
Data Representation and
Assembly Language Programming

The ANT-97 Architecture
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Ellard, Daniel J. and Penelope A. Ellard. 1998. Data Representation
and Assembly Language Programming The ANT-97 Architecture.
Harvard Computer Science Group Technical Report TR-15-98.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Data%20Representation%20and%20Assembly%20Language%20Programming%20The%20ANT-97%20Architecture&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cd315d2b83645c8fb47b9dc35e3c51bb&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Data Representation

and

Assembly Language Programming

The ANT-97 Ar
hite
ture

Daniel J. Ellard

Penelope A. Ellard

TR-15-98

January 11, 1998

Computer S
ien
e Group

Harvard University

Cambridge, Massa
husetts

Data Representation

and

Assembly Language Programming

The ANT-97 Ar
hite
ture

Daniel J. Ellard

Penelope A. Ellard

January 11, 1998

Chapter 1

Data Representation

In order to understand how a
omputer is able to manipulate data and perform

omputations, you must �rst understand how data is represented by a
omputer.

At the lowest level, the indivisible unit of data in a
omputer is a bit. A bit

represents a single binary value, whi
h may be either 1 or 0. In di�erent
ontexts, a

bit value of 1 and 0 may also be referred to as \true" and \false", \yes" and \no",

\high" and \low", \set" and \not set", or \on" and \o�".

The de
ision to use binary values, rather than something larger (su
h as de
imal

values) was not purely arbitrary{ it is due in a large part to the relative simpli
ity of

building ele
troni
 devi
es that
an manipulate binary values.

1.1 Representing Integers

1.1.1 Unsigned Binary Numbers

While the idea of a number system with only two values may seem odd, it is a
tually

very similar to the de
imal system we are all familiar with, ex
ept that ea
h digit is a

bit
ontaining a 0 or 1 rather than a number from 0 to 9. (The word \bit" itself is a

ontra
tion of the words \binary digit") For example, �gure 1.1 shows several binary

numbers, and the equivalent de
imal numbers.

In general, the binary representation of 2

k

has a 1 in binary digit k (
ounting from

the right, starting at 0) and a 0 in every other digit. (For notational
onvenien
e, the

ith bit of a binary number A will be denoted as A

i

.)

The binary representation of a number that is not a power of 2 has the bits set

1

2 CHAPTER 1. DATA REPRESENTATION

Figure 1.1: Binary and De
imal Numbers

Binary De
imal

0 = 0

1 = 1

10 = 2

11 = 3

100 = 4

101 = 5

110 = 6

.

.

.

.

.

.

.

.

.

11111111 = 255

orresponding to the powers of two that sum to the number: for example, the de
imal

number 6
an be expressed in terms of powers of 2 as 1� 2

2

+ 1� 2

1

+ 0� 2

0

, so

it is written in binary as 110.

An eight-digit binary number is
ommonly
alled a byte. In this text, binary

numbers will usually be written as bytes (i.e. as strings of eight binary digits). For

example, the binary number 101 would usually be written as 00000101{ a 101 padded

on the left with �ve zeros, for a total of eight digits.

Whenever there is any possibility of ambiguity between de
imal and binary no-

tation, the base of the number system (whi
h is 2 for binary, and 10 for de
imal) is

appended to the number as a subs
ript. Therefore, 101

2

will always be interpreted

as the binary representation for �ve, and never the de
imal representation of one

hundred and one (whi
h would be written as 101

10

).

1.1.1.1 Conversion of Binary to De
imal

To
onvert an unsigned binary number to a de
imal number, add up the de
imal

values of the powers of 2
orresponding to bits whi
h are set to 1 in the binary

number. Algorithm 1.1 shows a method to do this. Some examples of
onversions

from binary to de
imal are given in �gure 1.2.

Sin
e there are 2

n

unique sequen
es of n bits, if all the possible bit sequen
es of

length n are used, starting from zero, the largest number will be 2

n

� 1.

1.1. REPRESENTING INTEGERS 3

Algorithm 1.1 Binary to De
imal

To
onvert a binary number to de
imal.

� Let X be a binary number, n digits in length,
omposed of bits X

n�1

� � �X

0

.

� Let D be a de
imal number.

� Let i be a
ounter.

1. Let D = 0.

2. Let i = 0.

3. While i < n do:

� If X

i

== 1 (i.e. if bit i in X is 1), then set D = (D + 2

i

).

� Set i = (i+ 1).

Figure 1.2: Examples of Conversion from Binary to De
imal

Binary De
imal

00000000 = 0 = 0 = 0

00000101 = 2

2

+ 2

0

= 4 + 1 = 5

00000110 = 2

2

+ 2

1

= 4 + 2 = 6

00101101 = 2

5

+ 2

3

+ 2

2

+ 2

0

= 32 + 8 + 4 + 1 = 45

10110000 = 2

7

+ 2

5

+ 2

4

= 128 + 32 + 16 = 176

4 CHAPTER 1. DATA REPRESENTATION

1.1.1.2 Conversion of De
imal to Binary

An algorithm for
onverting a de
imal number to binary notation is given in algo-

rithm 1.2.

Algorithm 1.2 De
imal to Binary

To
onvert a positive de
imal number to binary.

� Let X be an unsigned binary number, n digits in length.

� Let D be a positive de
imal number, no larger than 2

n

� 1.

� Let i be a
ounter.

1. Let X = 0 (set all bits in X to 0).

2. Let i = (n� 1).

3. While i � 0 do:

(a) If D � 2

i

, then

� Set X

i

= 1 (i.e. set bit i of X to 1).

� Set D = (D � 2

i

).

(b) Set i = (i� 1).

1.1.1.3 Addition of Unsigned Binary Numbers

Addition of binary numbers
an be done in exa
tly the same way as addition of

de
imal numbers, ex
ept that all of the operations are done in binary (base 2) rather

than de
imal (base 10). Algorithm 1.3 gives a method whi
h
an be used to perform

binary addition.

When algorithm 1.3 terminates, if
 is not 0, then an over
ow has o

urred{ the

resulting number is simply too large to be represented by an n-bit unsigned binary

number.

1.1. REPRESENTING INTEGERS 5

Algorithm 1.3 Unsigned Binary Addition

Addition of unsigned binary numbers.

� Let A and B be a pair of n-bit binary numbers.

� Let X be a binary number whi
h will hold the sum of A and B.

� Let
 and
̂ be
arry bits.

� Let i be a
ounter.

� Let s be an integer.

1. Let
 = 0.

2. Let i = 0.

3. While i < n do:

(a) Set s = A

i

+B

i

+
.

(b) Set X

i

and
̂ a

ording to the following rules:

� If s == 0, then X

i

= 0 and
̂ = 0.

� If s == 1, then X

i

= 1 and
̂ = 0.

� If s == 2, then X

i

= 0 and
̂ = 1.

� If s == 3, then X

i

= 1 and
̂ = 1.

(
) Set
 =
̂.

(d) Set i = (i+ 1).

6 CHAPTER 1. DATA REPRESENTATION

1.1.2 Signed Binary Numbers

The major
aw with the representation that we've used for unsigned binary numbers

is that it doesn't in
lude a way to represent negative numbers.

