SCHOLARSHIP srHARVARD

DASH.HARVARD.EDU

Office for Scholarly Communication

DIGITAL ACCESS 10
HARVARD LIBRARY

Data Representation and
Assembly Language Programming
The ANT-97 Architecture

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ellard, Daniel J. and Penelope A. Ellard. 1998. Data Representation
and Assembly Language Programming The ANT-97 Architecture.
Harvard Computer Science Group Technical Report TR-15-98.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496

Terms of Use This article was downloaded from Harvard University’s DASH

repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Data%20Representation%20and%20Assembly%20Language%20Programming%20The%20ANT-97%20Architecture&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cd315d2b83645c8fb47b9dc35e3c51bb&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620496
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Data Representation
and
Assembly Language Programming
The ANT-97 Architecture

Daniel J. Ellard
Penelope A. Ellard

TR-15-98
January 11, 1998

!
Al

]
Y

AN

Computer Science Group
Harvard University
Cambridge, Massachusetts

Data Representation
and
Assembly Language Programming

The ANT-97 Architecture

Daniel J. Ellard
Penelope A. Ellard

January 11, 1998

Chapter 1

Data Representation

In order to understand how a computer is able to manipulate data and perform
computations, you must first understand how data is represented by a computer.

At the lowest level, the indivisible unit of data in a computer is a bit. A bit
represents a single binary value, which may be either 1 or 0. In different contexts, a
bit value of 1 and 0 may also be referred to as “true” and “false”, “yes” and “no”,
“high” and “low”, “set” and “not set”, or “on” and “off”.

The decision to use binary values, rather than something larger (such as decimal
values) was not purely arbitrary— it is due in a large part to the relative simplicity of
building electronic devices that can manipulate binary values.

1.1 Representing Integers

1.1.1 Unsigned Binary Numbers

While the idea of a number system with only two values may seem odd, it is actually
very similar to the decimal system we are all familiar with, except that each digit is a
bit containing a 0 or 1 rather than a number from 0 to 9. (The word “bit” itself is a
contraction of the words “binary digit”) For example, figure 1.1 shows several binary
numbers, and the equivalent decimal numbers.

In general, the binary representation of 2* has a 1 in binary digit & (counting from
the right, starting at 0) and a 0 in every other digit. (For notational convenience, the
ith bit of a binary number A will be denoted as A;.)

The binary representation of a number that is not a power of 2 has the bits set

2 CHAPTER 1. DATA REPRESENTATION

Figure 1.1: Binary and Decimal Numbers

Binary Decimal
0 =

1

10

11

100

101

110 =

I
S U W N O

11111111 = 255

corresponding to the powers of two that sum to the number: for example, the decimal
number 6 can be expressed in terms of powers of 2 as 1 x 22 + 1 x 2! + 0x 2% so
it is written in binary as 110.

An eight-digit binary number is commonly called a byte. In this text, binary
numbers will usually be written as bytes (i.e. as strings of eight binary digits). For
example, the binary number 101 would usually be written as 00000101—a 101 padded
on the left with five zeros, for a total of eight digits.

Whenever there is any possibility of ambiguity between decimal and binary no-
tation, the base of the number system (which is 2 for binary, and 10 for decimal) is
appended to the number as a subscript. Therefore, 101, will always be interpreted
as the binary representation for five, and never the decimal representation of one
hundred and one (which would be written as 101;).

1.1.1.1 Conversion of Binary to Decimal

To convert an unsigned binary number to a decimal number, add up the decimal
values of the powers of 2 corresponding to bits which are set to 1 in the binary
number. Algorithm 1.1 shows a method to do this. Some examples of conversions
from binary to decimal are given in figure 1.2.

Since there are 2" unique sequences of n bits, if all the possible bit sequences of
length n are used, starting from zero, the largest number will be 2" — 1.

1.1. REPRESENTING INTEGERS

Algorithm 1.1 Binary to Decimal
To convert a binary number to decimal.

e Let X be a binary number, n digits in length, composed of bits X,,_; - -- Xj.
e Let D be a decimal number.

e Let 7 be a counter.

1. Let D = 0.
2. Let 2 =0.
3. While ¢ < n do:

o If X; ==1 (ie. if bit ¢ in X is 1), then set D = (D + 2°).
e Seti=(i+1).

Figure 1.2: Examples of Conversion from Binary to Decimal

Binary Decimal
00000000 = 0 = 0 = 0
00000101 = 22+2° = 4+1 = 5
00000110 = 2%+ 2! = 442 = 6
00101101 = 2°4+2°4+2242" = 32484441 = 45
10110000 = 27 +25+ 24 = 128432416 = 176

4 CHAPTER 1. DATA REPRESENTATION

1.1.1.2 Conversion of Decimal to Binary

An algorithm for converting a decimal number to binary notation is given in algo-
rithm 1.2.

Algorithm 1.2 Decimal to Binary
To convert a positive decimal number to binary.

e Let X be an unsigned binary number, n digits in length.
e Let D be a positive decimal number, no larger than 2" — 1.

e Let 7 be a counter.

1. Let X =0 (set all bits in X to 0).
2. Leti=(n—1).
3. While ¢ > 0 do:

(a) If D > 2°, then
e Set X; =1 (i.e. set bit ¢ of X to 1).
e Set D= (D —2%).

(b) Set i = (i—1).

1.1.1.3 Addition of Unsigned Binary Numbers

Addition of binary numbers can be done in exactly the same way as addition of
decimal numbers, except that all of the operations are done in binary (base 2) rather
than decimal (base 10). Algorithm 1.3 gives a method which can be used to perform
binary addition.

When algorithm 1.3 terminates, if ¢ is not 0, then an overflow has occurred— the
resulting number is simply too large to be represented by an n-bit unsigned binary
number.

1.1. REPRESENTING INTEGERS

Algorithm 1.3 Unsigned Binary Addition
Addition of unsigned binary numbers.

e Let A and B be a pair of n-bit binary numbers.

e Let X be a binary number which will hold the sum of A and B.
e Let c and ¢ be carry bits.

e Let 7 be a counter.

e Let s be an integer.

1. Let ¢ = 0.
2. Let : = 0.
3. While ¢ < n do:

(a) Set s = A; + B; + c.
(b) Set X; and ¢ according to the following rules:
e If s==0, then X; =0 and ¢ = 0.
o [f s==1, then X; =1 and ¢ =0.
o [f s==2, then X; =0and ¢ = 1.
o [f s==23, then X; =1and ¢ =1.
(c) Set ¢ =¢.
(d) Set i = (i+1).

