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ABSTRACT 
 Understanding the relationship between the performance of 
the on-chip processor caches and the overall performance of the 
processor is critical for both hardware design and software 
program optimization. While this relationship is well understood 
for conventional processors, it is not understood for new 
multithreaded processors that hide a workload's memory latency 
by executing instructions from several threads in parallel.  In this 
paper we present a model for estimating processor throughput as a 
function of the cache hierarchy performance.  Our model has a 
closed-form solution, is robust against a range of workloads and 
input parameters, and gives estimates of processor throughput that 
are within 13% of measured values for heterogeneous workloads.  
We demonstrate how this model can be used in an operating 
system scheduler tailored for multithreaded processor systems. 

 

1. INTRODUCTION 
 In this study we develop an analytical model of the effects 
of processor cache miss rates on the overall performance of a 
multithreaded processor.  Multithreaded (MT) processors are 
designed to hide the effects of memory latency by running 
multiple instruction streams in parallel [5-10]. An MT processor 
has multiple thread contexts, and it interleaves execution of 
instructions from different threads. As a result, if one thread 
blocks on a memory access, other threads can make forward 
progress.  The motivation for this architecture is to improve 
performance of an important class of modern memory-intensive 
applications, such as web services, application servers, and on-
line transaction processing systems, that are notorious for causing 
frequent processor stalls and have processor pipeline utilizations 
of less than 20% [1, 2, 5, 21, 22].  While hardware multithreading 
is not a new idea, the first commercial systems equipped with 
multithreaded processors, such as Intel’s Hyper-threaded Pentium 
4 [10] and IBM’s RS64 IV [29], have been made available only 
recently.  This architecture has quickly become popular: the 
majority of new processors that are being released are 
multithreaded. Even so, multithreaded processor architectures are 
still evolving, and as they do their designs are becoming more 
complex. IBM has recently released its first multithreaded chip 
multiprocessor [25]; Sun Microsystems and Intel have plans to 
release similar processors in the fall of 2005 [26, 27].  Our lack of 
practical experience with multithreaded architectures suggests that 
we do not yet have a complete understanding of how these 
processors perform and how best to design them.  

 Analytical modeling, along with simulation, is a valuable 
tool in microarchitectural development and analysis.  A model for 
processor performance allows efficient exploration of the design 
space. The amount of exploration available via simulation can be 
limited, because accurate simulations are time-consuming; 
analytical modeling does not have such limitations. Even though 
analytical modeling is usually less accurate than detailed 
simulation, it is useful for studies that explore how components in 
the design interact with one another and for evaluating 
hypothetical future designs where the lack of a design blueprint 
makes complete accuracy impossible [28]. 
 In designing multithreaded processors, it is crucial to make 
the right tradeoff between the chip real estate that is used for 
cache and for thread hardware contexts.  Having more hardware 
contexts increases latency-hiding capabilities. On the other hand, 
not having enough cache may cause memory latency to become so 
high that multithreading will not be able to hide it. Our model 
estimates the amount of latency that a multithreaded processor can 
hide, depending on its cache size and the number of hardware 
contexts, and can be used in studying the effects of such tradeoffs.   
 Since hardware multithreading hides memory latency 
software designers may need to place less emphasis on optimizing 
their applications for high cache hit rates. It is, therefore, 
necessary to develop new intuition for the kind of cache 
performance that is acceptable for multithreaded processors. 
Having the model for estimating the impact of cache miss rate on 
processor performance aids in doing so. 
 In addition to providing a valuable tool for design-space 
exploration, in Section 7, we show how to use our model in the 
implementation of a scheduling algorithm tailored for 
multithreaded chip multiprocessors [20].  
 Our model estimates processor throughput as a function of 
cache hierarchy performance. As a metric for processor 
throughput we use instructions per cycle (IPC). We chose this 
metric because it is important for long-running throughput-
oriented workloads such as application servers and databases, 
whose performance is often expressed as the sustained number of 
requests per second – the quantity that is ultimately linked to 
processor IPC. To capture the cache hierarchy performance, we 
use cache miss rate – the number of cache misses per instruction. 
Therefore, our model estimates processor IPC for a given cache 
miss rate. 
 The challenge in developing such a model for multithreaded 
processors, which is fundamentally different from developing a 
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similar model for conventional processors or multiprocessors, lies 
in the fact that a multithreaded processor partially masks the 
memory latency experienced by the threads (See Figure 1). 
Modeling the extent of such masking is essential to producing an 
accurate model, and we have developed a powerful technique for 
doing this.  
 Another challenge we address is modeling the effects of 
memory bandwidth contention. When several threads issue 
requests to main memory simultaneously, they compete for 
memory bandwidth. A similar contention is present on 
multiprocessor systems.  Previously proposed modeling 
techniques to address such contention were not appropriate for our 
model because they either produced inaccurate estimates or were 
too computationally expensive. We have developed a new 
technique for modeling memory-bus delays, which produces 
estimates that are on average within 12% of the measured values. 
Because this technique targets our specific problem domain, it is 
simple and has a closed-form solution.   
 Our IPC model estimates processor IPC to within about 
13% of the measured values and has a closed-form solution. In the 
cases where the model produces errors, the errors are consistent in 
magnitude and direction, which indicates that the model is 
successful in predicting performance trends even when the actual 
IPC cannot be predicted with precision.  The strength of our 
model comes from the fact that it is a function of how the 
processor hides memory latency, which is independent of cache 
architecture and workload characteristics. Because we developed 
a powerful technique for modeling this effect, our model works 
with a wide range of parameters and workloads.   
 The rest of this paper is organized as follows:  In Section 2 