There are a number of ways to extend the unsigned representation to in
lude

negative numbers. One of the easiest is to add an additional bit to ea
h number

that is used to represent the sign of the number{ if this bit is 1, then the number is

negative; otherwise the number is positive (or vi
e versa). This is analogous to the

way that we write negative numbers in de
imal{ if the �rst symbol of the number is

a negative sign, then the number is negative, otherwise the number is positive.

Unfortunately, when we try to adapt the algorithm for addition to work properly

with this representation, this apparently simple method turns out to
ause some

trouble. Instead of simply adding the numbers together as we do with unsigned

numbers, we now need to
onsider whether the numbers being added are positive or

negative. If one number is positive and the other negative, then we a
tually need to

do subtra
tion instead of addition, so we'll need to �nd an algorithm for subtra
tion.

Furthermore, on
e we've done the subtra
tion, we need to
ompare the the unsigned

magnitudes of the numbers to determine whether the result is positive or negative!

Lu
kily, there is a representation that allows us to represent negative numbers in

su
h a way that addition (or subtra
tion)
an be done easily, using algorithms very

similar to the ones that we already have. The representation that we will use is
alled

two's
omplement notation.

To introdu
e two's
omplement, we'll start by de�ning, in algorithm 1.4, the

algorithm that is used to
ompute the negation of a two's
omplement number.

Figure 1.3 shows the pro
ess of negating several numbers. Note that the negation

of zero is zero.

This representation has several important properties:

� The leftmost (most signi�
ant) bit also serves as a sign bit; if 1, then the number

is negative, if 0, then the number is positive or zero.

� The rightmost (least signi�
ant) bit of a number always determines whether or

not the number is odd or even{ if bit 0 is 0, then the number is even, otherwise

the number is odd.

� The largest positive number that
an be represented in two's
omplement no-

tation in an n-bit binary number is 2

n�1

� 1. For example, if n = 8, then the

largest positive number is 01111111 = 2

7

� 1 = 127.

1.1. REPRESENTING INTEGERS 7

Algorithm 1.4 Two's Complement Negation

Negation of a two's
omplement number.

1. Let �x = the logi
al
omplement of x.

The logi
al
omplement (also
alled the one's
omplement) is formed by
ipping

all the bits in the number,
hanging all of the 1 bits to 0, and vi
e versa.

2. Let X = �x+ 1.

If this addition over
ows, then the over
ow bit is dis
arded.

By the de�nition of two's
omplement, the resulting X is the negation of the original

x.

Figure 1.3: Examples of Negation Using Two's Complement

00000110 = 6

1's
omplement 11111001

Add 1 11111010 = -6

11111010 = -6

1's
omplement 00000101

Add 1 00000110 = 6

00000000 = 0

1's
omplement 11111111

Add 1 00000000 = 0

8 CHAPTER 1. DATA REPRESENTATION

� Similarly, the \most negative" number is �2

n�1

, so if n = 8, then it is 10000000,

whi
h is �2

7

= � 128. Note that the negative of the most negative number

(in this
ase, 128)
annot be represented in this notation.

1.1.2.1 Addition and Subtra
tion of Signed Binary Numbers

The same addition algorithm that was used for unsigned binary numbers also works

properly for two's
omplement numbers.

00000101 = 5

+ 11110101 = -11

11111010 = -6

Subtra
tion is also done in a similar way: to subtra
t A from B, take the two's

omplement of A and then add this number to B.

The
onditions for dete
ting over
ow are di�erent for signed and unsigned num-

bers, however. If we use algorithm 1.3 to add two unsigned numbers, then if
 is

1 when the addition terminates, this indi
ates that the result has an absolute value

too large to �t the number of bits allowed. With signed numbers, however,
 is not

relevant, and an over
ow o

urs when the signs of both numbers being added are the

same but the sign of the result is opposite. If the two numbers being added have

opposite signs, however, then an over
ow
annot o

ur.

For example,
onsider the sum of 1 and �1:

00000001 = 1

+ 11111111 = -1

00000000 = 0 Corre
t!

In this
ase, the addition will over
ow, but it is not an error, sin
e the result that

we get (without
onsidering the over
ow) is exa
tly
orre
t.

On the other hand, if we
ompute the sum of 127 and 1, then a serious error

o

urs:

01111111 = 127

+ 00000001 = 1

10000000 = -128 Uh-oh!

1.1. REPRESENTING INTEGERS 9

Therefore, we must be very
areful when doing signed binary arithmeti
 that we

take steps to dete
t bogus results. In general:

� If A and B are of the same sign, but A + B is of the opposite sign, then an

over
ow or wraparound error has o

urred.

� If A and B are of di�erent signs, then A+B will never over
ow or wraparound.

1.1.2.2 Shifting Signed Binary Numbers

Another useful property of the two's
omplement notation is the ease with whi
h

numbers
an be multiplied or divided by two. To multiply a number by two, simply

shift the number \up" (to the left) by one bit, pla
ing a 0 in the least signi�
ant bit.

To divide a number in half, simply shift the the number \down" (to the right) by one

bit (but do not
hange the sign bit).

Note that in the
ase of odd numbers, the e�e
t of shifting to the right one bit

is like dividing in half, rounded towards �1, so that 51 shifted to the right one bit

be
omes 25, while -51 shifted to the right one bit be
omes -26.

00000001 = 1

Double 00000010 = 2

Halve 00000000 = 0

00110011 = 51

Double 01100110 = 102

Halve 00011001 = 25

11001101 = -51

Double 10011010 = -102

Halve 11100110 = -26

1.1.2.3 Hexade
imal Notation

Writing numbers in binary notation
an soon get tedious, sin
e even relatively small

numbers require many binary digits to express. A more
ompa
t notation,
alled hex-

ade
imal (base 16), is usually used to express large binary numbers. In hexade
imal,

ea
h digit represents four unsigned binary digits.

10 CHAPTER 1. DATA REPRESENTATION

Figure 1.4: Hexade
imal and O
tal

Binary 0000 0001 0010 0011 0100 0101 0110 0111

De
imal 0 1 2 3 4 5 6 7

Hex 0 1 2 3 4 5 6 7

O
tal 0 1 2 3 4 5 6 7

Binary 1000 1001 1010 1011 1100 1101 1110 1111

De
imal 8 9 10 11 12 13 14 15

Hex 8 9 A B C D E F

O
tal 10 11 12 13 14 15 16 17

Another notation, whi
h is not as
ommon
urrently, is
alled o
tal and uses base

eight to represent groups of three bits. Figure 1.4 show examples of binary, de
imal,

o
tal, and hexade
imal numbers.

For example, the number 200

10

an be written as 11001000

2

, C8

16

, or 310

8

.

1.2 Representing Chara
ters

Just as sequen
es of bits
an be used to represent numbers, they
an also be used to

represent the letters of the alphabet, as well as other
hara
ters.

