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ksRepo: a generalized platform for
computational drug repositioning
Adam S. Brown1, Sek Won Kong2, Isaac S. Kohane1 and Chirag J. Patel1*

Abstract

Background: Repositioning approved drug and small molecules in novel therapeutic areas is of key interest to the
pharmaceutical industry. A number of promising computational techniques have been developed to aid in repositioning,
however, the majority of available methodologies require highly specific data inputs that preclude the use of
many datasets and databases. There is a clear unmet need for a generalized methodology that enables the
integration of multiple types of both gene expression data and database schema.

Results: ksRepo eliminates the need for a single microarray platform as input and allows for the use of a variety of drug
and chemical exposure databases. We tested ksRepo’s performance on a set of five prostate cancer datasets using the
Comparative Toxicogenomics Database (CTD) as our database of gene-compound interactions. ksRepo successfully
predicted significance for five frontline prostate cancer therapies, representing a significant enrichment from over 7000
CTD compounds, and achieved specificity similar to other repositioning methods.

Conclusions: We present ksRepo, which enables investigators to use any data inputs for computational drug
repositioning. ksRepo is implemented in a series of four functions in the R statistical environment under a BSD3
license. Source code is freely available at http://github.com/adam-sam-brown/ksRepo. A vignette is provided to
aid users in performing ksRepo analysis.
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Background
Repositioning of previously approved drugs is a promis-
ing methodology because it reduces the cost and dur-
ation of the drug development pipeline and reduces the
likelihood of adverse events [1–4]. High-throughput re-
positioning efforts are especially appealing given their
ability to yield many potential development opportun-
ities [5–7]. A major goal in repositioning is the develop-
ment of in silico tools that reduce the number of
potential candidate molecules to be screened while also
suggesting unlikely and novel possibilities. To this end, a
number of groups have developed computational ap-
proaches that display high degrees of both sensitivity
and specificity [8]. Many successful computational repo-
sitioning methodologies have relied on comparing indi-
vidual disease RNA-level expression profiles to large
databases of pre-generated multi-drug exposure profiles

or known gene-drug interactions [9–12]. Unfortunately,
the majority of these methodologies are hindered by
their need for specific data types and formats, including
requirements for detailed genomic or phenotypic anno-
tations [9, 10], expression levels from a single microarray
platform [12], and pre-determined databases of drug-
gene interactions [13]. These limitations prevent investi-
gators from utilizing newer profiling technologies, such
as RNA-seq, and from utilizing alternative or proprietary
compound exposure profiles. Despite these drawbacks,
numerous successes using these techniques, including
the highly cited Connectivity Map (Broad), suggest the
utility of a pipeline capable of surpassing these hin-
drances [12, 14–17].
To address these limitations, a universally applicable

computational repositioning tool should have flexibility
in the types of data sets and databases that can be used.
Specifically, we envision such a tool having 1) the ability
to interrogate any case/control disease study-derived ex-
pression profile, 2) the ability to use any compound
database, including those with limited numbers of gene-

* Correspondence: Chirag_Patel@hms.harvard.edu
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA
02115, USA
Full list of author information is available at the end of the article

© 2016 Brown et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Brown et al. BMC Bioinformatics  (2016) 17:78 
DOI 10.1186/s12859-016-0931-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0931-y&domain=pdf
http://github.com/adam-sam-brown/ksRepo
mailto:Chirag_Patel@hms.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


drug interactions, and 3) an extensible, open-source distri-
bution. Here, we propose a generalized tool for computa-
tional repositioning that builds on the successes of
previous expression-based repositioning tools while allow-
ing greater flexibility for the investigator called ksRepo.
Our methodology modifies the Kolmogorov-Smirnov (KS)
enrichment approach used by the Broad Connectivity
Map to enable the use of any expression-level disease
study with any database containing, at minimum, gene-
drug interactions from any source (with or without infor-
mation about the directionality of association) [12, 13].
The only requirement of our methodology is that there is
a common identifier system to which the information
from both the disease and exposure databases can be con-
verted (see Fig. 1). Unlike many popular repositioning
tools (e.g. [9–13]), we provide source code for ksRepo that
enables investigators to extend our methodology as new
datatypes become available. We demonstrated our meth-
odology using five independent freely available Prostate
Cancer datasets [18–22] downloaded from the Gene
Expression Omnibus (GEO) [23] and the open-source
gene-drug interaction database, the Comparative Toxi-
cogenomics Database (CTD) [24].

