
Stable and Accurate Network Coordinates
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Ledlie, Jonathan and Margo Seltzer. 2005. Stable and Accurate
Network Coordinates. Harvard Computer Science Group Technical
Report TR-17-05.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25686820

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH

https://core.ac.uk/display/154871434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Stable%20and%20Accurate%20Network%20Coordinates&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=0a8688f1d3c30b7cfaa79ab5138c164e&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25686820
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

���������
	��������������������	���	���� �!��"$#%�&�'��)(*������	�+

,�-�.�/1032�/4.65&7�8:9<;<7
/=.:8

>�/4?A@�-CBD7�9E0GFH7H?

IKJML�N�O�LQP�R

S -�TVU�W�0X7H?KBZYH;<7[.:YH7 \]?X-�W^U
_]/`?Aa4/`?G86bc.:;Ea�7[?XdA;e0Qf

S /=Thg:?G;<8^@�7=i:>�/=dAdG/4Y�2ZW:dj7k0A03d

Harvard Technical Report TR-17-05. July 2005

Stable and Accurate Network Coordinates
Jonathan Ledlie and Margo Seltzer

Abstract— Synthetic coordinate systems that mirror latencies
between physical hosts have become a part of the toolbox
networking researchers would like to use in real deployments.
However, the most promising algorithm for building these coor-
dinate systems, Vivaldi, breaks down when run under real world
conditions. Previous work on network coordinates has examined
their performance in simulation through the use of a latency
matrix, which summarizes each link with a single latency. In a
deployment, instead of perceiving a single latency for each link,
nodes see a stream of distinct observations that may vary by as
much as three orders-of-magnitude. With no means to discern an
appropriate latency for each link, coordinate systems are prone
to high error and instability in live deployments.

Two simple enhancements improved Vivaldi’s accuracy by54%
and coordinate stability by 96% when run on a real large-scale
network. First, we use a non-linear low pass filter to ascertain
a clear underlying signal from each link. These filters primarily
improve accuracy. Second, we introduce a distinction between
system- and application-level coordinates. We evaluate a set of
change-detection heuristics that allow coordinates to evolves at
the system-level and only initiate an application-level update
after a coordinate has undergone a significant change. These
application-level coordinates retain the filter’s high accuracy and
dramatically increase coordinate stability.

Index Terms— Simulations, Stochastic processes/Queueing the-
ory, Experimentation with real networks/Testbeds.

I. I NTRODUCTION

V IVALDI, a simple decentralized algorithm, embeds nodes
in a network into a relative coordinate system [4], [5].

Coordinate systems are useful in a wide range of contexts,
including large scale content distribution, routing, and stream-
based overlay networks [10], [2], [20]. We used the Vivaldi
algorithm to create a coordinate system with hundreds of nodes
on the Internet as part of our work on stream-based overlay
networks [19].

Yet, when run on a live system, the original algorithm
does not produce stable, accurate coordinates. The discrepancy
between what we found and the results from the original
paper is primarily a result of the orders-of-magnitude variation
in latency measurements between the same pairs of nodes
that actually occur when running a coordinate system on a
real network: inter-node latencies were fixed using a derived
latency matrix in the original set of experiments. A few simple
changes to the algorithm produced coordinates that are stable,
accurate, and adapt to changing network conditions. This paper
describes these modifications and how to create a relative
coordinate system under “real world” conditions.

In Section II, we explain what the Vivaldi algorithm is and
how to measure it, emphasizing the importance of coordinate

J. Ledlie and M. Seltzer are with the Division of Engineering
and Applied Science, Harvard University, Cambridge, MA. E-mail:
{jonathan,margo}@eecs.harvard.edu .

stability for applications. After this section, the paper makes
the following contributions:

• In Section III, we examine a latency distribution that
exemplifies a typical input and discuss why the original
algorithm experiences difficulty when used without a
static latency matrix.

• In Section IV, we present a simple method for stabilizing
coordinates by keeping a small history of samples with
each node. This method improves both coordinate stabil-
ity and accuracy; however, coordinate stability remains at
a level unacceptable to most applications.

• In Section V, we differentiate between application- and
system-level coordinates and compare four heuristics for
improving application-level stability while maintaining
accuracy. We find that when we insert a sliding window-
based mechanism for change-detection borrowed from the
database literature, an application’s view of its network
coordinates becomes significantly more stable.

• In Section VI, we build histories and application-level
coordinates into an implementation that we run on a large
network, resulting in a54% improvement in accuracy and
a 96% improvement coordinate stability.

In Section VII we discuss related work and in Section VIII
we conclude.

II. V IVALDI ALGORITHM

The Vivaldi algorithm provides a simple, lightweight
method for participants in a distributed system to form a
Euclidean metric space, where the distance between any two
nodes is an estimate of their true latencies. To the best of
our knowledge, Vivaldi is the only completely distributed
coordinate formation algorithm that requires neither well-
known landmarks nor significant computation. The algorithm
exhibits two useful properties for distributed systems:

• Two nodes do not need to have communicated previously
for the latency between them to be estimated. Therefore,
the algorithm scales to thousands or millions of nodes.

• The algorithm continues to refine coordinates as the true
network conditions change over time. For example, if the
latency of a link changes due to a BGP route change,
coordinates adjust and restabilize quickly.

While these two properties are exhibited by the Vivaldi
algorithm only in theory, it is nonetheless important that
our methods for increasing its stability and accuracy do not
fundamentally alter these properties in practice.

Vivaldi models the network as a collection of springs
that pull on each node’s coordinate. The original algorithm
works as follows. Each node retains its coordinate−→xi and its
confidence in this coordinatewi ∈ (0, 1). All coordinates are
the same low dimension, which is fixeda priori. Nodes adjust

Harvard Technical Report TR-17-05. July 2005

V IVALDI (lij ,−→xj , wj)
1 ws = wi

wi+wj

2 ε = |‖−→xi−
−→xj‖−lij |
lij

3 α = ce × ws

4 wi = (α× ε) + ((1− α)× wi)
5 δ = cc × ws

6 −→xi = −→xi + δ × (‖−→xi −−→xj‖ − lij)× u(−→xi −−→xj)

Fig. 1. Vivaldi update algorithm.u is the unit vector function.

their coordinates and confidences through observations of their
latencies to other nodes in the system. These observations
can be explicit pings or may be gleaned from existing traffic.
Through successive samples, each node refines its coordinates
and increases its confidence. Like a network of springs, coor-
dinates become more accurate and stable with each successive
adjustment.

