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The effects of acute exposure to high glucose levels as experienced by glomerular mesangial cells in postprandial conditions
and states such as in prediabetes were investigated using proteomic methods. Two-dimensional gel electrophoresis and matrix
assisted laser desorption ionization time of flight mass spectrometry methods were used to identify protein expression patterns in
immortalized rat mesangial cells altered by 2 h high glucose (HG) growth conditions as compared to isoosmotic/normal glucose
control (NG∗) conditions. Unique protein expression changes at 2 h HG treatment were measured for 51 protein spots. These
proteins could be broadly grouped into two categories: (1) proteins involved in cell survival/cell signaling and (2) proteins involved
in stress response. Immunoblot experiments for a protein belonging to both categories, prohibitin (PHB), supported a trend for
increased total expression as well as significant increases in an acidic PHB isoform. Additional studies confirmed the regulation of
proteasomal subunit alpha-type 2 and the endoplasmic reticulum chaperone and oxidoreductase PDI (protein disulfide isomerase),
suggesting altered ER protein folding capacity and proteasomal function in response to acute HG. We conclude that short term
high glucose induces subtle changes in protein abundances suggesting posttranslational modifications and regulation of pathways
involved in proteostasis.

1. Introduction

Renal glomerular mesangial cells (GMCs) functions are
altered in diabetic nephropathy by chronic exposure to high
glucose (HG) or exposure to glycated albumin [1–4]. The
early effects of hyperglycemia are thought to be dominated by
hemodynamic factors including glomerular hyperfiltration
and shear stress leading to damage by microalbuminuria
or proteinuria [5–10]. The early histopathology of diabetic
nephropathy is characterized by a thickening of the glomeru-
lar basement membrane (GBM) and an accumulation of
extracellular matrix (ECM) in the glomerular mesangium.
The damaging effects of chronic hyperglycemia on vari-
ous kidney glomerular cell types such as mesangial cells,
podocytes, and endothelial cells have been intensely studied.

The theories that have been addressed include increased
substrate channeling into the polyol pathway and the hex-
osamine pathways and increased production of reactive
oxygen species (ROS) and activation of protein kinase C
(via advanced glycation end-products (AGE), diacylglycerols
(DAG), and/or reactive oxygen species (ROS)) [11–13]. These
advances in our understanding of the effects of chronic
hyperglycemia on renal physiology have not been matched
by understanding of the effects of acute (2 h) hyperglycemic
conditions episodically experienced by cells like the GMC in
states such as prediabetes. We hypothesize that understand-
ing these acute changes induced by hyperglycemia might
yield insight into the mechanisms through which chronic
hyperglycemia disrupts mechanisms used to maintain nor-
mal glomerular function.
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2. Material and Methods

2.1. Cell Culture. The rat GMC line CRL-2573 (ATCC)
maintained normal growthmedia (DMEM: 5mMD-glucose,
15% FBS) under 5% CO

2
at 37∘C. The cells (passages 10–15)

were plated in Corning T25 flasks and cultured until 70–
80% confluence was reached. Normal media were removed
from cells and replaced with DMEM supplemented with
0.5% FBS/5mM D-glucose. After 24 h, media were removed
and replaced with isoosmotic-normal glucose (NG∗) media
(DMEM-5mM D-glucose, 20mM mannitol, and 0.5% FBS)
or high glucose (HG) media (DMEM: 25mM D-glucose,
0mM mannitol, and 0.5% FBS), for 2 h. For 2DE anal-
ysis, after 2 h treatment, the total protein was collected
as previously described [14] using IPG rehydration buffer
supplemented with protease inhibitors.

2.2. Cell Viability. Cell viability was determined after 2 h HG
and NG∗ treatment using the MTT assay [15] as described by
the manufacturer (Sigma, St. Louis, MO, USA).

