraction of symbolically presented 

numbers (Gilmore, McCarthy & Spelke, 2007).   

In all these cases, number representations have been found to have four signature 

properties. First, representations of number are approximate and subject to a ratio limit: 

performance on comparison, addition, and subtraction tasks declines as the ratio of 

compared values approaches 1 (e.g. Izard & Dehaene, 2008). Second, comparison 

performance is equally accurate when quantities appear in the same vs. different 

modalities (Barth, Kanwisher, & Spelke, 2003; Barth et al., 2005, 2006). Third, addition 

performance is as accurate as comparison performance with matched quantities (Izard & 

Dehaene, 2008; Pica et al., 2004; Barth et al., 2005, 2006). Fourth, addition and 
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comparison performance show higher accuracy than subtraction (Barth et al., 2005, 2006; 

McCrink & Dehaene, 2007).  

Despite these converging findings, the existence of early arithmetic with abstract 

quantities continues to be debated (e.g. Rousselle, Palmers, & Noël, 2004; Mix, 

Huttenlocher, & Levine, 2002; Newcombe, 2002; Simon, 1997; see also Huttenlocher, 

Jordan, & Levine, 1994). Although human adults can add sequences of sounds to spatial 

arrays of dots (Barth et al., 2005) and represent the numerosities of visual and auditory 

sequences in a common brain region (Piazza, Mechelli, Price, & Butterworth, 2006), 

abstract arithmetic could arise from years of experience with symbolic arithmetic. To 

date, human infants and nonhuman primates have been shown to add and subtract 

quantities in different modalities and formats only when the two numbers are very small 

(Church & Meck, 1984; Feron, Gentaz, & Streri, 2006; Jordan & Brannon, 2006; 

Kobayashi, Hiraki, Mugitani, & Hasekawa, 2004; Kobayashi, Hiraki, & Hasegawa, 2005; 

Nieder, Diester, & Tudusciuc, 2005). Addition and subtraction of small numbers may 

depend, however, upon a system that represents small numbers of items and holds them 

in working memory  (commonly called “parallel individuation; e.g. LeCorre & Carey, in 

press; 2007) rather than upon explicitly numerical processes (Carey, 2004; Hauser & 

Spelke, 2004; Feigenson, Dehaene, & Spelke, 2004; Simon, 1997; Xu, 2003).   

Two series of previous experiments provide suggestive evidence for arithmetic 

operations on abstract numerical quantities in five-year-old children with no formal 

training or relevant symbolic number knowledge (Barth et al., 2005; Gilmore et al., 

2007). In the experiments of Barth et al., (2005), children successfully compared sets of 

dots to sequences of sounds, and they added two sets of dots and compared the resulting 
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sum to a sound sequence, with accuracy equal to that of tasks requiring comparison of the 

sum to a third array of dots. Follow-up tests showed that children succeeded without 

recourse to various non-addition strategies. These tasks, however, did not require children 

to perform addition across sets presented in different sensory modalities. In the 

experiments of Gilmore et al. (2007), children added or subtracted large sets presented 

symbolically (as number words and Arabic symbols) and compared the sum to a third, 

symbolically presented number. It is possible, however, that children solved this task by 

converting each symbolic number to a nonsymbolic visual representation of numerosity, 

and then by adding these numerosities in a modality-specific format. Thus, it is not clear 

whether preschool children or animals can perform arithmetic operations on abstract 

quantities, or whether they mimic these operations through spatial transformations of 

visual arrays (see Barth et al., 2005; Mix et al., 2002; Huttenlocher, Jordan, & Levine, 

1994).  

Here we used a modified version of the task of Barth et al (2005) to test whether 

children can add a visual array of dots to an auditory sequence of sounds, and then 

compare the result to another dot array. Children performed this task reliably and without 

resort to comparison strategies that are alternatives to true addition (e.g., say the 

comparison array is larger than the sum when it is particularly large). Finally, we tested 

for the four signatures of adults’ abstract number representations. Children’s performance 

showed all four signatures, providing evidence for a system of abstract computation that 

is shared by preschool children and adults. These findings provide the first evidence for 

the addition of abstract representations of large numbers prior to arithmetic instruction. 
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Experiment 1 

The first experiment investigated whether kindergarten children can add large sets 

of elements when the addition operation requires them to integrate numerical information 

across different sensory modalities and stimulus formats: visual spatial arrays and 

auditory temporal sequences.  