Sin
e all sequen
es of bits represent numbers, one way to think about representing

hara
ters by sequen
es of bits is to
hoose a number that
orresponds to ea
h
har-

a
ter. The most popular
orresponden
e
urrently is the ASCII
hara
ter set. ASCII,

whi
h stands for the Ameri
an Standard Code for Information Inter
hange, uses 7-bit

integers to represent
hara
ters, using the
orresponden
e shown in table 1.5.

When the ASCII
hara
ter set was
hosen, some
are was taken to organize the

way that
hara
ters are represented in order to make them easy for a
omputer to

manipulate. For example, all of the letters of the alphabet are arranged in order,

so that sorting
hara
ters into alphabeti
al order is the same as sorting in numeri
al

order. In addition, di�erent
lasses of
hara
ters are arranged to have useful relations.

For example, to
onvert the
ode for a lower
ase letter to the
ode for the same letter

in upper
ase, simply set the 6th bit of the
ode to 0 (or subtra
t 32). ASCII is by no

means the only
hara
ter set to have similar useful properties, but it has emerged as

1.2. REPRESENTING CHARACTERS 11

Figure 1.5: The ASCII Chara
ter Set

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL

08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI

10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB

18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US

20 SP 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 (29) 2A * 2B + 2C , 2D - 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 � 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C 5D ℄ 5E ^ 5F

60 � 61 a 62 b 63
 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B f 7C | 7D g 7E ~ 7F DEL

the standard.

The ASCII
hara
ter set does have some important limitations, however. One

problem is that the
hara
ter set only de�nes the representations of the
hara
ters

used in written English. This
auses problems with using ASCII to represent other

written languages. In parti
ular, there simply aren't enough bits to represent all the

written
hara
ters of languages with a larger number of
hara
ters (su
h as Chinese

or Japanese). Already new
hara
ter sets whi
h address these problems (and
an be

used to represent
hara
ters of many languages side by side) are being proposed, and

eventually there will unquestionably be a shift away from ASCII to a new multilan-

guage standard

1

.

1

This shift will break many, many existing programs. Converting all of these programs will keep

many, many programmers busy for some time.

12 CHAPTER 1. DATA REPRESENTATION

1.3 Representing Programs

Just as sequen
es of bits
an be used to represent numbers, they
an also be used

to represent instru
tions for a
omputer to perform. Unlike the two's
omplement

notation for integers, whi
h is a standard representation used by nearly all
omputers,

the representation of instru
tions, and even the set of instru
tions, varies widely from

one type of
omputer to another.

The ANT ar
hite
ture, whi
h is the fo
us of the rest of this do
ument, uses a

relatively simple and straightforward representation. Ea
h instru
tion is exa
tly 16

bits in length, and
onsists of several bit �elds, as depi
ted in �gure 1.6.

Figure 1.6: ANT Instru
tion Formats

4 bits 4 bits 4 bits 4 bits

op des reg1 reg2

op des reg1 4-bit
onstant

op reg 8-bit
onstant

The �rst four bits (reading from the left, or high-order bits) of ea
h instru
tion are

alled the op �eld. The op �eld determines what operation the instru
tion represents.

Depending on what the op is, the rest of the instru
tion may represent the names of

registers or
onstants used by the op.

For example, the instru
tion 0234

16

has an op of 0, whi
h
orresponds to the

operation of addition.

2

With the addition operation, the three remaining 4-bit �elds

are interpreted as the names of the registers to use; instru
tion 0234

16

adds the

ontents of registers 3 and 4, and pla
es the sum in register 2. (The add instru
tion

and the rest of the ANT instru
tions are des
ribed more fully in the rest of this

do
ument.)

1.4 Memory Organization

We've seen how sequen
es of binary digits
an be used to represent numbers,
har-

a
ters, and instru
tions. In a
omputer, these binary digits are organized and ma-

2

The fa
t that most of the instru
tions
onsist of four 4-bit �elds makes hexade
imal notation

parti
ularly appropriate for expressing ANT instru
tions.

1.4. MEMORY ORGANIZATION 13

nipulated in dis
rete groups, and these groups are said to be the memory of the

omputer.

1.4.1 Units of Memory

The smallest of these groups, on most
omputers, is
alled a byte. On nearly all

urrently popular
omputers a byte is
omposed of 8 bits.

The next largest unit of memory is usually
omposed of 16 bits. What this unit

is
alled varies from
omputer to
omputer{ on smaller ma
hines, this is often
alled

a word, while on newer ar
hite
tures that
an handle larger
hunks of data, this is

alled a halfword.

The next largest unit of memory is usually
omposed of 32 bits. On
e again, the

name of this unit varies{ on smaller ma
hines, it is referred to as a long, while on

newer and larger ma
hines it is
alled a word.

Finally, on the newest ma
hines, the
omputer also
an handle data in groups of

64 bits. On a smaller ma
hine, this is known as a quadword, while on a larger ma
hine

this is known as a long.

1.4.1.1 Histori
al Perspe
tive

There have been ar
hite
tures that have used nearly every imaginable word size{ from

6-bit bytes to 9-bit bytes, and word sizes ranging from 12 bits to 48 bits. There are

even a few ar
hite
tures that have no �xed word size at all (su
h as the CM-2) or

word sizes that
an be spe
i�ed by the operating system at runtime.

Over the years, however, most ar
hite
tures have
onverged on 8-bit bytes and

32-bit longwords. An 8-bit byte is a good mat
h for the ASCII
hara
ter set (whi
h

has some popular extensions that require 8 bits), and a 32-bit word has been, at least

until re
ently, large enough for most pra
ti
al purposes.

1.4.2 Addresses and Pointers

Ea
h unique byte

3

of the
omputer's memory is given a unique identi�er, known as

its address. The address of a pie
e of memory is often refered to as a pointer to that

3

In some
omputers, the smallest distin
t unit of memory is not a byte. For the sake of simpli
ity,

however, this se
tion assumes that the smallest distin
t unit of memory on the
omputer in question

is a byte.

14 CHAPTER 1. DATA REPRESENTATION

pie
e of memory{ the two terms are synonymous, although there are many
ontexts

where one is
ommonly used and the other is not.

The memory of the
omputer itself is often organized as a large array (or group of

arrays) of bytes of memory. In this organization, the address of ea
h byte of memory

is simply the index of the memory array lo
ation where that byte is stored.

1.4.3 Summary

In this
hapter, we've seen how
omputers represent integers using groups of bits, and

how basi
 arithmeti
 and other operations
an be performed using this representation.

We've also seen how the integers or groups of bits
an be used to represent sev-

eral di�erent kinds of data, in
luding written
hara
ters (using the ASCII
hara
ter

odes), instru
tions for the
omputer to exe
ute, and addresses or pointers, whi
h

an be used to referen
e other data.

There are also many other ways that information
an be represented using groups

of bits, in
luding representations for rational numbers (usually by a representation

alled
oating point), irrational numbers, graphi
s, arbitrary
hara
ter sets, and so

on. These topi
s, unfortunately, are beyond the s
ope of this
hapter.

Chapter 2

An ANT Tutorial

This se
tion is a qui
k tutorial for ANT assembly language programming and the ANT

environment. This
hapter
overs the basi
s of ANT assembly language, in
luding

arithmeti
 operations, simple I/O,
onditionals, loops, and a

essing memory.