Each node updates its coordinate and confidence with each
new latency observation based on the pseudocode shown
in Figure 1. An observation consists of the remote node’s
coordinate−→xj , its confidencewj , and a new measurement of
the latency between the two nodes,i and j. First, a weight
ws is assigned to this observation based on how confident
nodesi andj are relative to one another (Line 1). In essence,
this allows more confident nodes to tug harder than less
confident ones. Second, they find how far off the observation
was from what was expected based on the coordinates; this is
the relative errorε of this measurement (Line 2). Third, node
i updates its confidencewi with an exponentially-weighted
moving average. Unlike most EWMAs, however, theα, or
weight given to the current observation, is not fixed. Instead it
is weighted according to how much trust is given to the current
observation (Lines 3-4). If this causes nodei’s confidence to go
above one or below zero, it is forced to remain in bounds (not
shown). Lines 5-6 update the coordinate. Also based on the
confidence of nodesi and j, δ is the pull of this observation
on the coordinate. In line 6,δ dampens the magnitude and
direction of the change applied to the coordinate. Constantsce

andcc affect the maximum change an observation can have on
confidence and coordinates, respectively. They have the same
effect as the tuning parameter in a standard exponentially-
weighted moving average (EWMA): a low value of0.05, for
example, limits the weight given to any new observation and
a high value of0.25, for example, causes faster adjustments to
new observations. Larger values forα may weigh outliers too
heavily. We found any setting ofcc andce in this range to have
minimal impact on large scale behavior. We usedcc, ce = 0.25,
which are the same values used in the original authors’ Vivaldi
simulator [7].

Bootstrapping the algorithm is simple. Coordinates are
initially set to the origin. Each node stores a list ofneighbors,
i.e., nodes that it samples. It is assumed that a node knows
at least one other node when it enters the system. In our
implementation, nodes learn new neighbors by attaching the
address of one other node to each sampling message,i.e.,
through gossip, and sample their neighbors in round-robin

order.
Instead of using a pure metric space, Vivaldi can be modi-

fied to include aheighth, which changes the distance between
nodesi, j to ‖−→xi −−→xj‖+hi +hj . The purpose ofheight is to
capture the latency of the access link, while the coordinates
themselves capture the long-haul links. Because our larger
project [19] and the growing body of work using network
coordinates use pure metric spaces (e.g.[13], [1], [9]), we did
not include aheight, although the techniques we present would
allow for their use. We present results using three dimensions.

A. Measuring Coordinate Systems

In this context, accuracy is measured by comparing the
difference between the expected and actual latencies for an
observation. The error of a link for a particular observation
lij is:

e =| ‖−→xi −−→xj‖ − lij |

Depending on context, the accuracy for the system is the
sum of these quantities for all nodes, the sum of the error
squared (the mean squared error), or the median for each
node. Accuracy can also be normalized by dividing bylij ;
this relative error is the same quantity asε in Figure 1. We
use relative error as the metric of accuracy because it facilitates
comparison of a wide range of latencies.

Note thatlij is a time dependent quantity because inter-node
latencies are not fixed nor does the same link provide the same
result with each observation. Instead of being a single quantity,
Lij is actually a distribution that depends on the characteristics
of the link. One can consider the distributionLij the true
latency. The original evaluation assumed that links returned
the same measurement each time; in other words, that alllij ’s
were equal for a given link.

We measureper-node relative error instead ofper-link
relative error. The distribution of per-node relative error is the
collection of errors for each node for all of its observations.
Measuring per-link error would assume that a static, scalar
latency matrix exists against which we could compare coor-
dinates after a number of iterations. Because our underlying
network is changing, this matrix, and hence this metric, cannot
be computed.

Stable coordinates are particularly important when an ap-
plication is using Vivaldi and a coordinate change triggers
application activity. A stable coordinate system is one in which
coordinates are not changing over time, assuming that the
network itself is unchanging. Thus, links may produce some
distribution of observations, but as long as this distribution
does not change, neither should stabilized coordinates. We use
the rate of coordinate change

s =
∑

∆−→xi

t

to quantify stability. Our metric space, the numerator, is in
milliseconds and we measure change in this space in seconds;
thus, stability is inms/sec unless otherwise noted.

Harvard Technical Report TR-17-05. July 2005

100
101
102
103
104
105
106
107
108

0-99
100-199

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999

1000-1999

2000-2999

≥3000

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Raw Latency (milliseconds)

Fig. 2. Frequency histogram of raw latency measurements between 269
PlanetLab nodes.

III. L ATENCY MEASUREMENTS

When we first implemented Vivaldi, we found that lone
samples, often orders-of-magnitude greater than expected,
would periodically distort the entire coordinate system. These
instabilities resulted when raw latency data was fed into the
algorithm.

An examination of a set of raw latency data shows rare
but persistent samples orders-of-magnitude larger than the
common case. We collected a set of latency data from 269
PlanetLab [17] nodes over three days starting May 2, 2005,
totaling 43 million samples. PlanetLab is a collection of
approximately 500 machines spread around the world, located
primarily at universities and research labs. To gather the
trace, each node measured the latency to another node with
an application-level UDP ping once per second. We used
application-level pings because we intend to eventually use
measurements of existing traffic as input, rather than extra
explicit pings.

We summarize the total distribution of measurements in
Figure 2. The data show that0.4% of the measurements are
greater than one second, which is longer than the common
case even for inter-continental links. Instead of a steady
stream of measurements, the fact that many measurements
are above the largest expected latency suggests that many
links may be experiencing serious delays that Vivaldi must
automatically incorporate. The broad range of measurements
severely curtails accuracy and stability.

We examined individual links to confirm that they too
exhibited similar behavior. Not only did the entire distribution
have a long tail, with most links below several hundred mil-
liseconds, but individual links had as well. Figure 3 illustrates
one representative link. It shows that a significant number of
observations extend beyond the median (Figure 3, top) and that
these infrequent order-of-magnitude delays are spread over
time (Figure 3, bottom).