 

Method 

Participants were 16 children (5 years 6 months to 6 years 10 months; mean 6 

years 2 months) recruited from Massachusetts kindergarten classrooms through letters 

sent home to children’s parents. Most of the children tested in this series of studies were 

white and middle-class, but the sample included children of a range of ethnicities and 

socioeconomic backgrounds reflecting the diversity of the local population. No 

information was available about languages spoken in the children’s homes or parental 

education level. Children were tested individually at their schools. Displays were 

presented on a Macintosh G3 iBook laptop using the VisionShell stimulus presentation 

software. Children were introduced to the task as a computer game (adapted from the 

procedure of Barth et al., 2005) and were introduced to the stimuli before the test trials 

began. First, children saw two example animations in which an array of blue dots 

appeared all at once in the lower left corner of the screen and were told, “Look, here are 

some blue dots! And in this game, more blue dots come in when you hear this sound – 

see, here they come!” More blue dots appeared in the array, one by one, each 

accompanied by a sound. In two more example animations, children were shown that the 

dots could “appear” one by one even while hidden by an occluder. The first array of blue 
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dots appeared as before, and the child was told “Here are some blue dots, and here’s a 

blue box covering them up” as a blue rectangle moved into view, stopping at the bottom 

left of the screen to cover the array. The experimenter then said “Now, the blue dots will 

come in and hide behind the box when you hear that sound. You won’t see them, but 

you’ll still hear them!” after which a sequence of sounds played, too quickly for verbal 

counting, and the child was told, “Now all the blue dots are hiding back there.”  The 

occluder disappeared, revealing the altered blue dot array, and the child was told “See? If 

I take away the box, there they are!”  

Next children were familiarized with the full procedure in two training trials. 

They were told “Now you’ll see how the whole game works. Here are some blue dots 

[first set of blue dots appears]. Now they are covered by a box [blue rectangle moves into 

place]. And now here come some more blue dots hiding behind the box – listen! 

[sequence of sounds plays]. Now the blue dots are all back there. And now, here are some 

red dots too! [red dot array appears all at once on the bottom right] And the red dots get 

covered up too [pink occluding rectangle moves into view to cover the red dot array]. Are 

there more blue dots hiding here [indicating the blue occluder], or more red dots hiding 

here [indicating the pink occluder]? After the child responded, the occluders were 

removed to reveal the dot arrays. Children therefore received meaningful feedback only 

on these two trials. Finally, children received two easy practice trials. The same 

procedure was followed except that the arrays were not revealed at the end, the 

numerosities of the sets differed extremely to make discrimination easy, and children 

were allowed to respond.  Children’s responses on these trials were almost always 

correct; children were given mildly positive feedback regardless of response.  
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Eighteen test trials followed the general procedure of the two easy practice trials 

(see Figure 1A), except that for test trials, the numerosities of the sum and the 

comparison array differed by ratios of 4:7, 4:6, or 4:5, with the comparison array more 

numerous on half the trials. Table 1 presents the numerical values of all the problems 

used in Experiment 1. Columns 1-4 list the first operand (the first array “X”, column 1), 

the second operand (the sound sequence “Y”, column 2), the never-presented sum 

(“X+Y”, column 3), and the foil (the second array “Z”, column 4). Column 5 lists the 

comparison ratio (collapsed over sum: foil and foil: sum ratios) and Column 6 lists the 

correct answer to the problem (which is larger, sum X+Y or foil Z?). The remaining 

columns provide information about each problem with respect to various alternative non-

addition strategies, discussed below.  Test trials were presented in a different 

pseudorandom order for each child, and different stimulus sequences and arrays were 

generated for each child. Two additional easy trials were interspersed with the test trials. 

Set sizes ranged from 16 to 56 elements (mean 37), and numerosities were matched as 

closely as possible across the three ratio conditions. The dot stimuli were red or blue 

filled circles (2.7 mm diameter) presented within an invisible rectangular envelope (width 

6.4 cm, height 4.6 cm). Sounds were abbreviated (18 ms) versions of a typewriter key 

sound effect, and sound sequences were presented in an irregular rhythm (average ISI 

700 ms) with total durations ranging from 640 ms to 3.46 s in duration. Stimuli were 

presented too briefly for children to count verbally 1. Mildly positive feedback was given 

on all trials. 

 

---insert Figure 1 about here--- 
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Problems were designed so that choices based on some simple non-addition 

strategies would lead to chance performance, whereas other non-addition strategies 

would lead to above-chance performance overall but chance performance on critical 

subsets of trials that were analyzed separately. Because the task required children to 

integrate information across both sensory modalities and stimulus formats (temporal and 

spatial), it is unlikely that continuous quantity cues (such as area, density, duration, and 

rate) could guide performance. Nevertheless, dot arrays varied in element size, array size, 

and density to control for some of these variables and to allow tests for the others (see 

Results).  

 
 

Results  

Overall performance levels. Children performed well above chance on the 

addition task (73%, sM=4.63, t(15)=5.681, p<.0001, d=1.42), answering successfully for 

all three ratios (0.57: 78%, sM=4.75, t(15)=4.743, p<.0001, d=1.48; 0.67: 71%, sM=5.15, 

t(15)=4.038, p<.0006, d=1.01; 0.8: 69%, sM=4.00, t(15)=4.7, p<.0002, d=1.18; see the 

solid line in Figure 2A). Performance on the present cross-modal addition task was 

compared to kindergarten-age children’s performance in an earlier within-modality 

addition study (adding two dot arrays and comparing the sum to a third array; Barth et al., 

2005) with a 2 (Modality: within vs. across) by 3 (Ratio) ANOVA. There was a main 

effect of Ratio, (F(2,62)=11.406, p<.001, 

! 

"2=.269) and a linear contrast analysis showed 

that performance declined as the ratio approached 1 (F(1,31=25.512, p<.001, 

! 

"2=.451). 