2.3. Two-Dimensional Electrophoresis (2DE) and Image Acqui-
sition. 2DE experiments were conducted as reported pre-
viously [14]. Murine GMC protein (75 𝜇g) was rehydrated
overnight into IPG (pH 3–10; 7 cm; Invitrogen) strips. The
strip was focused for a total of 1200–1300Vh with a final
30min focusing period at 2000V constant. Proteins were
separated in the second dimension on 4–12% Bis-Tris mini
gels (8 cm × 8 cm). The gel slabs were fixed in 10% methanol
and 7% acetic acid and then transferred to SYPRO-Ruby
protein gel stain (Molecular Probes, Oregon, USA) for 18
hours. Gels were scanned using a PerkinElmer ProXpress
CCD-based digital imager at 50 𝜇m resolution. The gel/stain
exposure and emission acquisition times were varied to
maximize the detector response while avoiding detector
saturation. The image files were matched, reference gels were
created, and spot volumes were determined using Progenesis
Discovery software (Nonlinear Dynamics, Newcastle upon
Tyne, UK). A student’s 𝑡-test is used to evaluate all matched
spot pairs. Protein spots that were found to have variable spot
volumes between samples were statistically compared by spot
mean and SEM.

2.4. Proteomic Analyses. Protein gel spots were digested as
previously described [14]. MALDI-TOF and TOF/TOF
MS data were acquired on the tryptic digests using an
AB4700 Proteomics Analyzer (Applied Biosystems, Fos-
ter City, CA) and analyzed using Matrix Science Mascot
(ver. 2.0) as described previously [16]. Data was analyzed
assuming (a) monoisotopic peptides masses, (b) cysteine
carbamidomethylation, (c) variable oxidation of methionine,
(d) maximum of one missed trypsin cleavage, and (e) a mass
accuracy of greater than 150 ppm for MS data and 0.3Da for
MS-MS data against the SwissProt (release 52.0, 20070307)
protein database (261513 sequences; 95638062 residues) con-
strained to the mammalian (50870 sequences) taxa. Limita-
tion of the original protein mass was not employed within
the Mascot search. Protein identifications were accepted for
protein identifications that include using MASCOT MS +

MS/MS analysis with significant MOWSE scores (𝑝 < 0.05;
forMSMOWSE score of 60 which equals significance and for
MS/MS MOWSE peptide ion score alone of 40 which equals
significance).

2.5. Confocal Microscopy. Confocal microscopy images were
obtained as previously described [17]. Briefly, multicham-
bered cover glass wells (Nunc, Naperville, CT) were seeded
with GMC cells. Cells were serum starved with 0.5% FBS-
NG medium 24 h before 2 h glucose treatment. Cells were
rinsed three times with PBS that contained calcium and
magnesium and fixed in 3.7% paraformaldehyde in PBS for
10min, followed by permeabilization with 0.025% NP-40 in
PBS for 15min. Cells were incubated with primary antibody
(1 : 250 anti-PHB in PBS/0.025% NP-40) at 20∘C, rinsed five
times with PBS/0.025% NP-40, and incubated with the Alexa
Fluor 488 conjugated secondary antibody (1 : 1000) at 20∘C.
The cells were rinsed five times with PBS/0.025% NP-40,
incubated with 300 nM DAPI for 5min, and rinsed three
times with PBS. Images were acquired using a Zeiss confocal
microscope and analyzed using LSM510 software. Z scan
analysis was performed by scanning at 1𝜇m intervals and
three-dimensional reconstruction of the fluorescence images.
The images for PHB and for DAPI were merged in a single
image to elucidate PHB cellular distribution. Fluorescence
intensity measurements (mean fluorescence intensity per
𝜇m2) were computed per cell (𝑛 = 4-5 cells per treatment
replicate per treatment condition) and used to estimate
differences in PHB nuclear and cytoplasmic distribution.

2.6. Protein Immunoblotting (IB). 1DE and 2DE protein
immunoblots (IB) were conducted as previously described
[14]. Total cell lysate samples were separated by 2DE (𝑛 = 3
HG, 𝑛 = 3 NG∗). For 2DE IB analysis, following IEF of
mesangial proteins, the plastic backing of the IPG strips was
trimmed off. The acidic most point of the strip was aligned
in the IPG well of the Bis-Tris mini gels adjacent to the
MW standard lane of the minigel. This procedure insured
uniform alignment of IPG strips to the MW standards, in
order to compare PHB migration pattern between experi-
mental conditions. Following 1DEor 2DE electrophoresis and
transfer, membranes were immunoblotted for PHB (Santa
Cruz Biotechnologies, Santa Cruz, CA) at a 1 : 1000 dilution
in 5% albumin in Tris-Tween-20 buffered saline (TTBS). PHB
spots were imaged on film with luminol images aligned and
quantified by densitometry analysis comparing the means of
the acidic third and basic third of the PHB charge trains to
the total train densitometry. Additional antibodies used for
1DE immunoblots were anti PDI (Stressgen; San Diego, CA)
at a concentration of 1 : 10,000 and PSMA2 (Cell Signaling;
Danvers, MA) at a concentration of 1 : 1000.