2.1 What is Assembly Language?

As alluded to in the previous
hapter,
omputer instru
tions
an be represented as

sequen
es of bits. Generally, this is the lowest possible level of representation for a

program{ ea
h instru
tion is equivalent to a single, indivisible a
tion of the CPU.

This representation is
alled ma
hine language, and it is the only form that
an be

\understood" dire
tly by the ma
hine.

A slightly higher-level representation (and one that is mu
h easier for humans to

use) is
alled assembly language. Assembly language is very
losely related to ma
hine

language, and there is usually a straightforward way to translate programs written in

assembly language into ma
hine language. (This translation is usually implemented

by a program
alled an assembler.) Assembly language is usually a dire
t translation

of the ma
hine language; one instru
tion in ma
hine language
orresponds to one

instru
tion in the assembly language.

Be
ause of the
lose relationship between ma
hine and assembly languages, ea
h

di�erent ma
hine ar
hite
ture usually has its own assembly language (in fa
t, a par-

ti
ular ar
hite
ture may have several), and ea
h is unique

1

.

1

For many years,
onsiderable e�ort was spent trying to develop a portable assembly language

that
ould generate ma
hine language for a wide variety of ar
hite
tures. Eventually, these e�orts

15

16 CHAPTER 2. AN ANT TUTORIAL

2.2 Getting Started with Assembly: add.asm

To get our feet wet, we'll write an assembly language program named add.asm that

adds 1 and 2, and stores the result in register r2.

2.2.1 Commenting

Before we start to write the exe
utable statements of a program, however, we'll need

to write a
omment that des
ribes what the program is supposed to do. In the ANT

assembly language, any text between a pound sign (#) and the subsequent newline is

onsidered to be a
omment, and is ignored by the assembler. Good
omments are

absolutely essential! Assembly language programs are notoriously diÆ
ult to read

unless they are well organized and properly do
umented. Therefore, we start by

writing the following:

Dan Ellard -- 11/2/96

add.asm-- A program that
omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

end of add.asm

Even though this program doesn't a
tually do anything yet, at least anyone read-

ing our program will know what this program is supposed to do, and who to blame if

it doesn't work

2

. Unlike C programs, it is usually appropriate to
omment every line,

often with seemingly redundant
omments. Un
ommented
ode that seems obvious

when you write it will be a deep mystery a few hours later. While a well-written

but un
ommented C program might be relatively easy to read by an experien
ed

programmer, as we will soon see it is not true that even the most well-written assem-

bly
ode is readable without plentiful and meaningful
omments. Some programmers

prefer to add
omments that e
ho the steps performed by the assembly instru
tions

in a higher-level language.

We are not �nished
ommenting this program, but we've done all that we
an do

until we know a little more about how the program will a
tually work.

were abandoned as hopeless.

Some people
onsider C to be a portable assembly language.

2

You should put your own name on your own programs, of
ourse; Dan Ellard shouldn't take all

the blame.

2.2. GETTING STARTED WITH ASSEMBLY: ADD.ASM 17

2.2.2 Finding the Right Instru
tions

Next, we need to �gure out what instru
tions the
omputer will need to exe
ute in

order to add two numbers. Sin
e the ANT ar
hite
ture has very few instru
tions, it

won't be long before you have memorized all of the instru
tions that you'll need, but

as you are getting started you'll need to spend some time browsing through the lists of

instru
tions, looking for ones that you
an use to do what you want. Do
umentation

for the ANT instru
tion set
an be found in the appendix of this do
ument.

Lu
kily, as we look through the list of arithmeti
 instru
tions, we noti
e the add

instru
tion, whi
h adds two numbers together.

The add instru
tion takes three operands, whi
h appear in the following order:

1. A register that will be used to hold the result of the addition. For our program,

this will be r2.

2. A register that
ontains the �rst number to be added. Therefore, we're going

to have to pla
e the value 1 into a register before we
an use it as an operand of

add. Che
king the list of registers used by this program (whi
h is an essential

part of the
ommenting) we sele
t r3, and make note of this in the
omments.

3. A register that holds the se
ond number to be added. We're also going to have

to pla
e the value 2 into a register before we
an use it as an operand of add.

Che
king the list of registers used by this program we sele
t r4, and make note

of this in the
omments.

We now know how we
an add the numbers, but we have to �gure out how to

pla
e 1 and 2 into the appropriate registers. To do this, we
an use the l
 (load

onstant value) instru
tion, whi
h pla
es an 8-bit
onstant into a register. Therefore,

we arrive at the following sequen
e of instru
tions:

Dan Ellard -- 11/2/96

add.asm-- A program that
omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the
onstant 1.

r4 - used to hold the
onstant 2.

l
 r3, 1 # r3 = 1

l
 r4, 2 # r4 = 2

18 CHAPTER 2. AN ANT TUTORIAL

add r2, r3, r4 # r2 = r3 + r4.

end of add.asm

2.2.3 Completing the Program

These three instru
tions perform the
al
ulation that we want, but they do not form

a
omplete program. Like C, an assembly language program must
ontain some

additional information that tells the assembler where the program begins and ends.

Unlike C, ANT programs always start with the �rst instru
tion; there is no main. The

end of a program is de�ned in a very di�erent way, however. Similar to C, where the

exit fun
tion
an be
alled in order to halt the exe
ution of a program, the proper

way to end an ANT program is with something analogous to
alling exit in C. Unlike

C, however, if you forget to \
all exit" your program will not gra
efully exit when

it rea
hes the end of the main fun
tion. Instead, it will blunder on through memory,

interpreting whatever it �nds as instru
tions to exe
ute. Generally speaking, this

means that if you are lu
ky, your program will
rash immediately; if you are unlu
ky,

it will do something destru
tive and then
rash.

The way to tell ANT that it should stop exe
uting your program, and also to

do a number of other useful things, is with a spe
ial instru
tion
alled sys. The

sys instru
tion suspends the exe
ution of your program and starts exe
ution of the

system. The system then looks at the se
ond argument to sys to determine what it

is that your program is asking it to do.

In this
ase, what we want is for the operating system to do whatever is ne
essary

to exit or halt our program. Looking in table A.1.2, we see that this is done by
alling

the sys instru
tion with zero as the se
ond argument (with the halt sys
all, the �rst

argument is unused, although with other sys
alls it is used to pass an argument to or

return a value from the system).

Dan Ellard -- 11/2/96

add.asm-- A program that
omputes the sum of 1 and 2,

leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the
onstant 1.

r4 - used to hold the
onstant 2.

l
 r3, 1 # load 1 into r3.

l
 r4, 2 # load 2 into r4.

2.3. USING ANT 19

add r2, r3, r4 # r2 = r3 + r4.

sys r0, 0 # Halt - end exe
ution.

end of add.asm

2.2.4 The Format of ANT Assembly Programs

As you read add.asm, you may noti
e several formatting
onventions{ all the lines

that
ontain instru
tions are indented, and ea
h line
ontains at most one instru
tion.

These
onventions are not simply a matter of style, but are a
tually part of the

de�nition of the ANT assembly language.

The �rst rule of ANT assembly formatting is that instru
tions must be indented.