Because of the long tail, the mean of the raw values would
not be a good predictor for future observations. Instead, the
expected latency appeared to be predictable by taking a low
percentile of some portion of the previous observations. This
expected latency is a better measure of what Vivaldi should use
as its approximation of the link latency, not the raw values.
Instead of feeding raw observations into Vivaldi, we would
filter the input data to remove the heavy tail. By giving Vivaldi

100

101

102

103

104

105

106

0-199
200-399

400-599

600-799

800-999

1000-1199

1200-1399

1400-1599

1600-1799

1800-1999

2000-2199

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Raw Ping Latency (milliseconds)

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70

R
aw

 P
in

g
L

at
en

cy
 (

m
ill

is
ec

on
ds

)

Time (hours)

Fig. 3. Histogram and scatterplot of raw latency measurements from one
PlanetLab node to another during a three day trace. Measurements vary by
two orders-of-magnitude. Long latency pings continue to occur throughout
the trace.

a steadier input, our goal is for each link to experience lower
relative error and greater stability by exhibiting less coordinate
change over time.

IV. F ILTERING WITH HISTORIES

Based on our analysis of link latencies, a percentile of
some window of previous observations appeared to be a good
predictor of future values. Statistically, this is known as a
Moving Percentile (MP) filter, a variant on the Moving Median
filter, and has been used to filter out heavy-tailed error in
other disciplines (e.g. [8], [14]). It is a non-linear filter, which
removes non-Gaussian noise and lets through low frequencies.
MP filters exhibit edge preservation and are robust against
noise impulses. A MP filter has two parameters: (1) the size
h of the history window and (2) the percentilep returned as
the prediction for the next observation.

To examine the predictive effectiveness of the MP filter with
different parameters, we examined how the filter performed on
each link from the PlanetLab trace. Each link consists of a se-
ries of observations; the relative error is the difference between
the filter’s prediction and the next observation, divided by the
next observation.

We ran an experiment in which we varied the size of the
window and the percentile used to surmise the next value.
Using the three day trace, we applied different filters to predict
what the next observation would be and calculated the relative
error between each prediction and the true observation. We
plot the relative error for all of the links in the system as we
vary the history sizeh and keepp = 25 in Figure 4. The
results show that a history of only four observations achieves

Harvard Technical Report TR-17-05. July 2005

5

4

3

2

1

0
1 2 4 8 16 32 64 128

History Size

Outliers

Median

R
el

at
iv

e
Er

ro
r (

95
th

 P
er

ce
nt

ile
) Max. 61 Max. 15

Fig. 4. Short histories of previous observations are sufficient to reduce the
error in predicting the next latency observation. The boxplots show the relative
error of all of the links in the system. They show that filters based on the
most recent four observations predict with the least error.

the best performance (lowest error) with the fewest outliers.
Using p = 25, the minimum with a history of four, resulted
in slightly lower error thanp = 50 for the MP filter.

Although long histories do not perform substantially worse,
intuitively it makes sense that longer histories do not perform
better: they are slow to adjust to any changes in network
conditions. That short histories perform well is good for three
reasons: (1) they can be acquired through fewer rounds of
observations, (2) they require less state, and (3) they will be
quickest to adjust to any latency shifts.

A. Vivaldi with the MP Filter

In order to compare Vivaldi with and without the MP filter,
we built a simulator that accepted our raw ping trace as input
and mimicked the distributed behavior of Vivaldi. Through a
comparison of running Vivaldi on a real network and in our
simulator, we found the simulator provided a high degree of
verisimilitude.

Using the simple MP filter substantially improves both
the accuracy and stability metrics. With the parameters that
showed the best ability to predict subsequent samples —
taking the 25th percentile (minimum) of the previous four
observations — we compared Vivaldi with and without MP
filtering. We ran Vivaldi on a four hour section of the trace and
show cumulative distributions for the second half of the run,
eliminating start-up effects (we examine the rate of start-up
in Section V). We measured per-node accuracy and system-
wide stability and summarize the results in Figure 5. The
data show that the MP filter at least doubles accuracy and
stability for most nodes. Its primary benefit, however, is that
it eliminates the periodic distortion of the entire coordinate
space that occurs with no filtering. This is shown through the
reduction of the long tail of instability by three orders-of-
magnitude. In the application we developed, these distortions
would cause a cascade of other updates to occur and using the
MP filter ameliorated this problem substantially.

B. Other Filtering Methods

Before turning to the non-linear MP filter, we considered
two methods that are commonly used to smooth out mea-
surement error, thresholds and exponential averaging. We also

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

C
D

F

Median Relative Error

MP Filter
No Filter

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

C
D

F

95th Percentile Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

C
D

F

95th Percentile Coordinate Change Per Node (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

101 102 103 104 105 106

C
D

F

Instability (log scale)

100

101

102

103

104

105

106

0-99
100-199

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999

1000-1999

2000-2999

≥3000

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Raw Latency (milliseconds)

No MP Filter
MP Filter

Fig. 5. Cumulative distributions of relative error (accuracy) and coordinate
change (stability). The top two graphs show the median and95th percentile
relative error for each node, respectively; thus, some nodes commonly
experience several times more error than others. The third graph portrays
that using the MP filter cuts instability per node in half for most nodes.
The fourth graph shows a CDF of aggregate coordinate change per second
(stability). With the MP filter, each node moves by a little more than one
millisecond per second. Without the filter, spurious observations throw off all
nodes’ coordinates, resulting in a long tail. The filter improves global stability
in the worst case by three orders of magnitude. The bottom graph shows how
the MP filter only trims the problematic observations off of the end of the
latency measurements, leaving the remainder of the distribution intact. The
histogram is of the four hour subsection of the trace.

Harvard Technical Report TR-17-05. July 2005

TABLE I

EXPONENTIALLY-WEIGHTED HISTORIES

Filter Median Relative Instability
Error

MP Filter 0.07 (−42%) 415 (−47%)
No Filter 0.12 (0%) 783 (0%)
α = 0.02 0.27 (+125%) 490 (−37%)
α = 0.10 2.48 (+1960%) 1907 (+143%)
α = 0.20 5.70 (+4650%) 3783 (+383%)

examined a confidence building method specific to Vivaldi,
which would appear to increase coordinate convergence rates.
Contrary to our initial expectations, these methods had neg-
ligible impact on accuracy or stability, and made conditions
worse in some circumstances.

Thresholds. Prior to examining the latency distribution,
we first considered using fixed threshold to discard extreme
values. Dropping all values above a threshold is a simple
method, with the added benefit that it requires no state. Given
the distribution of the entire trace (shown in Figure 2), this
method also removes the most extreme outliers, smoothing the
process slightly. However, each link tended to show its own set
of outliers: most links exhibited heavy tails, but the centering
and length of the tail was different. For example, a cut-off
that might work for the general distribution would do nothing
for outliers in the link shown in Figure 3, where the common
case is less than100ms. Early in our exploration, we tried
several thresholds before moving to more complex techniques;
we found only minimal stability and accuracy improvement
when used in isolation.