we describe the multithreaded processor whose behavior we 
model, and the methodology. In Section 3 we introduce some 
terminology and describe a base model for memory latency for 
single-threaded workloads. In Section 4 we present our technique 
for modeling how a multithreaded processor hides single-thread 
memory latencies. In Section 5, we describe how we modeled 
delays associated with competition for memory bandwidth. In 
Section 6, we put together the pieces of our model, validate it and 
discuss its strengths and weaknesses. In Section 7, we demonstrate 
how our model can be used in practice.  We discuss related work 
in Section 8 and conclude in Section 9. 

 

2. SYSTEM AND METHODOLOGY 
2.1. Multithreaded Processor  
 For this study, we collect data and perform validation 
experiments on a simulated machine. In contrast to using a real 
machine, this gives us freedom to experiment with a variety of   
machine configurations (i.e., cache size, memory bandwidth). In 
this section we describe the processor that we simulate and the 
simulator itself. 
 The architecture of our simulated multithreaded processor is 
based on fine-grained multithreading (interleaving), proposed by 
Laudon et al. [6]. The processor has several hardware thread 
contexts, where each context consists of a set of registers and 
other thread state.  The processor interleaves execution of 
instructions from the threads, switching between contexts on each 
cycle in a round-robin fashion.  When one or more threads are 
blocked, the processor continues to switch among the remaining 
available threads.  If there is not a thread that is ready to issue an 
instruction, the processor stalls, waiting for some thread to 
become ready. 
 We model a simple RISC pipeline with one set of functional 
units (i.e., arithmetic logical unit, instruction fetch unit, etc.).  We 
decided to simulate a simple, classical RISC processor, as 
opposed to a complex out-of-order processor, because we believe 
that this is a viable architecture for future MT processors. A 
simple pipeline occupies less space and allows for placing more 
hardware contexts on a chip; a previous study showed that for 
transaction-style workloads, pipeline complexity should be traded 
off for increased number of hardware contexts [11].  Additionally, 
we believe that the results of our study are applicable to a wide 
range of multithreaded architectures, because, as we will show, 
our model decouples the performance of the memory hierarchy 
from the performance of the processor pipeline. 
 For the purposes of validating our model, we use an MT 
system simulator [12], built on top of the Simics simulator of the 
UltraSPARC II® processor [13]. Simics can bootstrap the 
simulated machine with the Solaris™ operating system and 
standard Unix environment. All the simulations described in this 
paper are execution-driven and include both user-level and OS 
code.     
 The simulator accurately simulates pipeline contention, the 
L1 cache, bandwidth limits on crossbar connections between the 
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Figure 1. Each box denotes the state of the processor pipeline for a 
single cycle. For a single-threaded processor, if a thread spends 
20% of its time running and the remainder of its time blocked 
handling cache misses, the processor is blocked 80% of the time 
and completes only one instruction in five cycles, yielding IPC of 
0.2. A multithreaded processor hides memory latency. Although 
each thread spends 80% of the time in the blocked state, overall, 
the processor is blocked only 20% of time, yielding IPC of 0.8 
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L1 and L2 caches, the L2 cache, and bandwidth limits on the path 
between the L2 cache and memory. The processor is configured 
with four hardware contexts (this configuration has been shown to 
perform best with our workload [6]), a write buffer, an 8KB L1 
data cache, a 16KB L1 instruction cache (both 4-way set-
associative) and a unified 12-way set-associative write-back L2 
cache, whose size we vary depending on the experiment.  We 
chose cache sizes to be similar to those used in the hyper-threaded 
Pentium 4, a multithreaded processor that is commercially 
available at the time of this writing [10].    
 