There was no effect of Modality: this cross-modal addition task yielded an overall 
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accuracy score of 73% correct, whereas children were 66% correct overall on the 

previously reported within-modality addition task.  

Tests for alternative strategies. Table 1 provides information about each 

presented problem with respect to various alternative non-addition strategies that we 

explored. When a problem is listed as “1” with respect to a particular strategy, the 

strategy predicts the correct answer for that problem. A “-1” indicates that the strategy 

predicts the incorrect answer, and a “0” means that the strategy does not provide a clear 

prediction for that problem (if, for example, the quantities to be compared according to 

the strategy in question are too similar to discriminate). Many simple non-addition 

strategies would lead to chance performance overall. In particular, children would 

perform correctly on half the trials, but incorrectly on the other half, if they simply chose 

the sum X+Y as larger for all trials (Column 7),  chose the foil Z as larger (Column 8), or 

compared the second operand Y to the foil Z second addend (Column 9). Children could 

perform above chance overall, however, if all children, or a critical subset of children, 

compared the first array X to the foil Z, ignoring the second operand (the sound sequence 

Y). To test for the use of this X vs. Z strategy (Column 10), we compared accuracy on 

those problems for which the strategy predicts the correct answer (10 trials per child, 

68% correct overall, sM=6.83) with accuracy on those problems for which it does not  (8 

trials per child, 74% correct overall, sM=5.28). Children performed above chance for both 

types of problems (t(15)=2.648, p<0.001, d=0.66; and t(15)=4.581, p<0.0002, d=1.15, 

respectively) and the two types did not differ from each other (t(15)=0.62, p>0.05). We 

conclude that children did not use the X vs. Z strategy 2.  
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Children could also perform above chance if they pursued a strategy based on the 

overall range of numerosities presented across trials, by guessing “more blue dots” 

whenever the first array X was especially large or “more red dots” whenever it was 

especially small, or by making analogous guesses based on the size of the second dot 

array Z. These strategies produce better-than-chance accuracy levels overall, because 

roughly half of the trials in each experiment contained extreme values that were 

informative about the correct answer (see Column 11 for the extreme X-value strategy 

and Column 12 for the extreme Z-value strategy). The other half of the trials, however, 

did not contain extreme values and so such strategies made no prediction: children using 

these strategies would produce chance performance levels on this subset only. 

Accordingly, analyses in considered performance separately for the subsets of trials for 

which range informative was predictive vs. not predictive of the correct response. 

Performance was above chance for trials that could not be answered correctly using these 

range-based strategies (strategies based on the first array: 74%, sM=4.83, t(15)=5.029, 

p<.0001, d=1.26; second array: 71%, sM= 4.75, t(15)=4.315, p<.001, d=1.08; see Figure 

2B and 2C). Therefore, children’s success at this task did not depend on these range-

based strategies 3. 

 

---insert Figure 2 about here--- 

 

Computations based on continuous variables rather than discrete numerosity 

could enter into children’s judgments in the present cross-modal tasks, if children 

combined estimates of the magnitude of a dot array’s spatial extent and the magnitude of 
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a sound sequence’s temporal extent. Because the duration of the sound sequence was 

consistently longer for more numerous sequences, this was a possible strategy for 

children. As a result of the choice to generate new dot arrays, with different dot positions, 

for each child, there are no fixed subsets of trials in which array extent is or is not 

correlated with numerosity. Nevertheless, numerosity was more likely to be correlated 

with spatial extent for the subset of problems in which the first array X contained 

relatively few dots. This is because the dot arrays were presented in a relatively small 

rectangular envelope on the screen (see Methods): as the number of dots increased, the 

spatial extent of the array could not continue to increase beyond this envelope. For larger-

numerosity arrays, the density of the array rather than its spatiotemporal extent would 

tend to be correlated with numerosity. We classified trials whose first arrays contained 24 

or fewer dots as more susceptible to the spatiotemporal extent strategy in order to create 

two roughly equal trial subsets (see Table 1, Column 13). Trials in which the 

spatiotemporal extent strategy predicted the correct answer and trials in which it did not 

provide useful information produced the same level of accuracy (73%, sM= 6.48, and 

73%, sM= 4.52 for the two trial types, respectively), suggesting that children did not rely 

on this strategy 4. 

 

Discussion 

Children successfully performed the across-modality addition task, and their 

accuracy was dependent upon the ratio of the numerosities of the sum of the first two sets 

and the comparison set. Performance on the present across-modality addition task did not 

differ from children’s performance on a previous within-modality addition task (Barth et 
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al., 2005). Analyses of critical subsets of trials revealed that children did not succeed at 

the addition task through guessing strategies based on the sizes of single arrays (for 

example, judging that there were more blue dots when the first array was particularly 

large). Performance also did not depend on other numerical comparison strategies or on 

computations based on continuous quantities.  