Methods
GEO dataset processing
All GEO datasets were accessed through the NCBI GEO
portal and analyzed using the integrated GEO2R tool

[23]. As input for GEO2R, we classified each sample
within a GEO series as either normal tissue or tumor tis-
sue. GEO2R provides a list of all probes (and corre-
sponding gene aliases) ranked according to their degree
of differential expression. We imported all of the results
from GEO2R into R [25] and converted all gene aliases
into EntrezGene Identifiers using the org.Hs.eg.db R
package [26]. The prostate cancer datasets used in this
study are GSE3868, GSE12348, GSE45016, GSE55945,
and GSE6919 [18–22]. The five prostate cancer datasets
were chosen on the basis of three criteria: (1) the expres-
sion profiles were derived from primary prostate cancer
cells, as opposed to cell lines or short-term cultures, (2)
there were healthy prostate tissue controls included in
the study, and (3) tissue samples were from fresh-frozen
biopsies, and not preserved (e.g. by FFPE).

CTD database construction
To generate a ksRepo-compatible database, we first down-
loaded the entirety of the CTD and imported the database
into R (downloaded February, 2014). The CTD contains
manually curated compound-gene interactions collected
from the primary literature by trained experts [24]. We fil-
tered the full database for literature-supported interac-
tions between compounds and human genes or gene
products (e.g. transcripts, proteins, or peptides). Following
filtering, the resulting database contained interactions be-
tween 7170 compounds and 18,768 unique human genes.

Fig. 1 ksRepo can use any input data types. a Preparation of arbitrary expression data is accomplished by conversion to Entrez ID using manufacturer
or online annotation tools followed by the user’s preferred algorithm for determining differential gene expression. b Preparation of an arbitrary database
only required conversion to Entrez ID, which is often provided by the database directly
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Of these 7170 compounds, 1660 are drugs approved by
the FDA. A script for converting the downloadable files
from CTD to a ksRepo compatible format is available in
the ksRepo GitHub repository (CTDget.R script).

Kolmogorov-Smirnov enrichment score calculations
Our modified method is analogous to an “inverse” version
of the Connectivity Map implementation in that we com-
pare a single instance (complete gene expression profile)
to a number of signatures (short compound-gene inter-
action lists) rather than comparing a single signature to a
number of instances. In addition, we focus on interaction
without directionality to accommodate compound expos-
ure databases with no regulatory component or conflicting
regulatory information. In addition, we consider all genes
in the ranked instance gene list regardless of signifi-
cance to ensure overlap between the instance and sig-
natures. KS enrichment scores for our method are
calculated as follows.
Let n be the number of genes in the instance and t be

the number of genes in a given signature. Order all n
genes in the instance by their differential expression.
Construct a vector V of the position (∈ {1,…,n}) of each
signature gene in the instance ordered gene list and
sort these components in ascending order such that V(j)
is the position of gene j, where j ∈ {1,…,t}. Calculate the
following values:

a ¼ max
t

j¼1

j
t
−
V jð Þ
n

� �
ð1Þ

b ¼ max
t

j¼1

V jð Þ
n

−
j−1ð Þ
t

� �
ð2Þ

and set KS = a if a > b. Else set KS = −b.
Both a and b quantify differences in the expected dis-

tribution of gene ranks (∈ {1,…,n}) and the observed
sample of ranks in the signature. The value a ∈ U(0,1)
and scales inversely with the mean signature rank
(mean V(j)), with deviations proportional to the stand-
ard deviation of signature rank; the value b is the in-
verse of a. If a > b, then the mean signature rank is low,
corresponding to enrichment, and we assign a as the KS
score. If b > a, we assign -b as the KS score. In this way,
signatures with highly enriched gene sets are assigned
highly positive KS scores, while signatures with unen-
riched or inversely enriched (e.g. very high mean signa-
ture rank) are assigned KS scores near zero or negative
KS scores respectively.
Because our KS test statistic has no empirical distribu-

tion, we calculated significance by bootstrapping as follows.
Construct a vector L of the number of genes in each signa-
ture. For each unique ℓ in L, generate 10,000 independent
resamples of the instance gene list of length ℓ and calcu-
late KS scores for each resample. For each signature,

compare the observed signature KS score to the corre-
sponding resample with the same number of genes. Set the
p value of that signature as the proportion of resample KS
scores that exceed the signature KS score and FDR adjust
to correct for multiple hypothesis testing [27].

ksRepo implementation
We implemented ksRepo testing in R as a series of four
functions. The core testing function, ks_single, performs
KS enrichment testing between the ranked instance
gene list and one unranked signature gene list (see
Fig. 2). Bootstrapped P-value calculation is accomplished
by the functions boot_ks and boot_p. The final function
included in the implementation, repo, is a wrapper func-
tion which calls the other three functions and formats
the output. All four functions are available for
non-commercial use from GitHub (http://github.com/
adam-sam-brown/ksRepo). In addition, we provide a
comprehensive vignette that demonstrates the use of
ksRepo using one of the prostate cancer datasets,
GSE6919, described above.