2.2. Methodology 
 In a previous study we found that multithreaded processors 
are able to effectively hide latency from faults in the L1 cache, 
however poor performance in the L2 can adversely affect 
processor IPC [20]. This implies that variation in the L2 miss 
rates produces greater variation of processor IPC than variation in 
the L1 miss rates. In this study we model the effects of L2 miss 
rates on processor IPC, because this way we are able to validate 
our model for a wider range of IPCs. However, there is nothing in 
our model that precludes it from being used for other levels of the 
cache hierarchy, such as L1 or L3 caches.   
 To develop and validate our model, we use the SPEC CPU 
2000 benchmark suite. These benchmarks are appropriate for 
studies of memory hierarchy, because this benchmark suite has 
been improved from previous versions to include programs whose 
memory footprints are much larger than traditional cache sizes 
[17].  We experiment only with integer benchmarks, because our 
simulator does not simulate contention for the floating-point unit.  
To ensure that our model works for multiple workloads, we train 
and test our model using distinct sets of benchmarks.  To validate 
that our model is robust against a range of input parameters, we 
use several L2 cache sizes, ranging from an unrealistically small 
48KB to a more realistic 192 KB. Development of our model 
followed a three-step process: first we modeled the L2-miss 
latency for a single-threaded workload. Then, to estimate the 
effect of such latency for the multithreaded workload, we 
developed a technique for estimating how a multithreaded 
processor hides individual threads’ latencies. Next, so that we 
could validate our model using a realistic machine configuration, 
we developed a method to estimate delays associated with 
contention for the memory-bus. We describe these three pieces of 
our model in Sections 3, 4 and 5, respectively. 
 

3. MODEL PRIMER 
 We introduce our model by stating our assumptions and 
demonstrating how we model L2-miss latencies for a single-
threaded workload. Our ultimate goal is to model how the 
processor hides individual threads’ latencies, but as a prerequisite 
we need to be able to estimate them.   
  

3.1. Assumptions 
 The performance of the L2 cache is only one factor that 

affects processor IPC.  Processor IPC is determined by a multitude 
of other factors, such as the architecture of processor pipeline, the 
instruction mix of the workload, and the performance in the L1 
caches.  Modeling the effects of these factors is outside the scope 
of this work. Our goal is to study the effects of the L2 
performance on IPC in an isolated fashion. In order to do this, we 
assume the knowledge of the ideal IPC – the IPC that the 
workload has when there are no capacity or conflict misses in the 
L2.  In other words, a workload experiences its ideal IPC when it 
runs with an infinitely large L2 cache. Using this assumption is a 
standard approach when modeling the effects of memory 
hierarchy on the overall performance [18, 19].  
 To develop our model, we assume that we can measure the 
L2 read-miss rate and the L2 write-miss rate. The read-miss rate 
includes both data and instruction misses. These quantities can be 
measured by reading hardware performance counters usually 
available on modern processors.   
 

3.2 Single-threaded workload model 
 We begin by modeling the L2-miss latency for a single-
threaded workload, so that later we could model how a 
multithreaded processor hides such single-thread latencies. The 
model estimates latency per instruction: how many cycles per 
instruction a thread spends handling L2 misses. 
 First let us introduce some definitions: 
 

L2_CPI – Per-instruction L2-miss latency. For a given L2 miss 
rate, the number of cycles per instruction that a thread is 
blocked handling misses in the L2 cache.  

Ideal_CPI – the inverse of ideal IPC (recall section 3.1); 
CPI – cycles per instruction given some L2 miss rate; 
L2_MR – Number of L2 misses per instruction – this includes the 

read-miss rate and the write-miss rate.  
L2_MCOST – the cost, in cycles, of handling each miss in the L2 

cache. This is the cost of going to memory from the L2 
cache1 (we set it to 120 cycles). In this section we assume 
that the bandwidth between the L2 and main memory is 
infinite, so there is no delay associated with waiting for the 
memory bus.  