Could children have succeeded at this task by drawing on their skills at verbal 

counting and learned symbolic arithmetic? These children had not received school-based 

training in arithmetic, but they may have been exposed to relevant arithmetic training in 

other contexts. It is unlikely that such training was responsible for success at this task for 

at least four reasons. First, the task itself discouraged verbal counting 1. Second, children 

can perform approximate nonverbal addition on visual sets that involve numerosities that 

fall outside their verbal counting range (Ballinger & Barth, 2007). Third, the children in 

the present study participated in a symbolic arithmetic post-test designed to screen for 

knowledge of exact symbolic arithmetic facts. In the post-test, children were asked to 

produce a small subset of the sums used in the nonsymbolic computerized task (“If there 

were 28 kids in a pool, and 8 more jumped in, how many kids would be in the pool?”). 

Children were not able to retrieve answers to these questions from memory, suggesting 

that they did not possess knowledge of arithmetic facts relevant to this task. They did 

possess knowledge of a procedure that could lead to the answer: nearly all children used a 

verbal counting-up strategy, counting slowly out loud and tallying on their fingers. This 

strategy was not applied during the nonsymbolic computerized task . Finally, recent 

experiments by Gilmore et al. (2007) provide evidence against the hypothesis that 

children could have solved the present nonsymbolic task by drawing on exact arithmetic 
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knowledge. Children from the same population that we tested were given a simple 

forced-choice symbolic arithmetic task with the same structure as our nonsymbolic task. 

Performance on the symbolic arithmetic task was approximate, not exact: accuracy was 

dependent on the ratio of the presented alternatives (as in the present nonsymbolic task), 

and children were unable to distinguish the correct sum from a close alternative (Gilmore 

et al., 2007). This finding is inconsistent with the idea that children arrived at their 

responses through verbal counting and learned, exact symbolic arithmetic. Although 

these children may have had informal exposure to symbolic arithmetic, they do not draw 

on this knowledge in the present nonsymbolic task. 

Taken together, the findings of Experiment 1 demonstrate that children succeeded 

at this cross-modal addition task, and that success was not due to alternative non-addition 

strategies. Moreover, children’s performance showed two signatures of nonsymbolic 

addition in adults: an effect of ratio on performance and equally high addition 

performance on within-modality and cross-modal tasks. Accordingly, the next 

experiments tested whether children share two additional signatures of adults’ 

nonsymbolic arithmetic performance: equal performance of addition and comparison 

(Experiment 2), and poorer performance of subtraction than of comparison (Experiment 

3). 

 

Experiment 2 

This experiment investigated whether children’s cross-modal addition 

performance is as accurate as simple comparison of two arrays. Children performed a 

comparison task identical to the addition task of Experiment 1 in all respects except one: 
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all the elements in the two addend sets of Experiment 1 were presented together, as a 

single sound sequence. If children show comparable accuracy at cross-modal addition 

and comparison tasks, performance in Experiment 2 should be similar to that of 

Experiment 1. 

 

Method 

A new group of 17 children (5 years 8 months to 6 years 8 months; mean 6 years 

3 months) participated in Experiment 2. Children were again recruited from 

Massachusetts kindergarten classrooms through letters sent home to children’s parents. 

Most of the children tested were white and middle-class, but the sample included children 

of a range of ethnicities and socioeconomic backgrounds reflecting the diversity of the 

local population. No information was available about languages spoken in the children’s 

homes or parental education level. Children were tested individually at their schools. The 

method was the same as in Experiment 1, except in two respects (see Figure 1B). No 

initial array of blue dots appeared at the start of a trial. Instead, the blue screen moved 

into place, and children were told “Here come some blue dots” as they heard a sequence 

of sounds. After the sequence, the experimenter said “Now the blue dots are hiding back 

there.” For each comparison problem, the two comparison quantities were equal to those 

of the sum and comparison array from a corresponding addition problem in Experiment 

1; there were 3 ratios, with the visual array larger on half the trials. 

 

Results and discussion 
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Comparison performance was above chance overall (69%, sM= 5.41, t(16)=6.632, 

p<.0001, d=1.61), and at each ratio (0.57: 81%, sM= 4.73, t(16)= 6.654, p<.0001, d=1.61, 

0.67: 65 %, sM=5.41, t(16)= 2.762, p<.007, d= .67; 0.8: 61%, sM=6.06, t(16)=1.833, 

p<.05, d=.44). Performance in Experiment 2 was compared to that of Experiment 1 by a 2 

(Operation: comparison vs. addition) by 3 (Ratio) ANOVA. This analysis revealed a 

significant effect of Ratio, F(2,62)=6.199, p<.005, 

! 

"2=.17) with a significant linear trend 

of declining performance as the ratio of the compared numerosities approached 1 

(F(1,31)=12.327, p<.002, 

! 

"2=.28). There was no main effect of Operation and no 

interaction (F<1): children were equally accurate in the addition and comparison tasks 

(Figure 2a). Children’s nonsymbolic, abstract addition therefore shows a third signature 

of adults’ performance: children can add two quantities and compare the sum to a third 

quantity as accurately as they compare the latter two quantities directly. Accordingly, the 

last experiment tested for the fourth signature of adults’ performance: addition and 

comparison performance that is superior to subtraction performance. 

 

Experiment 3 

Experiment 3 investigates whether kindergarten children successfully subtract a 

sequence of sounds from a dot array and compare the difference to a third set in the form 

of a dot array. Moreover, it investigates whether subtraction performance is less accurate 

than addition and comparison performance for children, as it is for adults. 