Comments do not need to be indented, but all of the
ode itself must be. The se
ond

rule of ANT assembly formatting is that only one instru
tion
an appear on a line.

(There are a few additional rules, but these will not be important until se
tion 2.5.1.)

Unlike C, where the use of whitespa
e and formatting is largely a matter of style,

in ANT assembly language some use of whitespa
e is required.

3

2.3 Using ANT

At this point, we should have a working program. Now, it's time to try running it

and see what happens.

Before running the program, we must assemble it. The assembler translates the

program from the assembly language representation to the ma
hine language repre-

sentation. The assembler for ANT is
alled aa, so the appropriate
ommand would

be:

% aa add.asm

This will
reate a �le named add.ant that
ontains the ANT ma
hine-language

representation of the program in add.asm.

Now that we have the assembled version of the program, we
an test it by loading

it into the ANT debugger in order to exe
ute it. The name of the ANT debugger

is ad, so to run the debugger, use the ad
ommand followed by the name of the

3

CS50 students may �nd it a useful exer
ise to enumerate the kinds of C
onstru
ts whose meaning

an be altered by the addition or deletion of whitespa
e.

20 CHAPTER 2. AN ANT TUTORIAL

ma
hine language �le to load. For example, to run the program that we just wrote

and assembled:

% ad add.ant

After starting, the debugger will display the following prompt: >>. Whenever

you see the >> prompt, you know that the debugger is waiting for you to spe
ify a

ommand for it to exe
ute.

On
e the program is loaded, you
an use the r (for run)
ommand to run it:

>> r

The program runs, and then the debugger indi
ates that it is ready to exe
ute

another
ommand. Sin
e our program is supposed to leave its result in register r2,

we
an verify that the program is working by asking the debugger to print out the

ontents of all of the registers using the p (for print)
ommand, to see if it
ontains

the result we expe
t:

>> p

r01 r02 r03 r04 r05 r06 r07 r08 r09 r10 r11 r12 r13 r14 r15

00 03 01 02 00 00 00 00 00 00 00 00 00 00 00

0 3 1 2 0 0 0 0 0 0 0 0 0 0 0

The p
ommand displays the
ontents of ea
h register. The �rst line lists the

register names. The following line lists the value of ea
h register in hexade
imal, and

the last line lists the same number in de
imal.

ad in
ludes a number of features that will make debugging your ANT assembly

language programs mu
h easier. Type h at the >> prompt for a full list of the ad

ommands, or
onsult the manual page.

2.4 Reading and Printing: add2.asm

Our program to
ompute 1+2 is not parti
ularly useful, although it does demonstrate

a number of important details about programming in ANT assembly language and

the ANT environment. For our next example, we'll write a program named add2.asm

that
omputes the sum of two numbers spe
i�ed by the user at runtime, and displays

the result on the s
reen.

The algorithm this program will follow is:

2.4. READING AND PRINTING: ADD2.ASM 21

1. Read the two numbers from the user. We'll need two registers to hold these two

numbers. We
an use r3 and r4 for this.

2. Compute their sum. We'll need a register to hold the result of this addition.

We
an use r2 for this.

3. Print the sum, followed by a newline.

4. Exit. We already know how to do this, using sys.

The only parts of the algorithm that we don't know how to do yet are to read the

numbers from the user, and print out the sum. Fortunately, both of these operations

an be done with sys. Looking again in Table A.1.2, we see that sys 5
an be used

to read an integer into a register, and sys 2
an be used to print out the integer

stored in a register.

For formatting purposes, we also want to print a newline after printing out the

sum. We
an use sys 3 to print out a
hara
ter.

This gives the following program:

Dan Ellard -- 11/2/96

add2.asm-- A program that
omputes and prints the sum

of two numbers spe
ified at runtime by the user.

Registers used:

r2 - used to hold the result.

r3 - used to hold the first number.

r4 - used to hold the se
ond number.

r5 - used to hold the
onstant '\n'.

sys r3, 5 # read first number into r3

sys r4, 5 # read se
ond number into r4

add r2, r3, r4 #
ompute the sum r2 = r3 + r4.

sys r2, 2 # print
ontents of r2.

Print out a newline

l
 r5, '\n' # load a newline
hara
ter into r5

sys r5, 3 # print
ontents of r5

sys r0, 0 # Halt

end of add2.asm.

22 CHAPTER 2. AN ANT TUTORIAL

2.5 Strings: hello.asm

The next program that we will write is the \Hello World" program. Looking in table

A.1.2 on
e again, we note that there is a sys
all to print out a string. All we need

to do is to put the address of the string we want to print into the sour
e register (the

�rst argument), and exe
ute sys reg, 5. The only things that we don't know how

to do are how to de�ne a string, and then how to determine its address.

The string "Hello World"
annot be part of the exe
utable part of the program

(whi
h
ontains all of the instru
tions to exe
ute), whi
h is
alled the instru
tion

segment or text segment. Instead, the string should be part of the data used by the

program, whi
h is stored in the data segment.

To put something in the data segment, all we need to do is to put a .data before

we de�ne it. Every .data
ommand
an be followed by up to eight (8) bytes of data.

Data is put in the data segment starting at memory lo
ation zero. Ea
h byte is put

in the next
onse
utive memory lo
ation. Data is loaded into memory at assembly

time. You will have to be
areful not to overwrite your data during run-time.

ANT programs must have all of the .data items de�ned at the end of the program,

after the spe
ial label data . The data label indi
ates to the assembler that all

subsequent items are data.

2.5.1 Labels

A label is a symboli
 name for an address in memory. In ANT assembler, a label

de�nition is an identi�er (following the same
onventions as C identi�ers) followed by

a
olon.

Labels must be the �rst item on a line, and must begin in the \zero
olumn"

(immediately after the left margin). Label de�nitions
annot be indented, but all

other non-
omment lines must be.

Sin
e labels must begin in
olumn zero, only one label de�nition is permitted on

ea
h line of assembly language, but a lo
ation in memory may have more than one

label. Giving the same lo
ation in memory more than one label
an be very useful.

For example, the same lo
ation in your program may represent the end of several

nested \if" statements, so you may �nd it useful to give this instru
tion several labels

orresponding to ea
h of the nested \if" statements.

When a label appears alone on a line, it refers to the following memory lo
ation.

This is often good style, sin
e it allows the use of long, des
riptive labels without

disrupting the indentation of the program. It also leaves plenty of spa
e on the line

2.6. CONDITIONAL EXECUTION: LARGER.ASM 23

for the programmer to write a
omment des
ribing what the label is used for, whi
h

is very important sin
e even relatively short assembly language programs may have

a large number of labels.

The following program is an example of how to use labels and treat
hara
ters in

memory as strings:

Dan Ellard -- 11/2/96

hello.asm-- A "Hello World" program.

Registers used:

r2 - holds the address of the string

l
 r2, $str_data # load the address of the string into r2

sys r2, 4 # Print the
hara
ters in memory

sys r0, 0 # Halt

Data for the program:

data:

str_data:

.data 'H', 'e', 'l', 'l', 'o', ' '

.data 'W', 'o', 'r', 'l', 'd', '\n', 0

end of hello.asm

The label str data is the symboli
 representation of the memory lo
ation where

the string begins in data memory.