 
L2_CPI depends on the L2 miss rate and the cost of each miss: 
 

 MCOSTLMRLCPIL _2*_2_2 =    (1) 
 

We also observe that the thread’s CPI is comprised of its ideal CPI 
and the CPI that is due to handling the misses in the L2: 
 

 CPILCPIIdealCPI _2_ +=     (2) 

                                                 
1 If a workload is multithreaded, there is also a cost associated with 
waiting for a cache line if it is in use when the thread accesses it. We 
observed from our data that this cost does not have a high impact on 
performance, so we disregard it altogether.  Neither do we account for 
communication costs associated with a cache consistency protocol. This 
would be relevant for systems with multiple caches on the same level of 
the memory hierarchy. A model for such costs has been described 
elsewhere [18] and can be easily incorporated into our model if needed.  
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 In the simplest case, we use equation (1) to compute the L2-
miss latency given a particular L2 cache miss rate. This approach 
works if we have a write-though cache and a processor that is not 
equipped with a write buffer. However, we model a more 
sophisticated system with a write-back cache and a write buffer, 
where this approach does not work for the following reasons: 
Writing in the cache creates dirty cache lines that need to be 
written back: this may increase the cost a of a cache miss.  Write 
buffer absorbs the write misses, making them non-blocking. 
Therefore, a write miss does not necessarily stall the thread. We 
explain how we account for the effects of write-backs and the 
write buffer in the following sub-sections.  
 

3.2.1. Effect of write-back transactions 
 A write-back transaction occurs whenever the cache needs 
to evict a dirty cache line. For example, if a read transaction 
misses in the cache and the cache line that it needs to use is dirty, 
this line will be written to memory before it is used. In this case, a 
read transaction has to pay an additional penalty of L2_MCOST.   

Therefore, in order to fully account for all memory-access 
penalties, the L2 miss rate must include write-back transactions. 
We assume that the rate of write-back transactions is known to us, 
i.e., we can measure it by reading hardware counters. However, 
for situations when the write-back rate cannot be directly 
measured, we developed a way to estimate it.   

Intuitively, the write back rate depends on the write miss 
rate, because it is the write misses that create dirty cache lines. 
We used linear regression analysis to analyze the relationship 
between the write-miss rate and the write-back rate, and obtained 
a linear model with a good fit.  Using this model, it is possible to 
estimate the write-back rate of a workload to within 22% of actual 
values.   

In the rest of this paper, when we talk about the L2 miss 
rate, we include the write-back rate, thereby accounting for all 
cache transactions that result in memory-access penalty.  

As will become evident in the next section, for our model 
we need to distinguish between the read miss rate and the write 
miss rate. Therefore, we need to know which fraction of the write-
back rate should be included in the read-miss rate, and which 
should be included in the write-miss rate.   As one could expect, it 
turns out that this fraction is proportional to the fraction that the 
read- or write- miss rate contributes to the overall miss rate. For 
example, if read misses constitute 60% of all misses, then about 
60% of all write-backs are triggered by read-miss transactions, 
and so 60% of the write-back rate should be included in the read-
miss rate. 

 

3.2.2. Write buffer effects 
 A write buffer cushions the effect of write misses: when a 
thread performs a write, the value is placed into the buffer, and 
the transaction completes immediately. The written values are 
propagated through the memory hierarchy asynchronously, 
without stalling the thread. The only time a write can stall the 
thread is when the write buffer becomes full – in this case the 

thread waits until some space becomes available in the write 
buffer.  
 In our simulated system, we model a write buffer with eight 
double-word entries. The write buffer is shared among threads that 
run on the same processor and is positioned above the first-level 
cache hierarchy. Our first-level cache is non-write-allocate: it does 
not allocate space in the cache in the event of a write miss. 
Therefore, all writes from the write buffer go directly to the L2 
cache.  As a result, the L2 performance affects the likelihood of 
the write buffer stalling the processor.   
 Queuing theory provides a natural approach to modeling the 
effect of a write buffer: a write buffer can be modeled as a server, 
and threads that send write requests as customers.  Using a closed-
network queuing model with limited buffer size, it is possible to 
estimate the delay associated with the buffer filling up. However, 
because solving such models is computationally expensive [18, 
23, 24] (and we wanted our model to be suitable for on-line 
deployment), and because our model showed little sensitivity to 
this effect, we decided to use the following simplified approach.  
 We estimate the fraction of L2 write misses that are not 
absorbed by the write buffer and eventually stall the processor.  
This quantity depends on the write miss rate that a workload 
generates: the more writes that miss in the cache the longer it 
takes for the write buffer to propagate the writes and the more 
likely it is to fill up.  
 For our simulated architecture, if a workload has a writes-
per-cycle rate of roughly 6,000 per million cycles or greater, about 
90% of the L2 write misses stall the processor. At any rate less 
than that – only about 5% of L2 write misses stall the processor.  
We can use these numbers to augment Eq.1 as follows.   
1. Split the L2 miss rate (L2_MR) into two parts: L2 read miss 