6 CHAPTER 1. DATA REPRESENTATION

1.1.2 Signed Binary Numbers

The major flaw with the representation that we’ve used for unsigned binary numbers
is that it doesn’t include a way to represent negative numbers.

There are a number of ways to extend the unsigned representation to include
negative numbers. One of the easiest is to add an additional bit to each number
that is used to represent the sign of the number— if this bit is 1, then the number is
negative; otherwise the number is positive (or vice versa). This is analogous to the
way that we write negative numbers in decimal- if the first symbol of the number is
a negative sign, then the number is negative, otherwise the number is positive.

Unfortunately, when we try to adapt the algorithm for addition to work properly
with this representation, this apparently simple method turns out to cause some
trouble. Instead of simply adding the numbers together as we do with unsigned
numbers, we now need to consider whether the numbers being added are positive or
negative. If one number is positive and the other negative, then we actually need to
do subtraction instead of addition, so we’ll need to find an algorithm for subtraction.
Furthermore, once we’ve done the subtraction, we need to compare the the unsigned
magnitudes of the numbers to determine whether the result is positive or negative!

Luckily, there is a representation that allows us to represent negative numbers in
such a way that addition (or subtraction) can be done easily, using algorithms very
similar to the ones that we already have. The representation that we will use is called
two’s complement notation.

To introduce two’s complement, we’ll start by defining, in algorithm 1.4, the
algorithm that is used to compute the negation of a two’s complement number.

Figure 1.3 shows the process of negating several numbers. Note that the negation
of zero is zero.

This representation has several important properties:

e The leftmost (most significant) bit also serves as a sign bit; if 1, then the number
is negative, if 0, then the number is positive or zero.

e The rightmost (least significant) bit of a number always determines whether or
not the number is odd or even— if bit 0 is 0, then the number is even, otherwise
the number is odd.

e The largest positive number that can be represented in two’s complement no-
tation in an n-bit binary number is 2"~! — 1. For example, if n = 8, then the
largest positive number is 01111111 = 27 -1 = 127.

1.1. REPRESENTING INTEGERS 7

Algorithm 1.4 Two’s Complement Negation
Negation of a two’s complement number.

1. Let T = the logical complement of x.

The logical complement (also called the one’s complement) is formed by flipping
all the bits in the number, changing all of the 1 bits to 0, and vice versa.

2. Let X =2+ 1.

If this addition overflows, then the overflow bit is discarded.

By the definition of two’s complement, the resulting X is the negation of the original
x.

Figure 1.3: Examples of Negation Using Two’s Complement

00000110 = 6
1’s complement 11111001
Add 1 11111010 = -6
11111010 = -6
1’s complement 00000101
Add 1 00000110 = 6
00000000 = 0

1’s complement 11111111
Add 1 00000000 = 0

8 CHAPTER 1. DATA REPRESENTATION

e Similarly, the “most negative” number is —2"~1, so if n = 8, then it is 10000000,
which is =27 = —128. Note that the negative of the most negative number
(in this case, 128) cannot be represented in this notation.

1.1.2.1 Addition and Subtraction of Signed Binary Numbers

The same addition algorithm that was used for unsigned binary numbers also works
properly for two’s complement numbers.

00000101 = 5
+ 11110101 = -11
11111010 = -6

Subtraction is also done in a similar way: to subtract A from B, take the two’s
complement of A and then add this number to B.

The conditions for detecting overflow are different for signed and unsigned num-
bers, however. If we use algorithm 1.3 to add two unsigned numbers, then if c¢ is
1 when the addition terminates, this indicates that the result has an absolute value
too large to fit the number of bits allowed. With signed numbers, however, ¢ is not
relevant, and an overflow occurs when the signs of both numbers being added are the
same but the sign of the result is opposite. If the two numbers being added have
opposite signs, however, then an overflow cannot occur.

For example, consider the sum of 1 and —1:

00000001 = 1
+ 11111111 = -1
00000000 = 0 Correct!

In this case, the addition will overflow, but it is not an error, since the result that
we get (without considering the overflow) is exactly correct.

On the other hand, if we compute the sum of 127 and 1, then a serious error
occurs:

01111111 = 127
+ 00000001 = 1
10000000 = -128 Uh-oh!

1.1. REPRESENTING INTEGERS 9

Therefore, we must be very careful when doing signed binary arithmetic that we
take steps to detect bogus results. In general:

o If A and B are of the same sign, but A + B is of the opposite sign, then an
overflow or wraparound error has occurred.

o If A and B are of different signs, then A+ B will never overflow or wraparound.

1.1.2.2 Shifting Signed Binary Numbers

Another useful property of the two’s complement notation is the ease with which
numbers can be multiplied or divided by two. To multiply a number by two, simply
shift the number “up” (to the left) by one bit, placing a 0 in the least significant bit.
To divide a number in half, simply shift the the number “down” (to the right) by one
bit (but do not change the sign bit).

Note that in the case of odd numbers, the effect of shifting to the right one bit
is like dividing in half, rounded towards —oo, so that 51 shifted to the right one bit
becomes 25, while -51 shifted to the right one bit becomes -26.

00000001 = 1
Double 00000010 =
Halve 00000000 = 0

00110011 = ol
Double 01100110 = 102
Halve 00011001 = 25

11001101 = -51
Double 10011010 = -102
Halve 11100110 = -26

1.1.2.3 Hexadecimal Notation

Writing numbers in binary notation can soon get tedious, since even relatively small
numbers require many binary digits to express. A more compact notation, called hex-
adecimal (base 16), is usually used to express large binary numbers. In hexadecimal,
each digit represents four unsigned binary digits.

10 CHAPTER 1. DATA REPRESENTATION

Figure 1.4: Hexadecimal and Octal

Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111
Decimal 0 1 2 3 4 5) 6 7
Hex 0 1 2 3 4 5 6 7
Octal 0 1 2 3 4 5 6 7

Binary | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Decimal 8 9 10 11 12 13 14 15
Hex 8 9 A B C D B F
Octal 10 11 12 13 14 15 16 17

Another notation, which is not as common currently, is called octal and uses base
eight to represent groups of three bits. Figure 1.4 show examples of binary, decimal,
octal, and hexadecimal numbers.

For example, the number 200,, can be written as 110010005, C8;¢, or 310s.

1.2 Representing Characters

Just as sequences of bits can be used to represent numbers, they can also be used to
represent the letters of the alphabet, as well as other characters.