Note that strings in ANT must be terminated by a 0 byte, as in C.

2.6 Conditional Exe
ution: larger.asm

The next program that we will write will read two numbers from the user, and print

out the larger of the two. The algorithm for this program is exa
tly the same as the

one used by add2.asm, ex
ept that we're
omputing the maximum rather than the

sum of two numbers.

Browsing through the instru
tion set again, we �nd a des
ription of the ANT

bran
hing instru
tions. These allow the programmer to spe
ify that exe
ution should

bran
h (or jump) to a lo
ation other than the next instru
tion. These instru
tions

allow
onditional exe
ution to be implemented in assembly language (although in not

nearly as
lean a manner as higher-level languages provide).

24 CHAPTER 2. AN ANT TUTORIAL

In ANT assembler, there are three bran
hing instru
tions: bgt, beq and jmp.

The bgt instru
tion takes three registers as arguments. If the number in the

se
ond register is larger than the number in the third, then exe
ution will jump to

the lo
ation spe
i�ed by the �rst; otherwise it
ontinues at the next instru
tion.

The beq instru
tion is similar to the bgt instru
tion, ex
ept that the bran
h o

urs

if the se
ond and third registers
ontain the same value.

The jmp instru
tion takes two arguments, a register and an unsigned 8-bit
on-

stant. Exe
ution jumps to the lo
ation spe
i�ed by the
onstant (the register is

ignored).

2.6.1 Bran
hing Using Labels

Using the bran
hing instru
tions and labels we
an do what we want in the larger.asm

program. Sin
e the bran
hing instru
tions take a register
ontaining an address as

their �rst argument, we need to somehow load the address represented by the label

into a register. We do this by using the l

ommand. The larger.asm program

illustrates how this is done.

Dan Ellard -- 11/2/96

larger.asm-- A program that
omputes and prints the larger

of two numbers spe
ified at runtime by the user.

Registers used:

r2 - used to hold the first number.

r3 - used to hold the se
ond number.

r4 - used to hold the larger of r2 and r3.

r5 - used to hold the address of the label "r2_larger"

r6 - used to hold the a "newline"
hara
ter

sys r2, 5 # read a number into r2

sys r3, 5 # read a number into r3

put the larger of r2 and r3 into r4

l
 r5, $r2_larger # put the address of r2_larger into r5

bgt r5, r2, r3 # if r2 is larger, bran
h to r2_larger

add r4, r3, r0 # "
opy" r3 into r4

jmp r0, $endif # and then bran
h to endif

r2_larger:

add r4, r2, r0 # "
opy" r2 into r4

endif:

sys r4, 2 # print
ontents of r4.

2.7. LOOPING: MULTIPLES.ASM 25

l
 r6, '\n' # load a newline
hara
ter into r6

sys r6, 3 # print
ontents of r6

sys r0, 0 # Halt

end of larger.asm.

Sin
e ANT does not have an instru
tion to
opy or move the
ontents of one

register to another, in order to
opy the value of one register to another register we've

added 0 to one register and put the sum in the destination register in order to a
hieve

the desired result. (Re
all that register r0 always
ontains the
onstant zero.)

2.7 Looping: multiples.asm

The next program that we will write will read two numbers A and B, and print out

multiples of A from A to A� B. The algorithm that our program will use is shown

in the snippet of C
ode below:

int main (void)

{

int A, B, top, multiple;

A = GetInteger ();

B = GetInteger ();

if ((A == 0) || (B <= 0)) {

exit (0);

}

top = A * B;

for (multiple = A; multiple <= top; multiple += A) {

printf ("%d", multiple);

printf (" ");

}

printf ("\n");

exit (0);

}

This algorithm translates easily into ANT assembler.

Dan Ellard -- 11/2/96

26 CHAPTER 2. AN ANT TUTORIAL

multiples.asm-- takes two numbers A and B, and prints out

all the multiples of A from A to A * B.

If B <= 0, then no multiples are printed.

Registers used:

r2 - used to hold A.

r3 - used to hold B.

r4 - used to store top, the sentinel value A * B.

r5 - used to store multiple, the
urrent multiple of A.

r6 - used for address of labels

r7 - used for holding and printing spa
es and a newline

start:

sys r2, 5 # read A into r2

sys r3, 5 # read B into r3

l
 r6, $A_ok # r6 = the address of A_ok.

bgt r6, r2, r0 # make sure that A != 0.

bgt r6, r0, r2

sys r0, 0 # if A == 0, exit.

A_ok:

l
 r6, $B_ok # r6 = the address of B_ok.

bgt r6, r3, r0 # make sure that B > 0.

sys r0, 0 # if B <= 0, exit.

B_ok:

mul r4, r2, r3 # top = A * B.

add r5, r2, r0 # multiple = A

loop:

sys r5, 2 # print out multiple (r5)

l
 r6, $endloop # r6 = the address of endloop

beq r6, r4, r5 # if multiple == top, we're done.

add r5, r5, r2 # otherwise, multiple += A.

l
 r7, ' '

sys r7, 3 # print a spa
e

jmp r0, $loop # go to top of the loop

endloop:

l
 r7, '\n'

sys r7, 3 # print a newline

2.8. CHARACTER I/O: ECHO.ASM 27

sys r0, 0 # Exit

end of multiples.asm

2.8 Chara
ter I/O: e
ho.asm

Now that we have mastered loops and reading and printing integers, we'll turn our

attention to reading and printing single
hara
ters. The program that we'll write in

this se
tion simply e
hos whatever you type to it, until EOF (aka end of input) is

rea
hed.

The way that EOF is dete
ted in ANT is that when the EOF is rea
hed, the

sys
all that reads a single
hara
ter will put a non-zero value into register r1. (All of

the sys
alls pla
e 0 in register r1 to indi
ate su

ess, non-zero to indi
ate failure.)

Dan Ellard - 11/10/96

E
hos input until EOF.

Register usage:

r2 - holds ea
h
hara
ter read in.

r3 - address of $print.

l
 r3, $print

loop:

sys r2, 6 # r2 = get
har ();

beq r3, r1, r0 # if not at EOF, go to $print.

jmp r0, $exit # otherwise, go to $exit.

print:

sys r2, 3 # put
har (r2);

jmp r0, $loop # iterate, go ba
k to $loop.

exit:

sys r0, 0 # Exit

end of e
ho.asm

2.9 Load and Store: string reverse.asm

The next program that we write will read in a string from the user and then print it

out ba
kwards. Chara
ters are read until the user enters a newline, or the array used

to store the string is exhausted.

The program reads input
hara
ter-by-
hara
ter, storing ea
h
hara
ter in data

memory as it is read. On
e it reads a newline or the spa
e reserved for the string in

28 CHAPTER 2. AN ANT TUTORIAL

data memory is full, it prints out the
hara
ters in reverse order.

The �rst part of the program reads a string from input,
hara
ter-by-
hara
ter. If

the
hara
ter is not a newline, and the user has typed in less than the alloted number

of
hara
ters, the
hara
ter is stored in memory. Otherwise, the loop that reads the

hara
ters exits immediately.