2.7. Analysis of Protein Expressional Networks. Ingenuity
Pathways Analysis bioinformatic tool (Ingenuity Systems,
Mountain View, CA) uses a curated database (Ingenuity
Systems Knowledge Base) of previously published findings
on mammalian biology from the public literature to eval-
uate proteins lists inclusive of expression ratios for protein
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Figure 1: Murine GMC proteome altered by acute (2 h) exposure to HG culture conditions. GMC cells were grown to 80% confluence and
were serum-starved (0.5% FBS) overnight, and were treated for 2 h with 25mM glucose (HG) or 5mM glucose + 20mM mannitol (NG∗)
as an isoosmotic control. Cells were lysed using 2DE buffer and 75𝜇g protein used for 2DE analysis. Proteins whose expression is altered by
2 h HG are annotated on the gel with identifications provided in Table 1. Data are representative of five individual gels for HG and for NG∗
conditions.

expressional patterns. The purpose of the evaluation is to
establish within the lists of provided expressional data rela-
tional networks of protein interactions (e.g., direct protein-
protein interaction and transcriptional control). Analysis
of submitted protein lists with expressional ratios using
the Ingenuity knowledge base was used to identify direct
interactions between mammalian orthologs.

Murine GMC proteins demonstrating statistically signif-
icant expression between 2 h HG and 2 h NG∗ as well were
analyzed by the Ingenuity Knowledge Base and Pathways
Analysis tool. The data output identifies nodes characteriz-
ing individual proteins and edges characterizing biological
relationships. Putative protein networks are rank ordered
according to𝑝 value (−log

10

𝑝 ), where the𝑝 value is ameasure
of random association of the listed proteins.

2.8. Statistical Analysis. Statistical analysis of relative spot
pixel intensity from 2D gels (𝑛 = 5, 2 h each group)
and analysis of PHB, PDI, or PSMA2 for HG versus NG∗
expression by IB was performed using two-tailed, unpaired
𝑡-test. 𝑝 values < 0.05 were considered significant.

3. Results

3.1. Alteration of Protein Expression by Acute High Glucose.
Based on the MTT assay results (data not shown), GMC
viability did not statistically vary between 2 h HG and
NG∗ treatments. To determine proteins regulated by 2 h
HG treatment, protein spot volume lists were curated by

first estimating intergel variability in matched protein spot
volumes (averaged CV for 20 matched spots = 0.17). Next,
all intraglucose treatment matched gel spot volumes having
a CV greater than 0.35 (2 × CV) were discarded. Fifty-one
(51) protein spots had a spot volume CV of less than 0.35 and
uncorrected 𝑡-test values of ≤0.05. Thirty-five protein spots
had increased expression and 16 protein spots had decreased
expression with 2 h HG treatment and all were analyzed
using proteomic methods based on MASCOT MOWSE
scoring including MALDI TOF/TOF peptide fragmentation
(sequence tagging) data with a significance 𝑝 value ≤ 0.05
for all the reported protein identities. A representative 2DE
gel image (with annotations) and tabulated information for
51 regulated protein spots are provided (Figure 1; Table 1). In
general, all proteins identifiedwere observedmigrating in the
gels at the correct molecular weight plus or minus 10% except
for gel spot 5. Cofilin-1was identifiedmigrating at amolecular
weight of approximately 9000Da and a pI of 5.3. Cofilin-1
nominally has a translated molecular weight of 18,749Da and
a pI of 8.2. Two additional cofilin-1 containing gel spots as
well as one HSP10 containing gel spot were observed to focus
on isoelectric points less than 0.5 pH units, more acidic than
expected. Twenty-three proteins were observed to focus on
isoelectric points greater than 0.5 pH units, more basic than
expected. The remaining gel spots identified proteins within
0.5 pH units of the expected pI.