 

Method 
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Seventeen children participated in the subtraction task (5 years 6 months to 6 

years 8 months; mean 6 years 1 months). Because the values used in this task necessarily 

differed from those used to test addition, a separate group of 17 children was tested with 

a comparison task (5 years 5 months to 6 years 6 months; mean 5 years 11 months). 

Participants were again recruited from Massachusetts kindergarten classrooms through 

letters sent home to children’s parents. Most of the children tested were white and 

middle-class, but the sample included children of a range of ethnicities and 

socioeconomic backgrounds reflecting the diversity of the local population. No 

information was available about languages spoken in the children’s homes or parental 

education level. Children were tested individually at their schools.  The subtraction 

problems used operands identical to those in the addition task of Experiment 1: for each 

addition problem in the form X+Y vs. Zadd, there was a subtraction problem X-Y vs. Zsub. 

Because the operands were the same, their sums were larger than their differences. 

Therefore comparison task numerosities were modified to match the subtraction 

problems, so that the comparison sets (Zadd) presented in Experiment 1 differed from 

those (Zsub) presented in Experiment 3. Comparison numerosities ranged from 8 to 30 

(mean 18). The difference (X-Y) differed from the third set Zsub by a ratio of 4:7, 4:6, or 

4:5 (or close approximations). Subtraction set sizes ranged from 5 to 40 elements, and the 

mean of the final numerosities to be compared was 18. Table 2 presents the numerical 

values of all the problems used in Experiment 3. Columns 1-4 list the first operand (the 

first array “X”, column 1), the second operand (the sound sequence “Y”, column 2), the 

never-presented difference (“X-Y”, column 3), and the foil (the second array “Z”, column 

4). Column 5 lists the comparison ratio (collapsed over difference: foil and foil: 
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difference ratios) and column 6 lists the correct answer to the problem (which is larger, 

difference X-Y or foil Z?). 

As in Experiment 1, problems were designed so that various non-subtraction 

strategies would lead to chance performance either overall or on a subset of trials, and 

analogous controls for continuous quantity cues were applied here as well. The 

comparison procedure was identical to that of Experiment 2. The subtraction procedure 

was as described previously for the addition task, except that the example sequences now 

demonstrated that each sound accompanied the removal of an existing dot instead of the 

addition of a new dot. The subtraction test trial procedure was similarly analogous to the 

addition procedure (see Figure 1C). 

 

Results  

Overall performance levels.  Children performed reliably above chance on the 

smaller-set comparison task 5 (74%, sM=  3.74, t(16)=10.274, p<.0001, d=2.49). 

Performance was better than chance for all three ratios (0.57: 81%, sM= 3.98, t(16)=7.82, 

p<.0001, d=1.90, 0.67: 81%, sM= 3.98, t(16)=7.82, d=1.90, p<.0001; 0.8: 59%, sM= 3.30, 

t(16)=2.496, p<.02, d=.61; Figure 3A). Children also performed reliably above chance on 

the subtraction task (65%, sM= 4.44, t(16)=5.352, p<.0001, d=1.30; Figure 3A). 

Performance was better than chance except for the most difficult ratio (0.57: 68%, sM= 

3.90, t(16)=4.518, p<.0002, d=1.10, 0.67: 72 %, sM=5.68, t(16)=3.801, p<.0008, d=.92; 

0.8: 56%, sM=3.76, t(16)=1.562, p>.05). Subtraction and comparison performance were 

compared by a 2 (Operation: comparison vs. subtraction) by 3 (Ratio) ANOVA. This 

analysis revealed a significant effect of within-subjects factor Ratio (F(2, 64)=13.311, 
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p<.0005, 

! 

"2=.29), with a significant linear trend of ratio (F(1,32)=18.182, p<.0005, 

! 

"2=.36). There was a significant effect of Operation (F(1,32)=5.861, p<.03, 

! 

"2=.15): 

accuracy was lower for the subtraction task than for its matched comparison task. There 

was no Ratio by Operation interaction.   

Tests for alternative strategies. Table 2 provides information about each 

subtraction problem with respect to various alternative non-subtraction strategies. Some 

of the simple non-subtraction strategies analogous to those tested in Experiment 1 would 

lead to chance performance. We tested for the use of other non-subtraction strategies as 

follows. Compare Y to Z (Column 9): Children were better than chance for the subset of 

trials for which the Y vs. Z strategy either predicted the incorrect answer (5 trials) or 

made no prediction (1 trial), a subset of 6 trials per child total (65% correct, sM=5.34, 

t(16)=2.766, p>0.001, d=0.67). Compare X to Z (Column 10): Children were better than 

chance for the subset of trials for which the X vs. Z strategy either predicted the incorrect 

answer (5 trials) or made no prediction (3 trials), a subset of 8 trials per child total (65% 

correct, sM=4.94, t(16)=2.978, p>0.005, d=0.72). Extreme X-value and extreme Z-value 

strategies (Columns 11 and 12): Analyses treated performance separately for the subsets 

of trials for which range information was predictive vs. not predictive of the correct 

response. There was no evidence that children simply based their judgments on the size 

of the first array X (because they performed better for trials on which this strategy was 

uninformative than for those on which it was informative; see Figure 3B). Importantly, 

children performed at chance on the subset of trials that could not be answered correctly 

with the extreme Z-value strategy (49%, sM=3.67, t(16)<1; Figure 3C). Children’s overall 

above-chance performance, therefore, was observed only on the subset of trials in which 
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a guessing strategy based on the size of the second array predicted the correct answer. 