Since all sequences of bits represent numbers, one way to think about representing
characters by sequences of bits is to choose a number that corresponds to each char-
acter. The most popular correspondence currently is the ASCII character set. ASCII,
which stands for the American Standard Code for Information Interchange, uses 7-bit
integers to represent characters, using the correspondence shown in table 1.5.

When the ASCII character set was chosen, some care was taken to organize the
way that characters are represented in order to make them easy for a computer to
manipulate. For example, all of the letters of the alphabet are arranged in order,
so that sorting characters into alphabetical order is the same as sorting in numerical
order. In addition, different classes of characters are arranged to have useful relations.
For example, to convert the code for a lowercase letter to the code for the same letter
in uppercase, simply set the 6th bit of the code to 0 (or subtract 32). ASCII is by no
means the only character set to have similar useful properties, but it has emerged as

1.2. REPRESENTING CHARACTERS

Figure 1.5: The ASCII Character Set

00
08
10
18
20
28
30
38
40
48
50
58
60
68
70
78

NUL
BS

DLE
CAN

2]
av]

< U m e 0O A~

Lol =0

01
09
11
19
21
29
31
39
41
49
51
59
61
69
71
79

SOH
HT
DC1

53|
=

< Q H < O H P O -

02
OA
12
1A
22
2A

STX
NL

DC2
SUB

*

32 2

3A
42
4A
52
5A
62
6A
72
TA

N He o NX o W-::

03
0B
13
1B
23
2B
33
3B
43
4B
53
5B
63
6B
73
7B

ETX
VT

DC3
ESC

w + =

AN K O, X Q-

04
0C
14
1C
24
2C
34
3C
44
4C
54
5C
64
6C
74
7C

EOT
NP
DC4
FS

H O A D &

— ¢ o

05
0D
15
1D
25
2D
35
3D
45
4D
55
5D
65
6D
75
7D

ENQ
CR
NAK
GS
b

~— e B 0 Yo =M1 o

06
OE
16
1E
26
2E
36
3E
46
4E
56
5E
66
6E
76
7E

ACK
S0
SYN
RS

< = 'T1 VO o

g B

07
OF
17
1F
27
2F
37
3F
a7
4F
57
5F
67
6F
77
TF

BEL
SI
ETB

= 0 QN NN\ v

£ O 0y |

DEL

the standard.

The ASCII character set does have some important limitations, however. One
problem is that the character set only defines the representations of the characters
used in written English. This causes problems with using ASCII to represent other
written languages. In particular, there simply aren’t enough bits to represent all the
written characters of languages with a larger number of characters (such as Chinese
or Japanese). Already new character sets which address these problems (and can be
used to represent characters of many languages side by side) are being proposed, and

11

eventually there will unquestionably be a shift away from ASCII to a new multilan-

guage standard®.

! This shift will break many, many existing programs. Converting all of these programs will keep
many, many programmers busy for some time.

12 CHAPTER 1. DATA REPRESENTATION

1.3 Representing Programs

Just as sequences of bits can be used to represent numbers, they can also be used
to represent instructions for a computer to perform. Unlike the two’s complement
notation for integers, which is a standard representation used by nearly all computers,
the representation of instructions, and even the set of instructions, varies widely from
one type of computer to another.

The ANT architecture, which is the focus of the rest of this document, uses a
relatively simple and straightforward representation. Each instruction is exactly 16
bits in length, and consists of several bit fields, as depicted in figure 1.6.

Figure 1.6: ANT Instruction Formats

‘ 4 bits ‘ 4 bits ‘ 4 bits ‘ 4 bits
op des regl reg2
op des regl 4-bit constant
op reg 8-bit constant

The first four bits (reading from the left, or high-order bits) of each instruction are
called the op field. The op field determines what operation the instruction represents.
Depending on what the op is, the rest of the instruction may represent the names of
registers or constants used by the op.

For example, the instruction 0234;5 has an op of 0, which corresponds to the
operation of addition.? With the addition operation, the three remaining 4-bit fields
are interpreted as the names of the registers to use; instruction 0234, adds the
contents of registers 3 and 4, and places the sum in register 2. (The add instruction
and the rest of the ANT instructions are described more fully in the rest of this
document.)

1.4 Memory Organization

We’ve seen how sequences of binary digits can be used to represent numbers, char-
acters, and instructions. In a computer, these binary digits are organized and ma-

2The fact that most of the instructions consist of four 4-bit fields makes hexadecimal notation
particularly appropriate for expressing ANT instructions.

1.4. MEMORY ORGANIZATION 13

nipulated in discrete groups, and these groups are said to be the memory of the
computer.

1.4.1 Units of Memory

The smallest of these groups, on most computers, is called a byte. On nearly all
currently popular computers a byte is composed of 8 bits.

The next largest unit of memory is usually composed of 16 bits. What this unit
is called varies from computer to computer— on smaller machines, this is often called
a word, while on newer architectures that can handle larger chunks of data, this is
called a halfword.

The next largest unit of memory is usually composed of 32 bits. Once again, the
name of this unit varies— on smaller machines, it is referred to as a long, while on
newer and larger machines it is called a word.

Finally, on the newest machines, the computer also can handle data in groups of
64 bits. On a smaller machine, this is known as a quadword, while on a larger machine
this is known as a long.

1.4.1.1 Historical Perspective

There have been architectures that have used nearly every imaginable word size— from
6-bit bytes to 9-bit bytes, and word sizes ranging from 12 bits to 48 bits. There are
even a few architectures that have no fixed word size at all (such as the CM-2) or
word sizes that can be specified by the operating system at runtime.

Over the years, however, most architectures have converged on 8-bit bytes and
32-bit longwords. An 8-bit byte is a good match for the ASCII character set (which
has some popular extensions that require 8 bits), and a 32-bit word has been, at least
until recently, large enough for most practical purposes.

1.4.2 Addresses and Pointers

Each unique byte?® of the computer’s memory is given a unique identifier, known as
its address. The address of a piece of memory is often refered to as a pointer to that

3In some computers, the smallest distinct unit of memory is not a byte. For the sake of simplicity,
however, this section assumes that the smallest distinct unit of memory on the computer in question
is a byte.

14 CHAPTER 1. DATA REPRESENTATION

piece of memory— the two terms are synonymous, although there are many contexts
where one is commonly used and the other is not.

The memory of the computer itself is often organized as a large array (or group of
arrays) of bytes of memory. In this organization, the address of each byte of memory
is simply the index of the memory array location where that byte is stored.

1.4.3 Summary

In this chapter, we’ve seen how computers represent integers using groups of bits, and
how basic arithmetic and other operations can be performed using this representation.