3.2. Analysis of Protein Expressional Networks. Bioinformatic
analysis of protein expression in 2 h NG∗ versus 2 h HG
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Table 1

Spot Protein name Gene product (HG/NG∗) Theoretical Observed IPA network Percent coverage
𝑀
𝑟

pI 𝑀
𝑟

pI
1 Not identified 1.23
2 10 kDa heat-shock protein, mitochondrial CH10 RAT 2.37 10895 8.9 8000 8.3 n/a 77
3 Calpactin I light chain S10AA RAT 1.37 11182 6.3 8000 7.4 1 45
4 Macrophage migration inhibitory factor MIF RAT 1.34 12640 6.8 9000 7.8 3 26
5 Cofilin-1 COF1 RAT 1.5 18749 8.2 9000 5.3 n/a 34
6 Not identified 1.70
7 Not identified 1.24
8 Profilin-1 PROF1 RAT 1.34 15119 8.5 15000 8.4 1 45
9 Cystatin B CYTB RAT 0.82 11303 5.9 10000 6.5 2 80
10 Not identified 0.66
11 Coactosin-like protein COTL1 MOUSE 1.74 16048 5.3 16000 5.5 1, 2 37
12 Galectin-1 LEG1 RAT 1.23 15189 5.1 15000 5.3 3 61
13 Histidine triad nucleotide-binding protein 1 HINT1 MOUSE 1.39 13882 6.4 11000 7.3 3 49
14 40S ribosomal protein S12 RS12 RAT 1.34 14858 6.8 15000 7.2 2 44
15 Nucleoside diphosphate kinase A (NDK A) NDKA RAT 1.68 17296 6.0 16000 6.6 3 39
16 Nucleoside diphosphate kinase B NDKB RAT 1.26 17386 6.9 18000 7.6 1 66
17 Not identified 1.89
18 Eukaryotic translation initiation factor 5A IF5A1 RAT 1.23 17049 5.1 20000 5.6 2 43

MIR-interacting saposin-like protein MSAP MOUSE 21096 5.0 20000 5.6 n/a 29
19 Not identified 1.64
20 Cofilin-1 COF1 RAT 1.63 18749 8.2 21000 8 1 65
21 Cofilin-1 COF1 RAT 1.59 18749 8.2 21000 7.6 1 60
22 Cofilin-1 COF1 RAT 1.57 18749 8.2 21000 7 1 54
23 Not identified 1.61
24 Proteasome subunit alpha type 1 PSA2 RAT 1.54 26024 6.9 23000 7.5 1 47
25 Heat-shock protein beta-1 HSPB1 RAT 2.31 22936 6.1 23000 6.1 1 39

Phosphoserine phosphatase SERB RAT 25180 5.5 23000 6.1 n/a 33
26 14-3-3 protein epsilon 1433E RAT 1.37 29326 4.6 30000 4.8 1 29
27 Proteasome subunit alpha type 2 PSA1 RAT 1.78 29784 6.2 31000 7.2 1 36
28 Prohibitin PHB RAT 2.24 29859 5.6 32000 6.1 2 62
29 Not identified 2.33
30 Proliferating cell nuclear antigen PCNA RAT 1.46 29072 4.6 34000 4.9 1 31
31 Heat-shock protein beta-1 HSPB1 MOUSE 0.70 23057 6.1 35000 6.3 n/a 25
32 Annexin A2 ANXA2 RAT 0.83 38939 7.6 40000 7.8 1 56
33 Reticulocalbin 3 precursor RCN3 HUMAN 1.80 37470 4.7 41000 4.9 2 20
34 Macrophage capping protein CAPG RAT 1.53 39060 6.1 41000 6.9 3 20
35 Acetyl-CoA acetyltransferase, cytosolic THIC RAT 2.15 41538 6.9 41000 7.7 3 28
36 SUMO-activating enzyme subunit 1 SAE1 RAT 2.15 38945 5.0 41000 5.4 2 54
37 Actin, cytoplasmic-1 (beta-actin) ACTB RAT 0.58 42052 5.3 42000 5.7 1 30

Actin, cytoplasmic-2 (gamma-actin) ACTG RAT 42108 5.3 42000 5.7 1 30
38 Not identified 0.6
39 Actin-like protein 3 ARP3 MOUSE 0.53 47783 5.6 50000 6.5 1 38
40 Enolase 1 ENOA RAT 0.60 47440 6.2 52000 6.7 1 38