EWMA. A commonly used filter to smooth jittery data
is the exponentially-weighted moving average. It captures a
distribution’s general trend by including all previous obser-
vations and giving them an exponentially-declining weight:
vt+1 = α×s+(1−α)×vt, wherevt is the current value of the
filter andvt+1 is the value after including observations. The
filter’s behavior is controlled by one parameter,0 < α ≤ 1,
which determines how much weight is given to the current
observation.

We added a per-link EWMA to our simulator with the
goal that it would capture changes in network conditions and
dampen the outliers we had seen. We used conventional values
for α of 0.10 and 0.20 and measured the same four hour
section of the trace as in previous experiments. Table I shows
the median value of the distribution of median relative error
and stability when nodes use an EWMA filter with differing
values of α, as compared to using no filter and using the
MP filter. The data show that even when an unconventionally
low value for α is used,0.02, smoothing with an EWMA
still results in lower accuracy than using no filter at all. The
outliers are not signifying a trend an EWMA should capture,
but instead should simply be discarded.

Confidence Building. The third potential improvement to
Vivaldi is particular to the algorithm itself. Links with very
low latency can prevent nodes from becoming confident in
their coordinates. This occurs when the true latency between
two nodes is beneath the precision of our latency measuring

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10

C
on

fi
de

nc
e

Time (minutes)

Confidence Building
No Confidence Building

Fig. 6. By allowing for measurement error on low-latency links, nodes
in the same cluster can gain confidence in their coordinates. However, in a
wide-area network, suppressing spurious, high latency observations has much
greater impact than precise measurement of low latency ones.

tools. When we first ran Vivaldi on our local cluster without
the MP filter, we saw a fairly Normal spectrum of latency
observations between0.4 and 1.2ms, and then a tail of5%
of the observations above1.2ms. Because the measurements
used UDP and because the machines had no other load, we
attributed the spread to context switches and background pro-
cesses running on the machines. In essence, these observations
were below our software’s ability to detect them accurately.

When run on a cluster with low latency, this jitter has
an adverse effect on the Vivaldi algorithm. It results in high
relative error (Figure 1, line 2) which in turn adversely affects
the update in confidence (line 4). For example, if two nodes
currently have confidence0.5, and the sampler believes its
neighbor is1ms away in the coordinate space, a single sample
of 3ms will reduce confidence by almost5%.

To solve this problem, we introduced a margin of error that
was allowed for each sample, a method we callconfidence
building. If the expected and actual measurement were within
this margin of error, we considered them equal. Because we
found our measurement error rarely exceeded three millisec-
onds (0.05%), we set the threshold to this value. This simple
mechanism dramatically increased confidence in a low-latency
environment.

To examine the effects ofconfidence building, we ran
an experiment with three nodes on our local cluster. They
computed their coordinates by choosing one node to sample
every second, and we examined how Vivaldi performed with
and without allowing for measurement error. Figure 6 shows
how confidence buildingaffects one node’s confidence over
a ten minute interval. Usingconfidence building, the node
maintains100% confidence after start-up. Without it, confi-
dence wavers around75%. There appear to be two lines with
No Confidence Buildingbecause the the node’s confidence
changes slightly with each measurement to its two neighbors.
Confidence followed the same pattern whether or not the MP
filter was used in this environment; thus, the filter does not
alleviate the confidence problem on a low latency network.

We conjectured that when several nodes participating in a
large-scale network were co-located in the same subnet, they
would reinforce each other’s coordinates, essentially creating
a confident reference point for other nodes. Surprisingly,

Harvard Technical Report TR-17-05. July 2005

-150 -100 -50 0 50 100 150 -40-20 0 20 40 60 80 100
-200
-100

 0
 100
 200
 300

Europe

China

US East

US West

Fig. 7. Coordinates do not necessarily shift in the same direction over time,
nor do they rotate about the origin. We show how four node’s coordinates
change over a three hour period. US West, US East, and China have shifted
nearer to one another and the node in Europe has a higher latency to all three.

confidence buildingonly had a small impact on the externally-
visible metrics of accuracy and stability when run on a higher
latency network. When using an MP filter, it further improved
median relative error by8.8% and stability by only2.3%.

These results suggest thatconfidence buildingmight be
a useful technique if Vivaldi were run on a small cluster.
However, network coordinates are primarily useful for large-
scale networks, renderingconfidence buildingand other efforts
to improve the precision of small measurements, including
kernel timestamping, less important than eliminating large
spurious observations.

V. UPDATING APPLICATION-LEVEL COORDINATES

Our use of the MP filter greatly improved the stability
and accuracy of a set of network coordinates. As Figure 5
showed, use of the filter clipped the heavy tail of instability.
However, the system’s coordinates are still changing at about
500ms/sec. For an application using network coordinates, is
all this movement necessary? Instead of being notified about
slight changes in coordinates with every observation, most
applications would prefer to be notified only when asignificant
change occurs. By designing the coordinate subsystem as a
black box that only signals when there is significant change,
we can limit application updates that, in turn, limit unnecessary
application-level work. For the application we developed, a
coordinate change could initiate a cascade of events, culmi-
nating in one or more heavyweight process migrations. If the
systems’ coordinates have not changed significantly, there is
no reason to begin this process. Of course, some applications
would prefer a constant update: the subsystem should output
both a system-level coordinate,−→cs , and an application-level
one,−→ca . Those in the former category would use−→ca and the
latter−→cs .

Before considering how and when to update−→ca , we must
ask: is it necessary to update−→ca at all? That is, after some time,
do coordinates cease to change relative to one another, merely
rotating about an axis, oscillating, or otherwise remaining
stationary? The answer is no: coordinates do change, reflecting
changes in the underlying network even over relatively short
time-scales. We illustrate this change in Figure 7 by showing
how four nodes’ coordinates vary over time. The nodes are

from four distinct regions. Their coordinates move in a con-
sistent direction over a three hour period, neither rotating nor
remaining within one area. Instead, this example portrays that
−→ca should be updated over time to sustain accuracy.

The fact that−→ca must be updated suggests a trade-off
between the drawback of changing−→ca , which induces (perhaps
unnecessary) application-level work and−→ca ’s accuracy. Our
goal is to shift the line in Figure 5 (bottom) to the left,
increasing stability, without moving the line in Figure 5 (top)
to the right, increasing error.