We've also seen how the integers or groups of bits can be used to represent sev-
eral different kinds of data, including written characters (using the ASCII character
codes), instructions for the computer to execute, and addresses or pointers, which
can be used to reference other data.

There are also many other ways that information can be represented using groups
of bits, including representations for rational numbers (usually by a representation
called floating point), irrational numbers, graphics, arbitrary character sets, and so
on. These topics, unfortunately, are beyond the scope of this chapter.

Chapter 2

An ANT Tutorial

This section is a quick tutorial for ANT assembly language programming and the ANT
environment. This chapter covers the basics of ANT assembly language, including
arithmetic operations, simple I/O, conditionals, loops, and accessing memory.

2.1 What is Assembly Language?

As alluded to in the previous chapter, computer instructions can be represented as
sequences of bits. Generally, this is the lowest possible level of representation for a
program— each instruction is equivalent to a single, indivisible action of the CPU.
This representation is called machine language, and it is the only form that can be
“understood” directly by the machine.

A slightly higher-level representation (and one that is much easier for humans to
use) is called assembly language. Assembly language is very closely related to machine
language, and there is usually a straightforward way to translate programs written in
assembly language into machine language. (This translation is usually implemented
by a program called an assembler.) Assembly language is usually a direct translation
of the machine language; one instruction in machine language corresponds to one
instruction in the assembly language.

Because of the close relationship between machine and assembly languages, each
different machine architecture usually has its own assembly language (in fact, a par-
ticular architecture may have several), and each is unique’.

!For many years, considerable effort was spent trying to develop a portable assembly language
that could generate machine language for a wide variety of architectures. Eventually, these efforts

15

16 CHAPTER 2. AN ANT TUTORIAL

2.2 Getting Started with Assembly: add.asm

To get our feet wet, we’ll write an assembly language program named add.asm that
adds 1 and 2, and stores the result in register r2.

2.2.1 Commenting

Before we start to write the executable statements of a program, however, we’ll need
to write a comment that describes what the program is supposed to do. In the ANT
assembly language, any text between a pound sign (#) and the subsequent newline is
considered to be a comment, and is ignored by the assembler. Good comments are
absolutely essential! Assembly language programs are notoriously difficult to read
unless they are well organized and properly documented. Therefore, we start by
writing the following:

Dan Ellard -- 11/2/96

add.asm-- A program that computes the sum of 1 and 2,
leaving the result in register r2.

Registers used:

r2 - used to hold the result.

end of add.asm

Even though this program doesn’t actually do anything yet, at least anyone read-
ing our program will know what this program is supposed to do, and who to blame if
it doesn’t work?. Unlike C programs, it is usually appropriate to comment every line,
often with seemingly redundant comments. Uncommented code that seems obvious
when you write it will be a deep mystery a few hours later. While a well-written
but uncommented C program might be relatively easy to read by an experienced
programmer, as we will soon see it is not true that even the most well-written assem-
bly code is readable without plentiful and meaningful comments. Some programmers
prefer to add comments that echo the steps performed by the assembly instructions
in a higher-level language.

We are not finished commenting this program, but we’ve done all that we can do
until we know a little more about how the program will actually work.

were abandoned as hopeless.

Some people consider C to be a portable assembly language.

2You should put your own name on your own programs, of course; Dan Ellard shouldn’t take all
the blame.

2.2. GETTING STARTED WITH ASSEMBLY: ADD.ASM 17

2.2.2 Finding the Right Instructions

Next, we need to figure out what instructions the computer will need to execute in
order to add two numbers. Since the ANT architecture has very few instructions, it
won’t be long before you have memorized all of the instructions that you’ll need, but
as you are getting started you’ll need to spend some time browsing through the lists of
instructions, looking for ones that you can use to do what you want. Documentation
for the ANT instruction set can be found in the appendix of this document.

Luckily, as we look through the list of arithmetic instructions, we notice the add
instruction, which adds two numbers together.

The add instruction takes three operands, which appear in the following order:

1. A register that will be used to hold the result of the addition. For our program,
this will be r2.

2. A register that contains the first number to be added. Therefore, we’re going
to have to place the value 1 into a register before we can use it as an operand of
add. Checking the list of registers used by this program (which is an essential
part of the commenting) we select r3, and make note of this in the comments.

3. A register that holds the second number to be added. We’re also going to have
to place the value 2 into a register before we can use it as an operand of add.
Checking the list of registers used by this program we select r4, and make note
of this in the comments.

We now know how we can add the numbers, but we have to figure out how to
place 1 and 2 into the appropriate registers. To do this, we can use the lc (load
constant value) instruction, which places an 8-bit constant into a register. Therefore,
we arrive at the following sequence of instructions:

Dan Ellard -- 11/2/96

add.asm-- A program that computes the sum of 1 and 2,
leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the constant 1.

r4 - used to hold the constant 2.

HOH H H H HH

1c r3, 1 # r3
1c r4, 2 # rd

non
N~

18 CHAPTER 2. AN ANT TUTORIAL

add r2, r3, r4 # r2 =13 + r4d.

end of add.asm

2.2.3 Completing the Program

These three instructions perform the calculation that we want, but they do not form
a complete program. Like C, an assembly language program must contain some
additional information that tells the assembler where the program begins and ends.
Unlike C, ANT programs always start with the first instruction; there is no main. The
end of a program is defined in a very different way, however. Similar to C, where the
exit function can be called in order to halt the execution of a program, the proper
way to end an ANT program is with something analogous to calling exit in C. Unlike
C, however, if you forget to “call exit” your program will not gracefully exit when
it reaches the end of the main function. Instead, it will blunder on through memory,
interpreting whatever it finds as instructions to execute. Generally speaking, this
means that if you are lucky, your program will crash immediately; if you are unlucky,
it will do something destructive and then crash.

The way to tell ANT that it should stop executing your program, and also to
do a number of other useful things, is with a special instruction called sys. The
sys instruction suspends the execution of your program and starts execution of the
system. The system then looks at the second argument to sys to determine what it
is that your program is asking it to do.

In this case, what we want is for the operating system to do whatever is necessary
to exit or halt our program. Looking in table A.1.2, we see that this is done by calling
the sys instruction with zero as the second argument (with the halt syscall, the first
argument is unused, although with other syscalls it is used to pass an argument to or
return a value from the system).

Dan Ellard -- 11/2/96

add.asm-- A program that computes the sum of 1 and 2,
leaving the result in register r2.

Registers used:

r2 - used to hold the result.

r3 - used to hold the constant 1.

r4 - used to hold the constant 2.

H OH H H O B R

1c r3, 1 # load 1 into r3.
1c r4, 2 # load 2 into ré4.