RAB GDP dissociation inhibitor beta GDIB RAT 51018 5.9 52000 6.7 n/a 34
41 Not identified 0.37
42 Not identified 0.71
43 Protein disulfide-isomerase A3 (ERp57) PDIA3 RAT 0.78 57044 5.9 58000 6.4 3 50
44 GRP58 HNRPK RAT 0.68 51230 5.4 57000 6.3 1 31
45 Not identified 2.21
46 Heterogeneous nuclear ribonucleoprotein L HNRPL MOUSE 1.40 60712 6.7 58000 7.8 2 25
47 T-complex protein 1, epsilon subunit TCPE RAT 0.78 59955 5.5 58000 6.3 1 34
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Table 1: Continued.

Spot Protein name Gene product (HG/NG∗) Theoretical Observed IPA network Percent coverage
𝑀
𝑟

pI 𝑀
𝑟

pI
48 Hsc70/Hsp90-organizing protein STIP1 RAT 1.16 63158 6.4 65000 7.2 1 38
49 GRP 75 GRP75 RAT 0.82 74097 6.0 75000 6.1 1 31
50 Not identified 1.35
51 RAB 6 interacting protein 2 (ERC protein 1) GANAB MOUSE 0.68 107300 5.7 116000 6.4 2 21
Murine GMC protein expression at 2 h culture HG versus 2 h culture NG∗.

was achieved using the Ingenuity Knowledge Base and
Pathways Analysis tools. The top three canonical pathways
determined to be activated from 2 h acute high glucose
exposure were actin-based motility by Rho, RhoA signaling,
and the protein ubiquitination pathway. Analysis of protein
expressional networks from murine GMC 2h NG∗ and
2 h HG protein expressional data suggested three primary
expression networks. Network 1 (score 49) addressed cancer,
reproductive system disease, and hematological disease and
included 25 identified proteins out of 35 total network
components (Figure 2(a)).Network 2 (score 19) addressed cell
death and survival, drug metabolism, and lipid metabolism
and included 9 identified proteins out of 35 protein nodes
(Figure 2(b)). Network 3 (score 14) addressed cellular move-
ment, cellular compromise, cellular function, and mainte-
nance and was composed of 7 identified proteins out of 29
possible network proteins. Prominent nodes within Network
1 were centered on signaling proteins including proteins
involved with ubiquitination, cyclin D, ERK1/ERK2 MAP-
Kinase, HSP90, ROCK, and histones h3 and h4. Prominent
nodes in network 2 were centered on the VEGF, TNF, TGF𝛽1,
tumor protein 53 (TP53), and ubiquitination.

3.3. Immunochemical Analysis for the Effect of High Glucose
on the Expression of Proteins. Immunoblot (IB) analyses of
the selected proteins were used to confirm the 2DE findings.
Prohibitin (PHB) was selected for confirmation as it was
one of the most strongly regulated protein spots and was
also a component of IPA Network 2 with direct interaction
with a prominent network node of TNF. The expression by
1DE (Figures 3(a) and 3(b)) supported a trend in increased
total PHB abundance, but 2DE IB analysis of 2 h GMC cells
cultured in HG and NG∗ showed a HG responsive and
statistically significant (𝑝 < 0.02) increase in the acidic end
of the PHB charge train (Figure 4). Confocal microscopy
(Figures 5(a) and 5(b)) suggested that high glucose resulted
in a statistically significant (𝑝 value < 0.0001) increased
fractional abundance of PHB in the nucleus of the GMC.

Based on bioinformatics analysis defining regulation of
protein ubiquitination pathways in one of the top three
canonical pathways regulated, as well as a prominent node
in protein expression Networks 1 and 2, we next analyzed
the expression of proteins involved in protein homeostasis
and found them to be regulated by 2DE analysis. Proteasome
subunit alpha-type 2 (PSMA2) was confirmed to be increased
in mesangial cells exposed to high glucose concentrations
for 2 h (Figure 6). Comparative 2DE analysis also defined
decreased expression of ER chaperone proteins such as PDI

and GRP58, which may lead to increased unfolded protein
load in mesangial cells and induction of proteasomal degra-
dation processes. Immunoblot analysis of mesangial proteins
for PDI confirmed 2DE findings of decreased expression of
PDI (Figure 6).