The
ommand for storing the
ontents of a register in memory is st. It takes

three arguments: the register whose
ontents will be stored in memory, the register

ontaining the base address of memory where the information will be stored (the start

of the array), and a 4-bit
onstant (0 .. 15) that represents the o�set from the base

address (the index of the array). In our example, the
hara
ter is read into r4, so

that will be the �rst argument. The address of the data is represented by the value

of r7.

The loop that reads
hara
ters and stores them to memory looks like:

read_loop :

sys r4, 6 # Read a
hara
ter, put in r4

beq r5, r4, r8 # if it's a newline, exit read loop

bgt r5, r7, r10 # if
har_array is full, exit read loop

st r4, r7, 0 # store
hara
ter at r7

in
 r7, 1 # i++

jmp r0, $read_loop # go to top of loop

end_read:

Now that we have the string in memory, we want to print it out ba
kwards. We

know that in order to print out a
hara
ter, it has to be in a register. The
ommand

for getting data out of memory and into a register is ld, whi
h takes three arguments.

The �rst is the register where the data will go, and, like st, the se
ond and third

arguments are the base address and o�set from the base address where the data is

stored in memory.

The
ode for printing the string in memory ba
kwards is this:

l
 r5, $end_print # Re-Initialize r5 to end of print loop

l
 r6, $print_loop # Re-Initialize r6 to start of print loop

l
 r9, $
har_array # r9 is the address of the first byte

in
har_array.

print_loop:

in
 r7, -1 # i--

bgt r5, r9, r7 # Have we ba
ked off the end of
har_array?

If so, then exit print loop.

2.9. LOAD AND STORE: STRING REVERSE.ASM 29

ld r4, r7, 0 # load
hara
ter at r7 into r4

sys r4, 3 # Print r4

jmp r0, $print_loop

The entire program looks like this:

Penny Ellard -- 9/7/97

string_reverse.asm-- A program that reads a string from the user,

then prints out the string in reverse order

Registers used:

r4 - hold
hara
ters as they are read in and printed out.

r5 - address - used for
onditional bran
hes.

r6 - address - used for
onditional bran
hes.

r7 - the address of the next byte in
har_array to visit.

r8 - the
onstant '\n'.

r9 - address of the start of
har_array.

r10 - the address of the last byte in the
har_array.

initialize:

l
 r5, $end_read # Initialize r5 to end of read loop

l
 r6, $read_loop # Initialize r6 to start of read loop

l
 r9, $
har_array # r9 is the address of the start of
har_array

l
 r8, '\n' # Initialize r8 to '\n'

l
 r10, $end_array # Initialize r10 to the address of the

lo
ation after the end of the
har_array,

in
 r10, -1 # and de
rement r10 so that it is the address

the last lo
ation in the
har_array.

add r7, r9, r0 # r7 starts at the start of
har_array

read_loop:

sys r4, 6 # Read a
hara
ter, put in r4

beq r5, r4, r8 # if it's a newline, exit read loop

bgt r5, r7, r10 # if
har_array is full, exit read loop

st r4, r7, 0 # store
hara
ter at r7

in
 r7, 1 # i++

jmp r0, $read_loop # go to top of loop

end_read:

l
 r5, $end_print # Re-Initialize r5 to end of print loop

l
 r6, $print_loop # Re-Initialize r6 to start of print loop

l
 r9, $
har_array # r9 is the address of the first byte

in
har_array.

30 CHAPTER 2. AN ANT TUTORIAL

print_loop:

in
 r7, -1 # i--

bgt r5, r9, r7 # Have we ba
ked off the end of
har_array?

If so, then exit print loop.

ld r4, r7, 0 # load
hara
ter at r7 into r4

sys r4, 3 # Print r4

jmp r0, $print_loop

end_print:

sys r8, 3 # Print a newline

sys r0, 0 # Halt

data:

enough spa
e for 40
hara
ters:

har_array:

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

.data 0, 0, 0, 0, 0, 0, 0, 0

end_array:

end of string_reverse.asm

Note that there is a way to write this program that uses about half the number of

memory a

esses (ld and st are the only
ommands in ANT that a

ess memory).

If we initialized r7 to start at the end of
har array, and de
remented it, we
ould

then use the print string system
all, instead of loading ea
h
hara
ter and printing

it out one at a time. You
an try this, if you like; just make sure your string is 0-

terminated and that you don't ba
k up past the start of
har array!

2.10 Putting It All Together: atoi.asm

The next program that we'll write will look at a a line of text in memory, interpret

it as an integer, and then print it out.

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 31

2.10.1 atoi-1

We will use a string in memory, and we know how to print out a number, so all we

need is an algorithm to
onvert a string into a number. We'll start with the algorithm

given in the snippet of C
ode shown below.

For our algorithm, we will take advantage of the fa
t that in ASCII, the numbers

that represent the digits 0 through 9 are arranged
onse
utively, starting at '0'.

Therefore, for any ASCII
hara
ter x, the number represented by x is simply x - '0'.

int atoi (
har *str)

{

int sum = 0;

int i;

for (i = 0; str [i℄ != '\0'; i++) {

sum *= 10;

sum += (str [i℄ - '0');

}

return (sum);

}

The
ode for this algorithm then is simply:

Register usage:

r3 - used as s
rat
h spa
e to load ea
h byte into.

r4 - used to hold the sum.

r5 - the address of the next byte to load.

r6 - the lo
ation of the end of the main loop.

r7 - used to hold the
onstant 10.

r8 - used to hold the
onstant '0'.

r9 - used to hold the
onstant '\n'.

l
 r4, 0 # Initialize sum to 0.

l
 r5, $string_start # Start at beginning of string.

l
 r6, $end_sum_loop # Lo
ation of end of the loop.

l
 r7, 10 # Initialize r7 to 10.

l
 r8, '0' # Initialize r8 to '0'.

sum_loop:

ld r3, r5, 0 # load the byte *str into r3,

beq r6, r3, r0 # if r3 == 0, bran
h out of loop.

mul r4, r4, r7 # r4 *= 10.

sub r3, r3, r8 # r3 -= '0'.

32 CHAPTER 2. AN ANT TUTORIAL

add r4, r4, r3 # sum += r3.

in
 r5, 1 # in
rement str to the next
har,

jmp r0, $sum_loop # and repeat the loop.

end_sum_loop:

sys r4, 2 # print out the number

l
 r9, '\n' # put newline into r9

sys r9, 3 # print out a newline

sys r0, 0 # halt

data:

string_start:

.data '1', '0', '5', 0

2.10.2 More Error Che
king of atoi

Although the algorithm used by atoi-1 seems reasonable, it a
tually has several

serious
aws. The �rst problem is that this routine
annot handle negative numbers.

We
an �x this easily enough by looking at the very �rst
hara
ter in the string,

and doing something spe
ial if it is a '-'. The easiest thing to do is to introdu
e a

new variable to represent the sign of the number. If the number is positive, then the

variable will be 1, and if negative then the variable will be -1. This makes it possible

to leave the rest of the algorithm inta
t, and then simply multiply the result by the

new variable in order to get the
orre
t sign on the result at the end.