2.3. USING ANT 19

add r2, r3, r4 # r2 =13 + r4d.
sys r0, O # Halt - end execution.

end of add.asm

2.2.4 The Format of ANT Assembly Programs

As you read add.asm, you may notice several formatting conventions— all the lines
that contain instructions are indented, and each line contains at most one instruction.
These conventions are not simply a matter of style, but are actually part of the
definition of the ANT assembly language.

The first rule of ANT assembly formatting is that instructions must be indented.
Comments do not need to be indented, but all of the code itself must be. The second
rule of ANT assembly formatting is that only one instruction can appear on a line.
(There are a few additional rules, but these will not be important until section 2.5.1.)

Unlike C, where the use of whitespace and formatting is largely a matter of style,
in ANT assembly language some use of whitespace is required.?

2.3 Using ANT

At this point, we should have a working program. Now, it’s time to try running it
and see what happens.

Before running the program, we must assemble it. The assembler translates the
program from the assembly language representation to the machine language repre-
sentation. The assembler for ANT is called aa, so the appropriate command would
be:

% aa add.asm

This will create a file named add.ant that contains the ANT machine-language
representation of the program in add.asm.

Now that we have the assembled version of the program, we can test it by loading
it into the ANT debugger in order to execute it. The name of the ANT debugger
is ad, so to run the debugger, use the ad command followed by the name of the

3(CS50 students may find it a useful exercise to enumerate the kinds of C constructs whose meaning
can be altered by the addition or deletion of whitespace.

20 CHAPTER 2. AN ANT TUTORIAL

machine language file to load. For example, to run the program that we just wrote
and assembled:

% ad add.ant

After starting, the debugger will display the following prompt: >>. Whenever
you see the >> prompt, you know that the debugger is waiting for you to specify a

command for it to execute.
Once the program is loaded, you can use the r (for run) command to run it:

>>r

The program runs, and then the debugger indicates that it is ready to execute
another command. Since our program is supposed to leave its result in register r2,
we can verify that the program is working by asking the debugger to print out the
contents of all of the registers using the p (for print) command, to see if it contains
the result we expect:

>>p

r01 r02 r03 r04 r05 r06 r07 r08 r09 ri10 ril ri12 ri1i3 ri14 rib
00 03 01 02 00 00 00 00 00 00 00 00 00 00 00
0 3 1 2 0 0 0 0 0 0 0 0 0 0 0

The p command displays the contents of each register. The first line lists the
register names. The following line lists the value of each register in hexadecimal, and
the last line lists the same number in decimal.

ad includes a number of features that will make debugging your ANT assembly
language programs much easier. Type h at the >> prompt for a full list of the ad
commands, or consult the manual page.

2.4 Reading and Printing: add2.asm

Our program to compute 142 is not particularly useful, although it does demonstrate
a number of important details about programming in ANT assembly language and
the ANT environment. For our next example, we’ll write a program named add2.asm
that computes the sum of two numbers specified by the user at runtime, and displays
the result on the screen.

The algorithm this program will follow is:

2.4. READING AND PRINTING: ADD2.ASM 21

1. Read the two numbers from the user. We’ll need two registers to hold these two
numbers. We can use r3 and r4 for this.

2. Compute their sum. We’ll need a register to hold the result of this addition.
We can use r2 for this.

3. Print the sum, followed by a newline.
4. Exit. We already know how to do this, using sys.

The only parts of the algorithm that we don’t know how to do yet are to read the
numbers from the user, and print out the sum. Fortunately, both of these operations
can be done with sys. Looking again in Table A.1.2, we see that sys 5 can be used
to read an integer into a register, and sys 2 can be used to print out the integer
stored in a register.

For formatting purposes, we also want to print a newline after printing out the
sum. We can use sys 3 to print out a character.

This gives the following program:

Dan Ellard -- 11/2/96

add2.asm-- A program that computes and prints the sum

of two numbers specified at runtime by the user.

Registers used:

r2 - used to hold the result.

r3 - used to hold the first number.

r4 - used to hold the second number.

r5 - used to hold the constant ’\n’.
sys r3, 5 # read first number into r3
sys rd, 5 # read second number into r4
add r2, r3, r4 # compute the sum r2 = r3 + r4.
sys r2, 2 # print contents of r2.

Print out a newline

1c r5, ’\n’ # load a newline character into rb
sys r5, 3 # print contents of rb
sys r0, 0 # Halt

end of add2.asm.

22 CHAPTER 2. AN ANT TUTORIAL

2.5 Strings: hello.asm

The next program that we will write is the “Hello World” program. Looking in table
A.1.2 once again, we note that there is a sys call to print out a string. All we need
to do is to put the address of the string we want to print into the source register (the
first argument), and execute sys reg, 5. The only things that we don’t know how
to do are how to define a string, and then how to determine its address.

The string "Hello World" cannot be part of the executable part of the program
(which contains all of the instructions to execute), which is called the instruction
segment or text segment. Instead, the string should be part of the data used by the
program, which is stored in the data segment.

To put something in the data segment, all we need to do is to put a .data before
we define it. Every .data command can be followed by up to eight (8) bytes of data.
Data is put in the data segment starting at memory location zero. Each byte is put
in the next consecutive memory location. Data is loaded into memory at assembly
time. You will have to be careful not to overwrite your data during run-time.

ANT programs must have all of the .data items defined at the end of the program,
after the special label _data_. The _data_ label indicates to the assembler that all
subsequent items are data.

2.5.1 Labels

A label is a symbolic name for an address in memory. In ANT assembler, a label
definition is an identifier (following the same conventions as C identifiers) followed by
a colon.

Labels must be the first item on a line, and must begin in the “zero column”
(immediately after the left margin). Label definitions cannot be indented, but all
other non-comment lines must be.

Since labels must begin in column zero, only one label definition is permitted on
each line of assembly language, but a location in memory may have more than one
label. Giving the same location in memory more than one label can be very useful.
For example, the same location in your program may represent the end of several
nested “if” statements, so you may find it useful to give this instruction several labels
corresponding to each of the nested “if” statements.

When a label appears alone on a line, it refers to the following memory location.
This is often good style, since it allows the use of long, descriptive labels without
disrupting the indentation of the program. It also leaves plenty of space on the line

2.6. CONDITIONAL EXECUTION: LARGER.ASM 23

for the programmer to write a comment describing what the label is used for, which
is very important since even relatively short assembly language programs may have
a large number of labels.