4. Discussion

GMCsparticipate in glomerular growth anddifferentiation as
well as in regulation of glomerular blood flow [3, 4]. It is well
established that chronic hyperglycemia such as in an uncon-
trolled diabetic state detrimentally affects the renal glomeru-
lus and produces a pathologic GMC phenotype [18–22]. On
the other hand, a gap in knowledge exists for changes inGMC
function and protein expression patternswhich occur in indi-
viduals who experience longer postprandial elevated plasma
glucose levels [23]. Therefore to ascertain the effects of short
term high glucose conditions encountered by GMC in sub-
pathologic/prediabetic states, we conducted proteomic stud-
ies comparingmesangial protein expression after 2 hHGcon-
ditions against mesangial protein expression after 2 h NG∗
growth conditions. The analysis of cell viability at 2 h in the
treatment conditions determined that mesangial cell viability
was not decreased by the treatment conditions and time.The
protein expression differences observed between the growth
conditions were not therefore attributed to variable degrees
of cell proliferation. Expressional regulation of 51 identified
protein spots were observed under the conditions of 2 h HG.
These proteins can be grouped as follows: cytoskeletal pro-
teins, calcium/phospholipid binding proteins, chaperones,
and proliferation and signaling-related proteins.

Increased glucose levels are known to stimulate a variety
of responses within GMC including remodeling of cytoskele-
tal elements like actin and actin binding proteins [24]. Two
upregulated spots were identified as cofilin-1 and cofilin-2
and demonstrated a 55–60% increased expression. Cofilins
are actin binding proteins that affect the mobility of actin
monomers at the ends of actively growing actin filaments
and increase actin filament turnover. Cofilins bind and sever
the pointed actin ends and increase the actin monomer
pool. During conditions of stress, cofilins participate in the
nuclear import of actin [24]. Two protein spots demon-
strating reduced expression by HG, identified as the actin
capping proteins, F-actin capping protein 𝛽-subunit, and
actin-like protein 3. Each of these proteins migrated at the
expected 𝑀

𝑟
and pI. These proteins, respectively, demon-

strated a 30% and 50% decreased presence in the 2DE gels.
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Figure 2: Network analysis of protein expression patterns using Ingenuity Pathways Analysis. (a) The top scoring network (Network
1) addressed cancer, reproductive system disease, and hematological disease and included 25 identified proteins out of 35 total network
components. The score 49 suggests the odds of 1 out of 1049 for assembling randomly these protein identifications out of the existing murine
protein database. (b) Network 2, defined by IPA, includes PHB. For (a) and (b), red indicates protein spots whose spot volume increased with
2 h high glucose. Green indicates proteins spots whose spot volume decreased with 2 h high glucose.
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1DE IB experiments for PHB expression normalized to total actin expression (b). Data is presented as a mean of three experiments. Statistical
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Figure 5: (a) Murine GMCs were seeded into 8-well chambered cover glass, grown, and treated as described in the methods. PHB detection
was with the same primary antibody as used for IB. PHB detection with an Alexa Fluor 488 conjugated secondary antibody (green). Nuclei
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density was subtracted from total density and plotted (b). Differences were estimated by 𝑡-test with significance at 𝑝 value < 0.05.

Additionally, an acidic isoform of the intermediate filament
protein vimentin was downregulated.

Calpactin light chain (also referred to as S100A10 or p11)
functions as a ligand of annexin II (annexin II

2
: p11
2
) [25–

27]. Calpactin and annexin II were shown here to be upreg-
ulated by approximately 37% and 23%, respectively by acute
hyperglycemic conditions. Calpactin complexed to annexin
II is known to interact with the C-terminus of cytosolic
phospholipase A2 and inhibits cPLA2 activity thus reducing
inflammatory responses from the release of arachidonic acid
[28]. Upregulation of reticulocalbindin 3 is necessary for

increased sequestration of Ca2+. The increased Ca2+ is in
turn needed by other proteins found in the reticuloplasm
like GRP78 or PDIA3 [29]. These observations of regulated
changes in actin cytoskeletal protein and calcium binding
protein expression, when taken together, are consistent with
the known responses of mesangial cells to HG under more
chronic conditions [30, 31].