We examined four heuristics that each attempt to update
−→ca at appropriate times: dampening application updates while
retaining the MP filter’s low relative error. Two are based on
simple thresholds and two on sliding windows of previouscs

coordinates. Before explaining the heuristics, we explain how
we transform streams of system-level coordinate updates into
two sets that can be tested for significant coordinate change.

A. Detecting Change with Windows

In the context of streams of samples entering a database,
Ben-David, Gehrke, and Kifer propose an algorithm to detect
when the stream has undergone a significant change [11]; their
algorithm is similar to one proposed by Kleinberg for detecting
word bursts in text streams [12]. The kernel of their idea is
to divide a single data streamS = {s0, s1, . . . , sn} into two
sets,Ws = {s0, . . . , sk} andWc = {sn−k, . . . , sn}, that can
be compared for statistically significant change using one of
a handful of standard techniques (e.g.,rank-sum).

Initially, both Ws andWc (start and current, respectively)
are empty. As each elementsi arrives, it is added toWs and
Wc until they are both of sizek. When this size is reached,
no more elements are added toWs, andWc slides to addsi

and dropsi−k−1. With each new element, the sets are tested
for difference. When the two sets are declared to be different,
a change pointis said to have occurred. At this point, both
windowsWs andWc are cleared and the process begins again.
By creating two distributions out of the single stream, they
produce sets that can be compared for difference using well-
known statistical tests. The well-known tests Ben-Davidet al.
examine in their work, however, are all for one-dimensional
data. The two tests we employed for multi-dimensional data
are heuristicsENERGY and RELATIVE below.

B. Application Update Heuristics

Now that we have explained how the two sliding window
algorithms turn the streams of coordinates into two sets, we
present four heuristics that each attempt to increase stability
in application-level coordinates without decreasing their accu-
racy:
SYSTEM . If the change in−→cs from one observation to the next
is greater than a thresholdτ , update−→ca . Thus, if

‖−−→cs(t) −−−−−→cs(t−1)‖ > τ,

let −→ca = −→cs . This heuristic is simple but suffers from a
pathological case: many changes just under the threshold

Harvard Technical Report TR-17-05. July 2005

might occur, which would lead to high error. Note that relative
error in this context is

εa =
| ‖−→cai −−→caj‖ − lij |

lij
.

APPLICATION . If the application’s idea of the coordinate has
strayed too far from the system’s, notify the application. More
precisely, if

‖−→ca −−→cs‖ > τ,

let −→ca = −→cs . This heuristic is a simple way of expressing that
an update should occur if a drift in one direction occurs; it
permits oscillations beneathτ .
RELATIVE . This is the first of our two window-based heuris-
tics. Here we measure the local relative distance as compared
with our nearest known neighborr and update the application
if the change is larger than an errorεr. RELATIVE averages
each of its sets of coordinates by taking their centroidC(W).
It computes, if

‖C(Ws)− C(Wc)‖
‖C(Ws)−−→r ‖

> εr,

let −→cs = C(Wc). This heuristic exhibits three good prop-
erties: updates are relative to the node’s locale, computing
the centroid is inexpensive, andC(Ws) can be cached. The
approximate nearest neighbor is learned through a comparison
with each latency sample, where the node learns−→xj .
ENERGY. The last heuristic uses a statistical test that specif-
ically measures the Euclidean distance between two multi-
dimensional distributions [26]. It is based on theenergydis-
tancee(A,B) between two finite setsA = {−→a1, . . . ,−→an1}, B =
{−→b1 , . . . ,

−→
bn2}:

e(A,B) =
n1n2

n1 + n2

 2
n1n2

n1∑
i=1

n2∑
j=1

‖−→ai −
−→
bj ‖

− 1
n2

1

n1∑
i=1

n1∑
j=1

‖−→ai −−→aj‖ −
1
n2

2

n2∑
i=1

n2∑
j=1

‖−→bi −
−→
bj ‖

Using this statistic, we can determine the divergence of the

two windows. If

e(Ws,Wc) > τ,

let −→ca = C(Wc). While computing this heuristic is more
computationally intensive thanRELATIVE , the difference is
negligible for the small windows we used.

C. Summary of Application-Update Results

To examine how these four heuristics affected stability and
accuracy from an application’s viewpoint, we implemented
them in our simulator and used the same trace of node
latencies. In particular, we wanted to see how the window
size and threshold parameters affected these metrics.

The following summarizes the results of our comparison of
application-update heuristics:

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256
0.00

0.02

0.04

0.06

0.08

0.10

In
st

ab
ili

ty

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Energy: Threshold

Instability
Relative Error

 0

 10

 20

 30

 40

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00

0.02

0.04

0.06

0.08

0.10

In
st

ab
ili

ty

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Relative: Threshold

Fig. 8. Instability and Median Relative Error for varying threshold with
RELATIVE and ENERGY.

• As expected, increasing the threshold required for appli-
cation update increases stability but also decreases ac-
curacy. The window-based heuristics succeed in substan-
tially increasing stability before any significant decline in
accuracy begins.

• Large windows,e.g., between32 and 512 samples, im-
prove both stability and accuracy. Very large windows,
however, cause too few updates to occur, decreasing
accuracy.

• The heuristics that do not use windows can increase
stability only at the immediate expense of accuracy and
are not robust to minor parameter changes.

D. Window-based Heuristics

Because the window-based heuristics,RELATIVE and EN-
ERGY, are more complex, with their two parameters of window
size and threshold, we examined their behavior first. We
conjectured that, as the threshold for update increased, fewer
updates of−→ca would occur, leading to greater stability and
perhaps reduced accuracy.

To examine how the thresholdsτ andεr affect ENERGY and
RELATIVE , respectively, we ran an experiment where we varied
the value of the threshold and kept window size constant. We
recorded accuracy and stability and Figure 8 shows the median
for both the distribution of median relative error per node and
of instability. The results summarize the last two hours of the
four hour trace, as in previous experiments.

The data establish thatRELATIVE exhibits a near-linear in-
crease in stability with increasing threshold. Thus, asRELATIVE

requires more and more movement relative to the distance to
the nearest neighbor, updates steadily decline. The increase in
ENERGY’s stability is curved but has no knee: it too exhibits

Harvard Technical Report TR-17-05. July 2005

a measured decline in coordinate change as the threshold to
update increases. Both heuristics fall in the same range of
relative error, withENERGY exhibiting a more gradual decline
as thresholds increase. However, the decline in accuracy for
both heuristics does not expend a substantial increase in
stability, especially forRELATIVE , where instability is cut in
half without any noticeable reduction in accuracy. Accuracy
begins to decline forENERGY after τ = 8 and for RELATIVE

after εr = 0.3. These are the most conservative parameters
that still grant an increase in stability, with8% for RELATIVE

and 34% for ENERGY. We kept window size at 32 for this
experiment.