rate (L2_RMR) and L2 write miss rate (L2_WMR). The read 
miss rate includes both data reads and instruction fetches. 
Equation 2 now becomes: 

 

MCOSTLWMRLRMRLCPIL _2*)_2_2(_2 +=  (3) 
  

2. For workloads whose writes-per-cycle rate is above 6,000 per 
million cycles, multiply L2_WMR by 0.9 – to reflect that for 
such workloads about 90% of L2 write misses stall the 
processor. Similarly, for workloads whose writes-per-cycle 
rate is lower, multiply L2_WMR by 0.05.  Let us call this 
multiplier WMM – the write miss multiplier. Equation 3 now 
becomes: 
 

MCOSTLWMMWMRLRMRLCPIL _2*)*_2_2(_2 +=
          (4) 

 

 Our approach to modeling the effect of write misses is 
architecture-dependent.  In order to derive the WMM coefficient 
for a particular architecture it is necessary to characterize the 
effect of write miss rate on the write buffer on that architecture. In 
order to develop an architecture-independent method a more 
general approach needs to be used.  Since accurately modeling 
this effect was not critical to the overall accuracy of our model, 
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and was not the focus of this study, our approach suffices.  

3.2.3. Evaluation 
 To train and test our model we separated the SPEC CPU 
2000 integer benchmark suite in two groups2.  The training set 
contained 164.gzip, 175.vpr-place, 175.vpr-route, 176.gcc, 
186.crafty, 197.parser, and 255.vortex.  The test set contained 
181.mcf, 252.eon-cook, 254,gap, 256.bzip2 and 300.twolf.   
 To obtain ideal_CPI for these benchmarks, we simulated 
each one on a machine configured with a large L2 cache (3 MB), 
and measured the resulting CPI.  (To perform a simulation, we 
fast-forward the execution past the initialization phase, and then 
perform a detailed measured simulation for 100 million 
instructions.)  

To evaluate the model for single-thread L2-miss latency, we 
simulated the benchmarks in the test set on a machine with 
reduced L2 cache sizes (48KB, 96KB, 192KB), measured the CPI 
and the L2 miss rate. We use the L2 miss rate and the ideal_CPI 
to estimate the CPI using Eq.2 and 4. Our estimates were within 
1% of the CPI measured during the simulation. Such high 
accuracy is not surprising because we model a simple and well-
understood behavior using straightforward techniques. In the next 
section we explain how we tackled a more complicated problem. 

   

4. MODELING LATENCY-HIDING 
 When a processor is executing a single-threaded workload, 
all cycles spent handling L2 misses stall the processor.  Recall 
from Figure 1, however, that with a multithreaded workload, the 
processor hides the memory-access latencies of individual threads 
by running the threads in parallel.  While a particular thread may 
be stalled on a cache miss, the processor could still be running, 
because there may be other threads that are not stalled. Therefore, 
only a fraction of all cycles spent handling L2 misses by 
individual threads stall the processor.  In this section we show 
how to model this latency-masking effect by using the knowledge 
of how much time each individual thread stalls, and figuring out 
how this stall time overlaps with the non-stall time of the other 
threads. Then, we are able to estimate the effect of L2 miss rate on 
processor IPC. 
  

4.1. The model  
 The key to understanding our representation of how the 
processor masks individual threads’ memory latencies is the 
notion of the probability that an individual thread is blocked on 
an L2 cache miss. We refer to it as thread-block probability. In 
Section 4.1.1, we explain how we derive it.  In Section 4.1.2, we 
show how to estimate the processor IPC based on it.  
 