Spatiotemporal strategy (Column 13): Trials in which the spatiotemporal extent strategy 

predicted the correct answer and trials in which it did not provide useful information led 

to above-chance accuracy levels for both trial types (63%, sM=5.08,  t(16)=2.605, p<0.01, 

d=0.63, and 66%, sM=3.83, t(16)=4.302, p<0.001, d=1.04, respectively) and these did not 

differ from each other (t(16)-0.47, p>0.05), suggesting that children did not rely on this 

strategy 6. 

Addition vs. subtraction operations. A final analysis tested whether subtraction 

performance in Exp. 3 was inferior to addition performance in Exp. 1. Because children’s 

choices in Exp. 3 were influenced by the strategy based on the size of the second array, 

this analysis focused only on performance on the subset of trials in each experiment for 

which this strategy did not apply. Subtraction performance was inferior to addition 

performance on this subset (subtraction 54%, addition 71%, t(31)=2.73, p<0.006, d=.95). 

 

Discussion 

 Experiment 3 provided evidence for two signatures of nonsymbolic arithmetic in 

preschool children. First, these children’s performance of subtraction was less accurate 

than their performance of matched comparison problems. Second, their subtraction 

performance was less accurate than their addition performance. The existence of these 

signatures provides evidence for a system of abstract computation that is common to 

preschool children and educated adults. 

Our analyses suggest that children did not rely on simple comparison strategies or 

continuous quantitative variables. Children also did not tend to guess that the difference 
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was larger (or smaller) than the comparison array when the first dot array was particularly 

large (or small). Indeed, they appeared to perform better when the first dot array was 

intermediate in size, contrary to this strategy (Figure 3B). In contrast to Experiment 1, 

however, tests for the use of a range-based strategy focusing on the size of the final 

comparison array suggested that children may have relied upon a guessing strategy based 

on the size of that array. Children performed above chance only on the subset of trials in 

which this strategy predicted the correct answer (i.e., the subset of trials in which the final 

set either contained a very small number of red dots and was smaller than the difference, 

or a very large number of red dots and was larger than the difference). Although children 

succeeded in the addition task without resort to this strategy (Figure 2C), providing 

evidence for the addition of abstract quantities, our analysis of subtraction task 

performance does not provide conclusive evidence for abstract subtraction. 

This finding is consistent with two interpretations. First, it is possible that children 

did not subtract at all and simply guessed based on the size of the final array presented. 

Second, it is possible that children did subtract in this task but had low confidence in their 

responses. When the final array contained either a very large or a very small numerosity, 

children may have switched strategies and let their choices be determined by that array’s 

size. If the latter interpretation is correct, subtraction accuracy was not good enough to 

result in above-chance performance on this task. We return to these possibilities below. 

 

General Discussion 

Our experiments provide the first evidence for children’s approximate, 

nonsymbolic addition of abstract large numerical quantities prior to relevant arithmetic 
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instruction. Kindergarten children added numerical quantities presented in different 

stimulus modalities and formats without verbal counting and without the use of 

alternative non-addition strategies (such as those based on the numerosity of a single set, 

or on continuous variables correlated with numerosity). Though perceptual accounts have 

been proposed to explain children’s performance on tasks that ostensibly involve 

numerical processing (Mix et al., 2002; Rousselle et al., 2004), such explanations cannot 

account for children’s success in Experiment 1. Children evidently possess an addition 

process that can operate on representations of number across modalities or formats, 

providing evidence for a degree of abstraction in children’s approximate large-number 

addition computations.   

Children’s abstract addition performance appears to show four characteristic 

signatures of adults’ nonsymbolic number representations: a ratio limit on accuracy, 

similar performance on cross-modal and within-modality addition, equal performance on 

cross-modal addition and matched comparison, and poorer performance on cross-modal 

subtraction, relative both to addition and to comparison. These common signatures 

provide evidence for a common system of abstract magnitude representation in adults and 

children, emerging prior to the onset of formal large-number arithmetic instruction. 

In contrast to previous research (Barth et al., 2006; Slaughter et al., 2006, Gilmore 

et al., 2007), the present experiments provide no evidence for nonsymbolic subtraction. 

Because children have been shown to subtract quantities successfully when presented 

with purely visual arrays or with symbolic numbers, it is possible that children are able to 

subtract one numerical quantity from another only when the two quantities appear in, or 

can be mapped to, the same modality. Alternatively, young children may be capable of 
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abstract subtraction, but their accuracy may be too low to be detectable in this task, in the 

face of our stringent controls for alternative strategies.  