The following program is an example of how to use labels and treat characters in
memory as strings:

Dan Ellard -- 11/2/96
hello.asm—— A "Hello World" program.
Registers used:

r2 - holds the address of the string
1c r2, $str_data # load the address of the string into r2
sys r2, 4 # Print the characters in memory
sys r0, O # Halt

Data for the program:
data:

str_data:
.data 7H7’ 7e7’ 717’ 717’ 707’))
.data W2, ’o’, ’r’, ’1l’, ’d’, ’\Il’, 0

end of hello.asm

The label str_data is the symbolic representation of the memory location where
the string begins in data memory.
Note that strings in ANT must be terminated by a 0 byte, as in C.

2.6 Conditional Execution: larger.asm

The next program that we will write will read two numbers from the user, and print
out the larger of the two. The algorithm for this program is exactly the same as the
one used by add2.asm, except that we’re computing the maximum rather than the
sum of two numbers.

Browsing through the instruction set again, we find a description of the ANT
branching instructions. These allow the programmer to specify that execution should
branch (or jump) to a location other than the next instruction. These instructions
allow conditional execution to be implemented in assembly language (although in not
nearly as clean a manner as higher-level languages provide).

24 CHAPTER 2. AN ANT TUTORIAL

In ANT assembler, there are three branching instructions: bgt, beq and jmp.

The bgt instruction takes three registers as arguments. If the number in the
second register is larger than the number in the third, then execution will jump to
the location specified by the first; otherwise it continues at the next instruction.

The beq instruction is similar to the bgt instruction, except that the branch occurs
if the second and third registers contain the same value.

The jmp instruction takes two arguments, a register and an unsigned 8-bit con-
stant. Execution jumps to the location specified by the constant (the register is
ignored).

2.6.1 Branching Using Labels

Using the branching instructions and labels we can do what we want in the larger.asm
program. Since the branching instructions take a register containing an address as
their first argument, we need to somehow load the address represented by the label
into a register. We do this by using the 1c command. The larger.asm program
illustrates how this is done.

Dan Ellard -- 11/2/96
larger.asm-- A program that computes and prints the larger
of two numbers specified at runtime by the user.
Registers used:
r2 - used to hold the first number.
r3 - used to hold the second number.
r4 - used to hold the larger of r2 and r3.
rb5 - used to hold the address of the label "r2_larger"
r6 - used to hold the a "newline" character
sys r2, 5 # read a number into r2
sys r3, 5 # read a number into r3

put the larger of r2 and r3 into r4

1c r5, $r2_larger # put the address of r2_larger into rb
bgt r5, r2, r3 # if r2 is larger, branch to r2_larger
add r4, r3, r0 # "copy" r3 into r4
jmp r0, $endif # and then branch to endif

r2_larger:
add r4, r2, r0 # "copy" r2 into r4

endif:
sys rd, 2 # print contents of r4.

2.7. LOOPING: MULTIPLES.ASM 25

1c r6, ’\n’ # load a newline character into r6
sys r6, 3 # print contents of r6
sys r0, O # Halt

end of larger.asm.

Since ANT does not have an instruction to copy or move the contents of one
register to another, in order to copy the value of one register to another register we’ve
added 0 to one register and put the sum in the destination register in order to achieve
the desired result. (Recall that register r0 always contains the constant zero.)

2.7 Looping: multiples.asm

The next program that we will write will read two numbers A and B, and print out
multiples of A from A to A x B. The algorithm that our program will use is shown
in the snippet of C code below:

int main (void)
{
int A, B, top, multiple;

A
B

GetInteger ();
GetInteger ();

if ((A==0) Il (B<=0)) {
exit (0);

}

top = A * B;

for (multiple = A; multiple <= top; multiple += A) {
printf ("%d", multiple);
printf (" ");

}

printf ("\n");

exit (0);

This algorithm translates easily into ANT assembler.

Dan Ellard -- 11/2/96

26 CHAPTER 2. AN ANT TUTORIAL

multiples.asm-- takes two numbers A and B, and prints out
all the multiples of A from A to A * B.
If B <= 0, then no multiples are printed.
Registers used:
r2 - used to hold A.
r3 - used to hold B.
r4 - used to store top, the sentinel value A * B.
r5 - used to store multiple, the current multiple of A.
r6 - used for address of labels
r7 - used for holding and printing spaces and a newline
start:
sys r2, 5 # read A into r2
sys r3, 5 # read B into r3
1c r6, $A_ok # r6 = the address of A_ok.
bgt r6, r2, r0 # make sure that A !'= 0.
bgt r6, rO, r2
sys r0, 0 # if A == 0, exit.
A_ok:
1lc r6, $B_ok # r6 = the address of B_ok.
bgt r6, r3, r0 # make sure that B > 0.
sys r0, O # if B <= 0, exit.
B_ok:
mul r4, r2, r3 # top = A * B.
add r5, r2, r0 # multiple = A
loop:
Sys r5, 2 # print out multiple (r5)
1c r6, $endloop # r6 = the address of endloop
beq r6, r4, rb # if multiple == top, we’re done.
add r5, r5, r2 # otherwise, multiple += A.
1c r7, 7 ?
sys r7, 3 # print a space
jmp r0, $loop # go to top of the loop
endloop:
1lc r7, ’\n’

sys r7, 3 # print a newline

2.8. CHARACTER I/O: ECHO.ASM 27

sys r0, O # Exit
end of multiples.asm

2.8 Character I/0O: echo.asm

Now that we have mastered loops and reading and printing integers, we’ll turn our
attention to reading and printing single characters. The program that we’ll write in
this section simply echos whatever you type to it, until EOF (aka end of input) is
reached.

The way that EOF is detected in ANT is that when the EOF is reached, the
syscall that reads a single character will put a non-zero value into register ri. (All of
the syscalls place 0 in register ri to indicate success, non-zero to indicate failure.)

Dan Ellard - 11/10/96

Echos input until EOF.

Register usage:

r2 - holds each character read in.
r3 - address of $print.

1lc r3, $print
loop:

Sys r2, 6 # r2 = getchar (;

beq r3, ri, r0 # if not at EOF, go to $print.

jmp r0, $exit # otherwise, go to $exit.
print:

Sys r2, 3 # putchar (r2);

jmp r0, $loop # iterate, go back to $loop.
exit:

sys r0, 0 # Exit

end of echo.asm

2.9 Load and Store: string reverse.asm

The next program that we write will read in a string from the user and then print it
out backwards. Characters are read until the user enters a newline, or the array used
to store the string is exhausted.

The program reads input character-by-character, storing each character in data
memory as it is read. Once it reads a newline or the space reserved for the string in

28 CHAPTER 2. AN ANT TUTORIAL

data memory is full, it prints out the characters in reverse order.