Our second experiment with the window-based heuristics
was to establish reasonable boundaries for window size. Un-
like the per-link MP filter, using a large window is acceptable
because windows are appended to with every observation,
regardless of the link. However, similar to using a large filter,
a trade-off exists in which very large windows are slow to
react to true changes in underlying network conditions.

We ran an experiment in which we kept the threshold
for application-update constant while we varied window size
exponentially. We monitored accuracy and stability as before,
and also observed how frequently application updates occurred
over time. This last number — that is, the number of times
−→ca is changed per unit time — is interesting because even
though stability might be increased, it might not necessarily
correlate with a decline in application notifications. Instead,
stability could be increasing through smaller updates that occur
at the same frequency. Because a cost exists in notifying an
application with a coordinate change, we wanted to ensure
that both instability and update frequency were decreasing. In
Figure 9, we show the same metrics as the previous experiment
together with the percent of the269 nodes that changed their
values for−→ca each second. The data show that not only do large
windows (≈ 25−29) modestly improve accuracy, but also they
result in a steady increase in stability and decline in update
frequency. Across a wide range of window sizes, updates are
both less frequent and cause less movement in aggregate,
achieving two of the goals of the application-update heuristics.
At a window size of128 for example,RELATIVE ’s median
relative error is7%, its instability 5ms/sec, while causing
only 1% of the nodes to be updated per second. This is a42%
increase in accuracy and a two orders-of-magnitude improve-
ment in stability compared to the original algorithm. Because
all large window sizes afforded a substantial improvement in
the metrics, we chose the smallest of these,32, to make a
conservative comparison with the window-less heuristics and
to use in our PlanetLab implementation. We used the threshold
values gathered from the previous experiment.

E. Windowless Heuristics

The window-based heuristics have the disadvantage that
they are slightly more complex than the windowless ones,
SYSTEM and APPLICATION, and that they require more state.
Using the parameters we established for window size from
the previous experiment, we compared all four heuristics as we
varied the update threshold. UnlikeENERGY andRELATIVE the

0.00

0.02

0.04

0.06

0.08

0.10

22 23 24 25 26 27 28 29 210 211 212

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Window Size

Energy
Relative

0
20
40
60
80

100
120
140

22 23 24 25 26 27 28 29 210 211 212

In
st

ab
ili

ty

Window Size

0%
1%
2%
3%
4%
5%
6%
7%
8%

22 23 24 25 26 27 28 29 210 211 212

A
pp

lic
at

io
n

U
pd

at
es

Pe
r

Se
co

nd

Window Size

Fig. 9. Median Relative Error, Instability and Application Updates per Second
with varying window size forRELATIVE and ENERGY.

windowless heuristics could only directly trade off accuracy
for stability and had a limited “sweet spot,” one which might
change with a different trace.

We show the same metrics, median relative error, and
instability, as we vary threshold in Figure 10. At low thresh-
olds, when−→ca is updated after only a small movement from
its previous value,SYSTEM’s and APPLICATION’s performance
remain similar to the raw MP filter. With a large threshold,
−→ca is rarely updated, leading to high error. Only atτ = 16 do
the two heuristics perform in the same range as the window-
based ones. Because tipping in either direction results in
poor performance on one of the metrics, we conclude the
added complexity and state of using one of the window-based
heuristics is worthwhile.

F. Comparison to the Raw MP Filter

Our primary goal in introducing the application-level heuris-
tics was to further improve stability while maintaining ac-
curacy. In Figure 11, we show how the two window-based
heuristics achieve that goal. Using the parameters established
above, accuracy remains unchanged whileRELATIVE and EN-
ERGY shift the entire distribution of coordinate updates into a
more stable regime.

G. Discussion

Application-level accuracy and stability depend on both
knowing when to update−→ca and what to set it to. A substantial
component of the success of the two window-based heuristics
is their setting−→ca = C(Wc). One could argue that a simple
threshold scheme might achieve similar performance if it
too used the centroid of a collection of recent system-level
coordinates. However, while it is true that allRELATIVE and
ENERGY do is set−→ca to the centroid of recent values forcs,

Harvard Technical Report TR-17-05. July 2005

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128 256

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M

ed
ia

n
R

el
at

iv
e

E
rr

or

Threshold

Energy
Relative

Application
System

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8 16 32 64 128 256

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

In
st

ab
ili

ty

Threshold

Fig. 10. Effect of varying threshold for all four heuristics. The window-based
heuristics maintain high accuracy and stability. The simple threshold-based
ones can only trade-off accuracy for stability and are much more sensitive to
changes in the threshold parameter.

achieving the properrate for these updates — knowing when
to change — is a property simple thresholds have difficultly
performing.

To test this claim, we modifiedAPPLICATION to set−→ca to be
the centroid of a window of the past32 coordinates (the same
size thatENERGY andRELATIVE use above). In our experiment,
we varied the threshold at which updates were made and again
monitored accuracy and stability. As the data in Figure 12
portray, this combinedAPPLICATION/CENTROID is more stable
than APPLICATION and SYSTEM but, like the two window-less
heuristics, it is not robust against slight changes in parameters
and has high stability only at the expense of good accuracy.

VI. PLANETLAB EXPERIMENT

In order both to verify our simulator and to confirm that our
findings were not limited to our latency trace, we implemented
a version of Vivaldi that could be run on a real network. This
version uses application-level UDP pings as input, the same
as our trace. Each node started with a small neighbor set and
gossiped one address with every sample. Nodes sampled from
their neighbor set in round-robin order at five second intervals.
We added the MP filter and theENERGY application-level
update heuristic to our implementation. We used a window of
32 andτ = 8 as suggested by the parameter space exploration
in simulation.

In order to ensure a valid comparison between running
Vivaldi with our enhancements and without, we ran them
on the same set of PlanetLab nodes at the same time, using
different ports. One set of nodes used the MP filter and one
did not; both usedENERGY. Because each node outputted−→cs

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

C
D

F

Median Relative Error

Energy+MP Filter
Relative+MP Filter

Raw MP Filter

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

C
D

F

Instability

Fig. 11. Comparison of application-level suppression to Raw MP Filtering.
Both window-based heuristics,RELATIVE andENERGY succeed in keeping
relative error low while greatly increasing coordinate stability.