Previous findings with adults are consistent with the second interpretation. The 

mental magnitudes that underlie these and similar tasks are approximate measures of 

numerosity, and their variability increases with larger numerosities (Gallistel & Gelman, 

2000). These properties combine to decrease the accuracy of subtraction, relative to 

comparison or addition of matched quantities (Izard, 2006; Cordes et al., 2007; McCrink 

& Dehaene, 2007). The comparison ratios employed in the present experiments may 

simply have been too difficult to compensate for this effect, preventing the subtraction 

task from revealing children’s abilities. It is also possible that some property of the 

stimuli made the subtraction task more difficult than the addition task.  For example, 

children may have found it easier to understand that each sound accompanied the 

addition of a dot, than to understand that each sound accompanied the removal of a dot 7.  

If this is the case, then the present task may underestimate children’s across-modality 

subtraction ability.  

Thus, abstract subtraction may be possible for children but highly demanding. 

Consistent with this possibility, children have succeeded at large-number approximate 

subtraction tasks that were less complex than those described here (Slaughter et al., 2006; 

Zur & Gelman, 2004; Gilmore et al., 2007); previous research has suggested that pigeons 

are able to perform numerical subtraction as well (Brannon et al., 2001). Further research 

is needed to determine whether young children possess the ability to draw upon abstract 

numerical representations for subtraction (as adults do), or whether performance in 

previous subtraction tasks was due to cognitive operations that are modality-specific . 
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In summary, a system of abstract number representation, permitting both comparison 

and addition of abstract large numerical quantities, is in place prior to the onset of formal 

large-number arithmetic instruction. Nevertheless, we cannot yet conclude that such a 

system develops independently of language and verbal counting. Although the children in 

the present experiments did not use verbal, symbolic number knowledge in the present 

tasks, children in this age range have mastered the system of verbal counting (LeCorre, 

Van de Walle, Brannon, & Carey, 2006) and show considerable understanding of the 

verbal number system (Lipton & Spelke, 2005, 2006). Studies of younger children or 

cultures lacking a verbal counting routine are needed to probe the possible relationship 

between these aspects of language and abstract number. 
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Notes 

 

1. No child engaged in overt verbal counting, though for the smallest sets (e.g. sets of 3 

items in the two easy practice trials), children sometimes identified the exact number of 

items present. The rapid presentation of the stimuli (with three large sets of elements  

presented in close temporal proximity) and the experimenter’s verbal narration of the 

events in the trial were likely to prevent attempts at silent verbal counting. 

 

2. Could some individual children have used this strategy? In the realm of symbolic 

addition, large differences in strategy choice may be observed across participants (e.g. 

Siegler, 2007). Although most of the children produced data inconsistent with the use of 

the X vs. Z strategy, five of the sixteen children produced data that were consistent with 

its use (better performance on trials for which this strategy gave the correct answer). This 

result are consistent with at least two possible interpretations: these five children could 

have made use of the X vs. Z strategy, or they could have shown a tendency to choose the 

last set encountered (the red set). 

 

3. Half of the children produced individual data that were not consistent with the use of 

range-based strategies (individual accuracy scores of 70% or better for the subsets of 

trials that could not be answered correctly using these strategies). Five of the sixteen 

produced data that were consistent with the use of the size of the first (X) array 

(individual accuracy scores near chance for the subset of trials that could not be answered 

correctly using this), so it is possible that these children were influenced by the size of the 
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first array. Six of the sixteen (including three of the previous five) produced analogous 

results for the strategy based on the size of the second (Z) array. Therefore eight unique 

children produced data consistent with the idea that they might have been influenced by 

individual array size in this task. 

 

4. Four individual participants produced data consistent with the use of this 

spatiotemporal strategy (better performance on trials that were more likely to be 

answered correctly through the use of the strategy). 

 

5. Experiment 3 also provides a means for testing a possible objection to the conclusion 

that Experiment 1 addition performance was as good as comparison in Experiment 2. The 

comparison task presented children with larger sets than the addition task. If these larger 

sets were more difficult for participants to process, perhaps comparison performance 

suffered relative to addition. Experiment 3 contains a comparison task that uses smaller 

numerosities, allowing us to test for potential set size effects. Comparison task 

performance was assessed across Experiments 2 (larger sets, matched to addition 

problems) and 3 (smaller sets, matched to subtraction problems) with a mixed-factor 2 

(Set Size) by 3 (Ratio) ANOVA, with the first factor between subjects. There was a 

significant main effect of Ratio (F(2, 64)=10.616, p<.0005) and a significant linear trend 

of Ratio (F(1, 32)=20.036, p<.0005), but no effect of Set Size: comparisons were as 

accurate for larger sets as for smaller sets.  
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6. Individual children’s performance patterns with respect to alternative strategies for the 

subtraction task were as follows. A majority of the children produced data consistent with 

the use of the Y vs. Z strategy or the X vs. Z strategy. Twelve of the fourteen children 

performed better on trials for which the extreme Z-value strategy predicted the correct 

answer; the remaining five children performed equally well on these trials and on trial for 

which the extreme Z-value strategy was not helpful. Six of sixteen children performed 

better for the subset of trials that were more susceptible to the spatiotemporal strategy, 

and the remaining children produced data inconsistent with the use of that strategy. 