The first part of the program reads a string from input, character-by-character. If
the character is not a newline, and the user has typed in less than the alloted number
of characters, the character is stored in memory. Otherwise, the loop that reads the
characters exits immediately.

The command for storing the contents of a register in memory is st. It takes
three arguments: the register whose contents will be stored in memory, the register
containing the base address of memory where the information will be stored (the start
of the array), and a 4-bit constant (0 .. 15) that represents the offset from the base
address (the index of the array). In our example, the character is read into r4, so
that will be the first argument. The address of the data is represented by the value
of r7.

The loop that reads characters and stores them to memory looks like:

read_loop :

sys r4, 6 # Read a character, put in r4
beq r5, r4, r8 # if it’s a newline, exit read loop
bgt r5, r7, rl0 # if char_array is full, exit read loop
st r4, r7, O # store character at r7
inc r7, 1 # i++
jmp r0, $read_loop # go to top of loop
end_read:

Now that we have the string in memory, we want to print it out backwards. We
know that in order to print out a character, it has to be in a register. The command
for getting data out of memory and into a register is 1d, which takes three arguments.
The first is the register where the data will go, and, like st, the second and third
arguments are the base address and offset from the base address where the data is
stored in memory.

The code for printing the string in memory backwards is this:

1c r5, $end_print # Re-Initialize r5 to end of print loop
1c r6, $print_loop # Re-Initialize r6 to start of print loop
1c r9, $char_array # r9 is the address of the first byte
in char_array.
print_loop:
inc r7, -1 # i-—-
bgt r5, r9, r7 # Have we backed off the end of char_array?

If so, then exit print loop.

2.9. LOAD AND STORE: STRING_REVERSE . ASM 29

1d r4, r7, 0 # load character at r7 into r4
sys r4, 3 # Print r4
jmp r0, $print_loop

The entire program looks like this:

Penny Ellard -- 9/7/97
string reverse.asm-— A program that reads a string from the user,
then prints out the string in reverse order
Registers used:
r4 - hold characters as they are read in and printed out.
r5 - address - used for conditional branches.
r6 - address - used for conditional branches.
r7 - the address of the next byte in char_array to visit.
r8 - the constant ’\n’.
r9 - address of the start of char_array.
r10 - the address of the last byte in the char_array.
initialize:
1lc r5, $end_read # Initialize r5 to end of read loop
1c r6, $read_loop # Initialize r6 to start of read loop
1c r9, $char_array # r9 is the address of the start of char_array
1lc r8, ’\n’ # Initialize r8 to ’\n’
1c r10, $end_array # Initialize r10 to the address of the
location after the end of the char_array,
inc ri0, -1 # and decrement r10 so that it is the address
the last location in the char_array.
add r7, r9, r0 # r7 starts at the start of char_array

read_loop:

sys r4, 6 # Read a character, put in r4
beq r5, r4, r8 # if it’s a newline, exit read loop
bgt r5, r7, rl0 # if char_array is full, exit read loop
st r4, r7, O # store character at r7
inc r7, 1 # i++
jmp r0, $read_loop # go to top of loop
end_read:
1c r5, $end_print Re-Initialize r5 to end of print loop

1c r9, $char_array # r9 is the address of the first byte

#

1c r6, $print_loop # Re-Initialize r6 to start of print loop
#
in char_array.

30

print_loop:
inc
bgt
1d
sys

jmp

end_print:
sys

sys

data:

char_array:

.data
.data
.data
.data
.data

end_array:

end of string_reverse.asm

O O O O O

-

O O O O O

-

r9, r7

r7, O
3

$print_loop

3

0

, 0, 0

, 0, 0

, 0, 0

, 0, 0
0, 0

-

H H H HH

O O O O O

-

v v
-

O O O O O

-

CHAPTER 2. AN ANT TUTORIAL

i--
Have we backed off the end of char_array?
If so, then exit print loop.

load character at r7 into r4

Print r4

Print a newline

Halt

enough space for 40 characters:

-

O O O O O
O O O O O

-

Note that there is a way to write this program that uses about half the number of
memory accesses (1d and st are the only commands in ANT that access memory).
If we initialized r7 to start at the end of char_array, and decremented it, we could
then use the print_string system call, instead of loading each character and printing
it out one at a time. You can try this, if you like; just make sure your string is 0-
terminated and that you don’t back up past the start of char_array!

2.10 Putting It All Together: atoi.asm

The next program that we’ll write will look at a a line of text in memory, interpret
it as an integer, and then print it out.

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 31

2.10.1 atoi-1

We will use a string in memory, and we know how to print out a number, so all we
need is an algorithm to convert a string into a number. We’ll start with the algorithm
given in the snippet of C code shown below.

For our algorithm, we will take advantage of the fact that in ASCII, the numbers
that represent the digits 0 through 9 are arranged consecutively, starting at ’0°’.
Therefore, for any ASCII character x, the number represented by z is simply z - 20°.

int atoi (char *str)

{
int sum = 0;
int 1i;
for (i = 0; str [i] !'= ’\0’; i++) {
sum *= 10;
sum += (str [i] - ’0’);
}
return (sum);
}
The code for this algorithm then is simply:
Register usage:
r3 - used as scratch space to load each byte into.
r4 - used to hold the sum.
rb5 - the address of the next byte to load.
r6 - the location of the end of the main loop.
r7 - used to hold the constant 10.
r8 - used to hold the constant ’0’.
r9 - used to hold the constant ’\n’.
1c r4, O # Initialize sum to O.
1c r5, $string start # Start at beginning of string.
1c r6, $end_sum_loop # Location of end of the loop.
1c r7, 10 # Initialize r7 to 10.
1c r8, ’0’ # Initialize r8 to ’0’.
sum_loop:
1d r3, r5, 0 # load the byte *str into r3,
beq r6, r3, r0 # if r3 == 0, branch out of loop.
mul r4, r4, r7 # r4 x= 10.
sub r3, r3, r8 #r3 =70,

32 CHAPTER 2. AN ANT TUTORIAL

add r4, r4, r3 # sum += r3.

inc r5, 1 increment str to the next char,

jmp r0, $sum_loop # and repeat the loop.
end_sum_loop:

**

sys rd, 2 # print out the number
1c r9, ’\n’ # put newline into r9

sys r9, 3 # print out a newline

sys r0, O # halt

data:

string_start:
.data ’1’, ’0’, ’5’, 0

2.10.2 More Error Checking of atoi

Although the algorithm used by atoi-1 seems reasonable, it actually has several
serious flaws. The first problem is that this routine cannot handle negative numbers.
We can fix this easily enough by looking at the very first character in the string,
and doing something special if it is a >-’. The easiest thing to do is to introduce a
new variable to represent the sign of the number. If the number is positive, then the
variable will be 1, and if negative then the variable will be -1. This makes it possible
to leave the rest of the algorithm intact, and then simply multiply the result by the
new variable in order to get the correct sign on the result at the end.