Results and discussion
We implemented ksRepo, an expression-based, generalized
tool for computational drug repositioning. ksRepo avoids
the requirements of currently available methods for spe-
cific data inputs [9–13]. Our methodology is capable of
utilizing any pair of disease expression dataset and com-
pound exposure database with the simple constraint that
they be mappable to a single, common identifier system.
Once an investigator has chosen the two inputs, our
method straightforwardly expands the methods of Lamb
and colleagues [12] to allow for varying numbers and types
of gene-compound associations in the exposure database.
We then compute K-S enrichment scores for each
compound and report bootstrapped and FDR-corrected
p-values for ease of interpretation.
To demonstrate ksRepo’s applicability, we applied our

method to five independent prostate cancer datasets
(GSE3868, GSE12348, GSE45016, GSE55945, and GSE6
919) from three distinct microarray platforms, and
attempted to detect signal from FDA-approved prostate
cancer therapies from the CTD. The CTD reports expert
curated gene-compound interactions from the primary lit-
erature. Unlike currently available methods (e.g. [9–13]),
in which a full profile is necessary, ksRepo is able to
analyze the CTD and databases like it. We also note that
the use of three distinct microarray platforms precludes
the use of some methods (e.g. [12, 13]), but is possible
with ksRepo.
We first identified all FDA-approved prostate cancer

therapies using DrugBank [28] and then determined that
out of 11 small-molecule therapies, seven (Bicalutamide,
Nilutamide, Leuprolide, Zoledronic Acid, Docetaxel,
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Aminoglutethimide, and Estropipate) were also included
in the CTD. We then applied ksRepo to the five GEO
prostate cancer datasets and determined the FDR-
corrected p-values for each of the seven annotated ther-
apies in the CTD. ksRepo predicted on average approxi-
mately 300 compounds (median 319 compounds, FDR-
corrected p-value <0.05) corresponding to a specificity
around 5 %, which is similar to reported specificities for
other repositioning strategies [9–13].
For each of the five prostate cancer datasets we were

able to detect significance for between one and three
FDA-approved therapies at a FDR-corrected p-value less
than 0.05. In each case, this represented a significant en-
richment for approved therapies (Hypergeometric Test,
p < 0.027, expected number of drugs μ = 0.029). Among
compounds, significant prostate cancer therapies ranked
on average in the 3.5th percentile and of the seven ther-
apies, five were significant for at least one of the five
datasets. We did not detect significance for two therap-
ies, Aminoglutethimide and Estropipate; we hypothesize
that due to the nature of the microarray datasets we in-
cluded (tissue from primary, non-metastatic tumors), it
is unlikely that we would detect secondary hormone
modulatory treatments, which are typically used in treat-
ment refractory patients with metastases [29].
These results suggest that ksRepo is a generalized

methodology for computational drug repositioning. Even
after intentionally reducing the information content pre-
sented to our methodology by using a database with a

modest number of gene interactors by compound (as an-
notated in the CTD), we were still able to recover many of
the FDA-approved drugs for prostate cancer. In addition,
we have enabled the use of any microarray platform as in-
put, bypassing an impediment to using a popular reposi-
tioning tool, the Broad Connectivity Map. By allowing
investigators to choose any expression study and drug ex-
posure database we hope to spur the analysis of as-yet un-
explored diseases and databases. Furthermore, because
ksRepo is flexible and generalized, we hope to apply it to a
variety of future projects, including the incorporation of
other exposure databases such as Drugbank [28] and
PharmGKB [30], as well as new input types such as
mRNA-seq and epigenomic information.

Conclusions
Here, we have described ksRepo, a generalized, expression-
level tool for computational drug repositioning. Our imple-
mentation enables investigators to choose any case/control
disease study and exposure database to suit their experi-
mental needs. To validate our method, we applied ksRepo
to five distinct prostate cancer datasets and the Compara-
tive Toxicogenomics Database (CTD) and ksRepo success-
fully detected significance for a majority of FDA-approved
prostate cancer therapies and significantly enriched for
these compounds from the CTD. Our methodology is im-
plemented in an open-source GitHub repository for free
use. Future work with ksRepo will focus on exploring as-

Fig. 2 ksRepo employs a generalized K-S enrichment test and bootstrapping to determine candidate repositioning targets. See Methods for a
detailed description
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yet under utilized databases and the possibility of incorpor-
ating novel expression and genomic information.

Availability and requirements
Project Name: ksRepo
Project Home Page: http://github.com/adam-sam-brown/
ksRepo
Operating System: Platform Independent
Programming Language: R
License: BSD-3
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