While this algorithm is better than the one used by atoi-1.asm, it is by no means

free of bugs. The next problem that we must
onsider is what happens when str does

not point to a proper string of digits, but instead points to a string that
ontains

erroneous
hara
ters.

If we want to mimi
 the behavior of the UNIX atoi library fun
tion, then as

soon as our program en
ounters any
hara
ter that is not a digit (after an optional

'-') it must stop the
onversion immediately and return whatever is in sum as the

result. We
an implement this by adding some extra tests on every
hara
ter that

gets pro
essed inside sum loop.

Even after
orre
ting this problem, however, our program still has
aws. The

original algorithm is generalized to work with any number. Unfortunately, register

r4, whi
h we use to represent sum,
an only represent an 8-bit binary number, so it

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 33

is easy for the user to type in a number that is too large or too small for this program

to deal with. Although there's not mu
h that we
an do to prevent this problem, we

de�nitely want to dete
t this problem and indi
ate that an error has o

urred.

There are two spots in our routine where an over
ow might o

ur: when we

multiply the
ontents of register r4 by 10, and when we add in the value represented

by the
urrent
hara
ter.

Dete
ting over
ow during addition and multipli
ation is not hard, but it does

require some
are. In the ANT ar
hite
ture, when multipli
ation and addition are

performed, the result is a
tually stored in two 8-bit registers, the regular destination

register (des) and r1. des
ontains the low-order 8 bits and r1
ontains the high-

order 8 bits of the result. Therefore, if r1 is non-zero after we do either of these

operations, then the result was too large to �t into a single 8-bit word.

34 CHAPTER 2. AN ANT TUTORIAL

Appendix A

The ANT Instru
tion Set

This appendix gives an overview of the ANT instru
tion set and some of the de-

tails of the ANT assembler. The exa
t de�nition of the ANT instru
tion set and a

spe
i�
ation for how ANT programs are exe
uted are not given here.

A.1 ANT Ar
hite
ture Overview

The ANT ar
hite
ture is a load/store ar
hite
ture; the only instru
tions that
an

a

ess memory are the load and store (and in some sense the sys) instru
tions. All

other operations a

ess only registers.

The ANT CPU has 16 registers, named r0 through r15. Register r0 always

ontains the
onstant 0, and register r1 is used to hold results related to previous op-

erations (des
ribed later). r0 and r1 are read-only and
annot be used as destination

registers. The other 14 registers (r2 through r15) are general-purpose registers.

In the des
ription of the instru
tions, the following notation is used:

des Must always be a register, but never r0 or r1.

reg Must always be a register.

sr
1 Must always be a register.

sr
2 Must always be a register.

onst8 Must be an 8-bit
onstant (-128 .. 127): an integer (signed),

har, or label.

u
onst8 Must be an 8-bit
onstant (0 .. 255): an integer (unsigned) or

label.

u
onst4 Must be a 4-bit
onstant integer (0 .. 15).

35

36 APPENDIX A. THE ANT INSTRUCTION SET

A.1.1 General Instru
tions

Op Operands Des
ription

add des, sr
1, sr
2 des gets sr
1 + sr
2. r1 gets any over
ow from this

addition.

sub des, sr
1, sr
2 des gets sr
1 - sr
2. r1 gets any under
ow from this

subtra
tion.

mul des, sr
1, sr
2 Multiply sr
1 and sr
2, leaving the low-order byte in

register des and the high-order byte in register r1.

div des, sr
1, sr
2 Divide sr
1 by sr
2, leaving the quotient in register

des and the remainder in register r1.

beq reg, sr
1, sr
2 Bran
h to reg if sr
1 == sr
2 . r1 is set to the address

of the instru
tion following the beq.

bgt reg, sr
1, sr
2 Bran
h to reg if sr
1 > sr
2 . r1 is set to the address

of the instru
tion following the bgt.

ld des, sr
1, u
onst4 Load the byte at sr
1 + u
onst4 into des. r1 is

un
hanged.

st reg, sr
1, u
onst4 Store the
ontents of register reg to sr
1 + u
onst4.

r1 is un
hanged.

l
 des,
onst8 Load the
onstant
onst8 into des. r1 is un
hanged.

jmp reg, u
onst8 Bran
h un
onditionally to the spe
i�ed
onstant. reg

is ignored.

in
 reg,
onst8 Add
onst8 to the spe
i�ed register.

sys reg,
ode Makes a system
all. See A.1.2 for a list of the ANT

system
alls.

Note that for all instru
tions ex
ept sys, register r1 is always updated after the

rest of the instru
tion is done, so that it is always safe to use r1 as a sour
e register

for these instru
tions. (sys sets r0 to 0 before exe
uting the sys
all.)

A.1.2 System Calls Handling

All sys
alls set r1 to 0 if su

essful, and set r1 to non-zero values to indi
ate failure.

A.2. THE ANT ASSEMBLER 37

Servi
e Code Des
ription

halt 0 Halt the pro
essor.

dump 1 Dump
ore to �le ant.
ore.

put int 2 Print the
ontents of reg as a number.

put
har 3 Print the
ontents of reg as an ASCII
hara
ter.

put string 4 Print the 0-terminated ASCII string that starts at

reg.

get int 5 Read an integer into reg. reg must not be r0 or r1. If

EOF, r1 is set to 1. Does not
he
k for illegal input.

get
har 6 Read a
hara
ter into reg. reg must not be r0 or r1.

If EOF, r1 is set to 1.

A.2 The ANT Assembler

A.2.1 Comments

A
omment begins with a # and
ontinues until the following newline. The only

ex
eption to this is when the #
hara
ter appears as part of an ASCII
hara
ter

onstant (as des
ribed in se
tion A.2.3).

A.2.2 The data Label

A spe
ial label, data , is used to mark the boundary between the instru
tions of the

program (whi
h must appear before the data label) and the data of the program

(whi
h appear afterward).

The data label itself should never be referen
ed by the program.

A.2.3 Constants

Several ANT assembly instru
tions
ontain 8-bit or 4-bit
onstants.

The 8-bit
onstants
an be spe
i�ed in a variety of ways: as de
imal, o
tal, hex-

ade
imal, or binary numbers, ASCII
odes (using the same
onventions as C), or

labels.

The value of a label is the index of the subsequent instru
tion in instru
tion

memory for labels that appear in the
ode, or the index of the subsequent .data item

for labels that appear in the data.

38 APPENDIX A. THE ANT INSTRUCTION SET

The 4-bit
onstants must be spe
i�ed as unsigned numbers (using de
imal, o
tal,

hexade
imal, or binary notation). ASCII
onstants or labels
annot be used as 4-bit

onstants, even if the value represented �ts into 4 bits.

A.2.4 The .data Dire
tive

Name Parameters Des
ription

.data byte1 � � � byteN Assemble the given bytes (8-bit integers) into the

next available lo
ations in the data segment. As

many as 8 bytes
an be spe
i�ed on the same line.

Bytes may be spe
i�ed as hex, binary, de
imal or

C
hara
ter
onstants (as des
ribed in A.2.3).