While this algorithm is better than the one used by atoi-1.asm, it is by no means
free of bugs. The next problem that we must consider is what happens when str does
not point to a proper string of digits, but instead points to a string that contains
erroneous characters.

If we want to mimic the behavior of the UNIX atoi library function, then as
soon as our program encounters any character that is not a digit (after an optional
’~7) it must stop the conversion immediately and return whatever is in sum as the
result. We can implement this by adding some extra tests on every character that
gets processed inside sum_loop.

Even after correcting this problem, however, our program still has flaws. The
original algorithm is generalized to work with any number. Unfortunately, register
r4, which we use to represent sum, can only represent an 8-bit binary number, so it

2.10. PUTTING IT ALL TOGETHER: ATOI.ASM 33

is easy for the user to type in a number that is too large or too small for this program
to deal with. Although there’s not much that we can do to prevent this problem, we
definitely want to detect this problem and indicate that an error has occurred.

There are two spots in our routine where an overflow might occur: when we
multiply the contents of register r4 by 10, and when we add in the value represented
by the current character.

Detecting overflow during addition and multiplication is not hard, but it does
require some care. In the ANT architecture, when multiplication and addition are
performed, the result is actually stored in two 8-bit registers, the regular destination
register (des) and r1. des contains the low-order 8 bits and r1 contains the high-
order 8 bits of the result. Therefore, if r1 is non-zero after we do either of these
operations, then the result was too large to fit into a single 8-bit word.

34

CHAPTER 2. AN ANT TUTORIAL

Appendix A
The ANT Instruction Set

This appendix gives an overview of the ANT instruction set and some of the de-
tails of the ANT assembler. The exact definition of the ANT instruction set and a
specification for how ANT programs are executed are not given here.

A.1 ANT Architecture Overview

The ANT architecture is a load/store architecture; the only instructions that can
access memory are the load and store (and in some sense the sys) instructions. All
other operations access only registers.

The ANT CPU has 16 registers, named r0 through r15. Register r0 always
contains the constant 0, and register r1 is used to hold results related to previous op-
erations (described later). r0 and r1 are read-only and cannot be used as destination
registers. The other 14 registers (r2 through r15) are general-purpose registers.

In the description of the instructions, the following notation is used:

des Must always be a register, but never r0 or ri.
reg Must always be a register.
srcl Must always be a register.
sre? Must always be a register.

const8 Must be an 8-bit constant (-128 .. 127): an integer (signed),
char, or label.

uconst8 Must be an 8-bit constant (0 .. 255): an integer (unsigned) or
label.

uconst{ Must be a 4-bit constant integer (0 .. 15).

35

36 APPENDIX A. THE ANT INSTRUCTION SET

A.1.1 General Instructions

‘ Op Operands ‘ Description

add des, srcl, src2 des gets srcl + src2. rl gets any overflow from this
addition.

sub des, srcl, src2 des gets srcl - src2. rl gets any underflow from this
subtraction.

mul des, srcl, src2 Multiply srcl and src2, leaving the low-order byte in
register des and the high-order byte in register ri.

div des, srcl, src2 Divide srcl by src2, leaving the quotient in register
des and the remainder in register ri.

beq reg, srcl, src2 Branch to regif src1 == src2. rilisset to the address
of the instruction following the begq.

bgt reg, srcl, src2 Branch to reg if src1 > sre2. rl is set to the address

of the instruction following the bgt.

1d des, srcl, uconst | Load the byte at srcl + wuconstj into des. rl is
unchanged.

st reg, srcl, uconst | Store the contents of register reg to srcl1 + uconst4.
rl is unchanged.

lc des, const8 Load the constant const§ into des. r1 is unchanged.

jmp reg, uconst§ Branch unconditionally to the specified constant. reg
is ignored.

inc reg, const§ Add const8 to the specified register.

sys reg, code Makes a system call. See A.1.2 for a list of the ANT

system calls.

Note that for all instructions except sys, register rl is always updated after the
rest of the instruction is done, so that it is always safe to use rl as a source register
for these instructions. (sys sets r0 to 0 before executing the syscall.)

A.1.2 System Calls Handling

All syscalls set r1 to 0 if successful, and set r1 to non-zero values to indicate failure.

A.2. THE ANT ASSEMBLER 37

| Service | Code | Description

halt 0 Halt the processor.

dump 1 Dump core to file ant.core.

put_int 2 Print the contents of reg as a number.

put_char 3 Print the contents of reg as an ASCII character.

put_string 4 Print the O-terminated ASCII string that starts at
reg.

get_int 5 Read an integer into reg. reg must not be r0 or r1. If
EOF, r1 is set to 1. Does not check for illegal input.

get_char 6 Read a character into reg. reg must not be r0 or ri.
If EOF, r1 is set to 1.

A.2 The ANT Assembler

A.2.1 Comments

A comment begins with a # and continues until the following newline. The only
exception to this is when the # character appears as part of an ASCII character
constant (as described in section A.2.3).

A.2.2 The data_ Label

A special label, _data_, is used to mark the boundary between the instructions of the
program (which must appear before the _data_ label) and the data of the program
(which appear afterward).

The _data_ label itself should never be referenced by the program.

A.2.3 Constants

Several ANT assembly instructions contain 8-bit or 4-bit constants.

The 8-bit constants can be specified in a variety of ways: as decimal, octal, hex-
adecimal, or binary numbers, ASCII codes (using the same conventions as C), or
labels.

The value of a label is the index of the subsequent instruction in instruction
memory for labels that appear in the code, or the index of the subsequent .data item
for labels that appear in the data.

38 APPENDIX A. THE ANT INSTRUCTION SET

The 4-bit constants must be specified as unsigned numbers (using decimal, octal,
hexadecimal, or binary notation). ASCII constants or labels cannot be used as 4-bit
constants, even if the value represented fits into 4 bits.

A.2.4 The .data Directive

Name Parameters Description

.data bytel --- byteN | Assemble the given bytes (8-bit integers) into the
next available locations in the data segment. As
many as 8 bytes can be specified on the same line.
Bytes may be specified as hex, binary, decimal or
C character constants (as described in A.2.3).