Molecular chaperones have been well described in the
literature as protein quality control managers that assist
with the maintenance of cellular function in the face of
stress conditions like heat stress, osmotic stress, or oxidant
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Figure 6: Correlative validation of 2DE results for the regulation of
pathways involved in proteostasis. Immunoblot analysis of PSMA2
and PDI from mesangial cells cultured for 2 h in HG or NG∗
medium. Expression of PSMA2 increased whereas PDI decreased
following 2 h HG. Bar graphs, densitometric quantitation of PSMA2
or PDI normalized toGAPDH for each lane. Data are average± SEM
#𝑝 < 0.05 versus NG∗.

stress. Specific chaperones are spatially organized throughout
the cell via organellar localization [32, 33]. The bulk of all
mitochondrial proteins are synthesized under the direction of
cell nuclear transcripts in the cytoplasm [34]. Highmolecular
weight proteins are trafficked through and between the mito-
chondrial membranes and into mitochondrial matrix and
require protein folding chaperone such as PHB and HSP10
for efficient protein folding [35]. A protein spot containing

PHB, possibly a posttranslationally modified form causing
an acidic shift in PHB pI, was found to exhibit expressional
regulation by 2DE, 2DE IB and increased nuclear localiza-
tion by confocal microscopy analysis, following acute (2 h)
glucose exposure in GMCs. PHB has been reported to exist
as a membrane resident chaperone that participates in the
protein folding pathway of mitochondrial-derived integral
membrane proteins like COX2p and COX3p. Moreover,
movement of PHB between the mitochondria and nucleus
has been shown to play an important role in signaling
mitochondrial oxidant stress and regulating apoptosis and
transcription during stress, highlighting the importance of
this protein to mitochondrial-nuclear communication [36,
37]. In the current study, observations of increased acidic
forms of PHB, increased PHB nuclear localization, increased
HSP10, and decreased GRP75 at 2 h HG stimulation suggest
that acute hyperglycemic conditions may promote protein-
structural stress within the mitochondrial matrix promoting
translocation of PHB to the nucleus for an as-of-yet deter-
mined reason in GMCs. In addition, bioinformatic analysis
grouped PHB and additional proteins regulated by 2 h HG
in a network including mediators known to be involved in
the pathogenesis of diabetic nephropathy and fibrosis, such
as TGF𝛽, VEGF, and TNF [1, 38], highlighting a potentially
novel role for PHB in GMC responses to HG.

One aspect of cell cycle control is polyubiquitination of
cytoplasmic or nuclear proteins [39]. Polyubiquitination is a
trigger for the trafficking of the modified protein to the pro-
teasome for degradation. A second aspect of cell cycle control
is exercised through monoubiquitination of nuclear pro-
teins like histones [40–42]. Our observations with increased
expression of PSMA2 are specific to acute exposure of cells to
medium containing high glucose as compared to isoosmotic
low glucose medium and suggest the likelihood of increased
proteasomal activity. These findings are in part supported by
the observations of decreased ubiquitinated cytosolic pro-
teins in mesangial cells with 2 h high glucose concentrations
(data not shown). Together, increased expression of PSMA2
and decreased expression of PDI with acute exposure to
high glucose concentrations suggest regulation of pathways
involved in proteostasis and/or cell stress response. In the ER,
PDI serves an oxidoreductase chaperone regulating disulfide
bonds [43] and its activity is decreased in liver cells of diabetic
mice [44]. Furthermore, kidneys and liver of diabetic mice
also have decreased expression of PDI [45, 46]. Decreased
expression of PDI in response to high glucose may alter pro-
tein maturation in the ER, triggering a stress response which
includes increased protein degradation by the proteasome.
The mechanism of decreased PDI expression in mesangial
cells by acute exposure to high glucose remains to be defined.

In conclusion, the proteomics data and bioinformatic
data analysis suggests that murine GMCs respond to acute
HG via expression of proteins related by pathways regulating
protein posttranslational modification and protein stability.
These acute differences may also be important for cellular
function as reported for GMCs treated with longer more
chronic hyperglycemic time points of differences in specific
protein abundance such as enolase, actin, and annexin
proteins [30].
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