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256
0.00

0.20

0.40

0.60

0.80

1.00

In
st

ab
ili

ty

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Application/Centroid: Threshold

Fig. 12. Instability and Median Relative Error with varying threshold for
APPLICATION/CENTROID.

and−→ca with each sample, we could monitor the effects of the
filter and the update heuristic separately. We ran this pair of
coordinate systems for four hours on 270 PlanetLab nodes on
June 24, 2005.

The results of the real-world experiment confirm those of
our simulations. We show the relative error and stability for
the second half of the experiment in Figure 13. The data
show that the MP filter reduces error and instability and the
application-update heuristic further increases stability. We also
examined how the MP filter and update heuristic affected these
metrics over time, shown in Figure 14. The data show that
after a half hour convergence period, using the MP filter and
ENERGY result in a much smoother and more accurate metric
space on a real wide-area network. The data confirm that both
enhancements have distinct effects on the two metrics and
that both are required for a stable and accurate space from an
application perspective.

Harvard Technical Report TR-17-05. July 2005

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
D

F

95th Percentile Relative Error

Energy+MP Filter
Raw MP Filter

Energy+No Filter
Raw No Filter

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

C
D

F

Instability

Fig. 13. Cumulative distribution of relative error and instability of Vivaldi
running on PlanetLab. The data show that with the MP filter only14% of the
nodes experienced a95th percentile relative error greater than one, while62%
of those without the filter did.ENERGY dampened the filter’s updates:91%
of the time it fell below even the minimum instability of the raw filter. The
enhancements combine to reduce the median of the95th percentile relative
error by54% and of instability by96%.

After a close examination of any coordinate disruptions
during the PlanetLab experiment, we discovered a source of
much of the worst error. Most real-time low pass filters add
delay in order to incorporate future values. Our MP filter
outputted a value for every input, regardless of the history
length: it produced thepth percentile of the current state it
was storing. Thus a pathological case occurs when an extreme
outlier is the first observation for a particular link: even with
the filter, this observation is what is used. In fact, this was the
case for the five largest node displacements in the PlanetLab
experiment and the echoes of these disruptions often continued
for minutes. To compensate for this, Vivaldi could wait until
a sufficient number of samples are in the filter.

In simulation, we experimented with waiting until the
second sample on a link to return an observation. This greatly
reduced early instability, but, because our set of nodes was
constant, had only limited impact after start-up. In a long-
running system where nodes periodically enter and leave,
adding a delay to the filter would increase its robustness
against these pathological cases at only a small cost.

VII. R ELATED WORK

A. Synthetic Network Coordinates

Since Ng and Zhang provided the first in-depth examination
of how to embed inter-node latencies in a metric space [15],
a series of different approaches have emerged. In their initial
work, called Global Network Positioning, a coordinate space
was built in two stages: first, a collection of well-known

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

95
th

 P
er

ce
nt

ile
 R

el
at

iv
e

E
rr

or

Time (hours)

Raw No Filter
Energy+No Filter

Raw MP Filter
Energy+MP Filter

0.0

2.0

4.0

6.0

8.0

10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M
ea

n
In

st
ab

ili
ty

Time (hours)

Fig. 14. Relative error and instability vary with time on PlanetLab. The data
points are the median error and mean instability for ten minute intervals.

landmarksplaced themselves in a vector space through all-
pairs ping measurements; second, each joining node measured
its distance to all of the landmarks and picked a coordinate
that minimized the error to all of them. This approach does
not allow for a smooth evolution of the space over time, nor
is it decentralized. However, it did establish that, even with
the error induced by triangle inequality violations, a high-
quality space was possible. Lighthouses [18] Mithos [27],
and NPS [16] extended the landmark approach by using
multiple local coordinate systems, by building the space
through preferring to measure nearby neighbors, and through
a hierarchical architecture, respectively. More recently, Costa
et al. developed PIC, another landmark scheme, which runs a
Simplex solver on each node to minimize error [3]. PIC read-
justs coordinates through periodically re-running this solver
process and includes a test to defend its coordinate system
against malicious participants. Coxet al. initially proposed
the decentralized Vivaldi algorithm we discuss here [4] and
Dabek et al. later improved its accuracy in two-dimensions
with height, which was intended to explicitly capture the
latency to a high speed link [5]. Shavitt and Tankel’s Big-Bang
Simulations is an embedding technique similar to Vivaldi,
although it models a potential force field instead of a mass-
spring system [25]. Kleinberg has developed a theoretical
grounding for network embeddings, analyzing how to embed
coordinates with arbitrarily low errors [13].

Network embeddings were developed partially in response
to the growing interest in topologically-efficient overlay rout-
ing. CAN’s multi-dimensional space [21], in particular, has
motivated work on network-aware overlays and on using a
node’s network coordinates as its logical CAN coordinate [22],
[31], [29]. In recent theoretical work, Abraham and Malkhi

Harvard Technical Report TR-17-05. July 2005

have examined routing strategies made possible through the
existence of network embeddings [1]. As network embeddings
have become better understood, work has surpassed using
them merely to route; current work explores how they can be
used for operator placement in distributed streaming databases
and for solving the distributed approximatek-nearest neigh-
bors problem [19].

In contrast, other work has tried to solve the same set of
problems, including thek-nearest neighbor problem, without
establishing a coordinate space, arguing that their maintenance
is a burden and that these coordinate spaces exhibit higher
error than a customized mechanism. In essence, this class
of work solves the neighbor and routing problemsreactively,
through a spike in activity in response to an application-driven
demand, while a long-running coordinate space solves them
pro-actively. Meridian, for example, finds the nearest overlay
node (i.e., one running Meridian) to an arbitrary point in the
Internet through a large set of pings in direct response to
an application-level request [28]. In the same vein, Shanahan
and Freedman examine the efficacy of network embeddings
for finding nearby servers for unmodified clients [24]. The
choice between solving these problems reactively or pro-
actively appears to be an application-specific decision.

B. Stabilizing Vivaldi

We used Szekely and Rizzo’senergy statistics as one
heuristic to find the distance between the start and current
coordinate windows [26]. Rubinfeld and Servedio provide an
alternate algorithm for determining theε-distance in Euclidean
space for two distributions [23]. However, their tests are
more focused on high dimensions and reducing the number
of samples required for comparison. In recent work, Zech
and Aslan independently proposed a test statistic, also called
energy, which differs from the statistic we used in its inclusion
of a problem-dependent scaling function embedded within the
statistic [30].