 

7. We thank two anonymous reviewers for this suggestion. 
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Figure Legends 

 

Figure 1. Schematic depictions of test displays and narration for (A) the addition test 

trials of Experiment 1 (B) the comparison test trials of Experiment 2, and (C) the 

subtraction test trials of Experiment 3. 

Figure 2. Accuracy data for the cross-modal addition task (Experiment 1) and matched 

comparison task (Experiment 2). Chance is 50% for all plots. A. Accuracy scores (mean 

and SEM) are plotted against the ratio of the numerosities to be compared. B. Accuracy 

at each comparison ratio for addition trials whose first array represented extreme 

numerical values (near the low end or the high end of the range of numerosities used) and 

for addition trials whose first array included only mid-range values. C. Accuracy at each 

comparison ratio for addition trials whose second array represented extreme numerical 

values (near the low end or the high end of the range of numerosities used) and for 

addition trials whose second array included only mid-range values.  

Figure 3. Accuracy data for the cross-modal comparison and subtraction tasks of 

Experiment 3 (chance is 50%). A. Accuracy scores (mean and SEM) are plotted against 

the ratios of the numerosities to be compared.  B. Accuracy at each comparison ratio for 

subtraction trials whose first array represented extreme numerical values (near the low 

end or the high end of the range of numerosities used) and for subtraction trials whose 

first array included only mid-range values. C. Accuracy at each comparison ratio for 

subtraction trials whose second array represented extreme numerical values (near the low 

end or the high end of the range of numerosities used) and for subtraction trials whose 

second array included only mid-range values. 
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Subtraction and Comparison tasks
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Table 1 
Nonsymbolic Addition Problems of Experiment 1 and Susceptibility to Alternative 
Strategies. 
 
 
1 2 3 4 5 6 7 8 9 10 11 12 13

X Y X+Y Z Ratio

Correct
choice
(larger)

Choose
X+Y
strategy

Choose
Z
strategy

Y vs. Z
strategy

X vs. Z
strategy

Extreme
X-value
strategy

Extreme
Z-value
strategy

Spatio-
temp.
strategy

18 10 28 16 4:7 X+Y 1 -1 -1 0 1 1 1
26 14 40 24 4:7 X+Y 1 -1 -1 0 0 1 0
22 6 28 49 4:7 Z -1 1 1 1 0 0 1
19 5 24 42 4:7 Z -1 1 1 1 1 0 1
27 6 33 56 4:7 Z -1 1 1 1 0 1 0
35 7 42 24 4:7 X+Y 1 -1 -1 1 1 1 0
16 8 24 36 4:6 Z -1 1 1 1 1 0 1
22 6 28 42 4:6 Z -1 1 1 1 0 0 1
28 8 36 54 4:6 Z -1 1 1 1 0 1 0
30 18 48 32 4:6 X+Y 1 -1 -1 0 0 0 0
26 16 42 28 4:6 X+Y 1 -1 -1 0 0 1 0
35 19 54 36 4:6 X+Y 1 -1 -1 0 1 0 0
18 10 28 35 4:5 Z -1 1 1 1 1 0 1
24 8 32 40 4:5 Z -1 1 1 1 0 0 1
32 8 40 32 4:5 X+Y 1 -1 -1 0 1 0 0
40 10 50 40 4:5 X+Y 1 -1 -1 0 1 0 0
32 12 44 55 4:5 Z -1 1 1 1 1 1 0
20 10 30 24 4:5 X+Y 1 -1 -1 0 0 1 1
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Table 2 
Nonsymbolic Subtraction Problems of Experiment 3 and Susceptibility to Alternative 
Strategies 
 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

X Y X-Y Z Ratio

Correct
choice
(larger)

Choose
X-Y
strategy

Choose
Z
strategy

Y vs. Z
strategy

X vs. Z
strategy

Extreme
X-value
strategy

Extreme
Z-value
strategy

Spatio-
temp.
strategy

18 10 8 14 0.57 Z -1 1 1 -1 1 0 1
26 14 12 21 0.57 Z -1 1 1 -1 0 0 0
22 6 16 28 0.57 Z -1 1 1 1 0 1 1
19 5 14 8 0.57 X-Y 1 -1 -1 1 1 1 1
27 6 21 12 0.57 X-Y 1 -1 -1 1 0 0 0
35 7 28 16 0.57 X-Y 1 -1 -1 1 1 0 0
16 8 8 12 0.67 Z -1 1 1 -1 1 0 1
22 6 16 24 0.67 Z -1 1 1 0 0 1 1
28 8 20 30 0.67 Z -1 1 1 0 0 1 0
30 18 12 8 0.67 X-Y 1 -1 1 1 0 1 0
26 16 10 7 0.67 X-Y 1 -1 1 1 0 1 0
35 19 16 11 0.67 X-Y 1 -1 1 1 1 0 0
18 10 8 10 0.8 Z -1 1 0 -1 1 0 1
24 8 16 20 0.8 Z -1 1 1 -1 0 0 1
32 8 24 30 0.8 Z -1 1 1 0 1 1 0
40 10 30 24 0.8 X-Y 1 -1 -1 1 1 1 0
32 12 20 16 0.8 X-Y 1 -1 -1 1 1 0 0
20 10 10 8 0.8 X-Y 1 -1 1 1 0 1 1