In another effort to stabilize Vivaldi, de Launoiset al.
modify the algorithm to prevent oscillations in the pres-
ence of triangle inequalities [6]. They introduce a factor
that asymptotically dampens the weight given to each new
measurement, regardless of its source. While this factor does
mitigate oscillations, it prevents the algorithm from adapting to
changing network conditions as the pull of new measurements
approaches zero.

VIII. C ONCLUSION

In a real-world deployment, no fixed, single-valued latency
matrix exists. Instead, nodes see a stream of latency values
along each link. When these raw values are used to embed
hosts into a metric space, the coordinate system they create is
fragile.

Common techniques,e.g., excluding “large” values and
using exponentially-weighted filters do not create a useful set
of latencies. Instead, a short non-linear low pass filter, the
moving percentile filter, both removes extreme values and is
agile enough to allow the output signal to accurately reflect
changes in the underlying network. Additionally, the benefit

of using more precise measurement tools is small relative to
eliminating signal extrema with a low pass filter.

We introduced the distinction between system- and
application-level coordinates and examined the effect of
four heuristics that determine how and when to update the
application-level coordinate. The two heuristics,ENERGY and
RELATIVE , that used a change-detection algorithm based on
sliding windows best determined when to make the update.
Additionally, using the centroid of a collection of recent
coordinates set the application-level coordinate to a highly
accurate value. We confirmed the results from our simulations
with an implementation on PlanetLab.

Recalling Vivaldi’s two useful properties, scalability and
continuous refinement, our set of techniques do not funda-
mentally alter them in practice. The MP filter is short enough
to permit on-going adjustments and does not affect scalability.
The application-level update heuristics, too, allow the algo-
rithm to function as before, only with increased stability for
applications.

ACKNOWLEDGMENTS

The authors would like to thank Michael Mitzenmacher for
helpful discussions.

REFERENCES

[1] I. Abraham and D. Malkhi. Compact routing on euclidian metrics. In
23rd Symposium on Principles of Distributed Computing, St. John’s,
Newfoundland, Canada, July 2004.

[2] B. Cohen. Incentives Build Robustness in BitTorrent. InWorkshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[3] M. Costa, M. Castro, A. Rowstron, , and P. Key. PIC: Practical Internet
Coordinates for Distance Estimation. InInternational Conference on
Distributed Computing Systems, Tokyo, Japan, March 2004.

[4] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Practical distributed
network coordinates. InSecond Workshop on Hot Topics in Networks,
November 2003.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. InSIGCOMM, Portland, OR, Aug. 2004.

[6] C. de Launois, S. Uhlig, and O. Bonaventure. A Stable and Distributed
Network Coordinate System. Technical report, Universite Catholique de
Louvain, December 2004.

[7] T. Gil, F. Kaashoek, J. Li, R. Morris, and J. Stribling. p2psim.http:
//www.pdos.lcs.mit.edu/p2psim/ .

[8] S. Husen, R. Taylor, R. Smith, and H. Healser. Changes in geyser
behavior and remotely triggered seismicity in Yellowstone National Park
produced by the 2002 M7.9 Denali fault earthquake.Geology, 32:537–
540, 2004.

[9] P. Indyk. Algorithmic applications of low-distortion geometric embed-
dings. In42nd Annual Symposium on Foundations of Computer Science,
Las Vegas, Nevada, 2001.

[10] KaZaA. http://www.kazaa.com .
[11] D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change in Data

Streams. InThirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 2004.

[12] J. M. Kleinberg. Bursty and hierarchical structure in streams. InEighth
International Conference on Knowledge Discovery and Data Mining,
Edmonton, Alberta, Canada, July 2002.

[13] J. M. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embed-
ding using small sets of beacons. In45th Symposium on Foundations
of Computer Science, Rome, Italy, October 2004.

[14] A. W. Moore and J. W. Jorgenson. Median Filtering for Removal of
Low-Frequency Background Drift.Analytic Chemistry, 65:188, 1993.

[15] E. Ng and H. Zhang. Predicting Internet Network Distances with
Coordinate-based Approaches. InINFOCOM, New York, NY, June
2002.

[16] E. Ng and H. Zhang. A Network Positioning System for the Internet.
In USENIX, Boston, MA, June 2004.

Harvard Technical Report TR-17-05. July 2005

[17] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet. InFirst Workshop
on Hot Topics in Networks, October 2002.

[18] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses
for Scalable Distributed Location. InSecond International Workshop on
Peer-to-Peer Systems, Berkeley, CA, February 2003.

[19] P. Pietzuch, J. Ledlie, J. Shneidman, M. Welsh, M. Seltzer, and M. Rous-
sopoulos. Network-Aware Operator Placement for Stream-Processing
Systems. Technical Report TR-04-05, Harvard University, June 2005.

[20] P. Pietzuch, J. Shneidman, M. Roussopoulos, M. Seltzer, and M. Welsh.
Path Optimization in Stream-Based Overlay Networks. InFirst Interna-
tional Workshop on Networking Meets Databases, Tokyo, Japan, April
2005.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. InSIGCOMM, August 2001.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
Aware Overlay Construction and Server Selection. InINFOCOM, New
York, NY, June 2002.

[23] R. Rubinfeld and R. Servedio. Testing monotone high-dimensional
distributions. InSymposium on the Theory of Computing, Baltimore,
MD, May 2005.

[24] K. Shanahan and M. Freedman. Locality Prediction for Oblivious
Clients. In Fourth International Workshop on Peer-to-Peer Systems,
Ithaca, NY, February 2005.

[25] Y. Shavitt and T. Tankel. Big-Bang Simulation for embedding network
distances in Euclidean space. InINFOCOM, San Francisco, CA, June
2003.

[26] G. Szekely and M. Rizzo. Testing for Equal Distributions in High
Dimension. InterStat, 5, November 2004.

[27] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network.
In HotNets-I, Princeton, NJ, Oct. 2002.

[28] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. InSIGCOMM,
Philadelphia, PA, August 2005.

[29] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays
using global soft-state. In22nd International Conference on Distributed
Computing Systems, Vienna, Austria, July 2002.

[30] G. Zech and B. Aslan. A multivariate two-sample test based on the
concept of minimum energy. InPHYSTAT, Stanford, CA, September
2003.

[31] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz. Brocade:
Landmark routing on overlay networks. InFirst International Workshop
on Peer-to-Peer Systems, Cambridge, MA, March 2002.