4.1.1. Thread-block probability 
 We derive a thread-block probability by examining how the 
thread spends its cycles during execution (recall Eq.2). Ideal_CPI 

                                                 
2
 We did not use 253.perlbmk, because it is a multi-process benchmark, 

and we needed to have single-threaded benchmarks.  

gives us the number of cycles (per instruction) that the thread 
spends doing useful work. L2_CPI (Eq.4) gives us the number of 
cycles that a thread spends handling L2 cache misses. From this, 
we can determine what fraction of all cycles the thread spends 
blocked, handling L2 misses – this is the thread-block probability. 
 Although we derive the probability from per-instruction 
quantities, we are not concerned with the fact that an instruction 
may require varying number of cycles to complete depending on 
its type and that some instructions may not stall at all. Our 
objective is to derive a rough probability of a thread being in the 
blocked state: if we were to look at a window of thread’s time on a 
processor, what fraction of this time would the thread be blocked? 
The thread-blocked probability estimates this fraction.  
 While it is sufficient to use a thread’s ideal_CPI to derive 
thread-blocked probability for a single-threaded workload, for the 
multithreaded workload we need to use the ideal CPI of the 
multithreaded workload. When threads share the processor 
pipeline, they sometimes have to wait for their turn to use it. 
Therefore, each thread runs more slowly than it would had it had 
the pipeline all to itself, and the ideal_CPI of an individual thread 
increases, reflecting this competition. The ideal CPI of a 
multithreaded workload, ideal_CPI_mt, is defined as the CPI of a 
multithreaded workload that it achieves under no conflict- or 
capacity-misses in the L2. We estimate ideal_CPI_ind, the ideal 
CPI that an individual thread achieves when it shares the 
processor with the other threads as follows: 
 

MmtCPIidealindCPIideal *____ =    (5), 
 

where M is the number of thread hardware contexts on the 
processor.  To understand why this works, consider how threads 
share the pipeline on our simulated processor with four hardware 
contexts. The processor issues instructions from one thread at a 
time, switching between the threads on every cycle in a round-
robin fashion.  Therefore, for each cycle that a thread spends 
doing useful work, it has to spend three cycles waiting while other 
threads are using the processor. We reflect this by multiplying the 
ideal_CPI_mt by the number of thread contexts.  
 Ideal_CPI_ind gives us the number of cycles per instruction 
that each thread spends doing useful work in a multithreaded 
scenario. Knowing the L2 miss rate for the multi-threaded 
workload and assuming that all threads equally contribute to the 
overall miss rate, we can compute the thread-blocked probability 
for the multithreaded scenario (prob_blocked_ind):  
 

CPILindCPIideal

CPIL
indblockedprob

_2__

_2
__

+
=   (6),  

 

Note that in Eq.6 we use L2_CPI from Eq.4 without modification. 
If all threads equally contribute to the overall L2 miss rate, their 
individual misses-per-instruction are the same as the misses-per-
instruction for the entire processor: each thread handles 1/Mth of 
all misses, but it also executes only 1/Mth of all instructions. We 
discuss the validity of the assumption that all threads equally 
contribute to the overall miss rate in Section 4.2. 
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Next we show how to use prob_blocked_ind to estimate the 
processor IPC for a multithreaded workload.  
 

4.1.2. Modeling multithreaded IPC 
 When modeling how the multithreaded processor hides 
individual-thread memory latencies, we assume that all threads 
have equal probabilities of being blocked, prob_blocked_ind. We 
discuss how this assumption affects our model in Section 4.2. 
 If M is the total number of threads on a multithreaded 
processor, when executing a multithreaded workload where each 
thread periodically blocks on an L2 cache miss, the processor can 
be in one of the following M+1 states: 
 
(0) All M threads are blocked, none are running; 
(1) Exactly one thread is running – the rest are blocked; 
(2) Exactly two threads are running – the rest are blocked; 
… 
(M) All threads are running – none are blocked. 
 
In State M, the processor is running at IPC equal to ideal_IPC_mt 
(the inverse of ideal_CPI_mt). In State 0, the processor is running 
at IPC equal to zero: when all threads are blocked it is not 
completing any instructions. When some threads are running and 
some are blocked, the processor is running at some IPC that is less 
than ideal_IPC_mt – we will refer to this quantity as N_IPC, 
where N corresponds to the number of threads that are running. 
So, for example, on a machine with four threads, when exactly 
three threads are running and one is blocked, the processor is 
running at 3_IPC. We will return to N_IPC later in Section 
4.1.2.2.  
 Knowing the probability that an individual thread is 
blocked, and defining the corresponding probability that a thread 
is running (prob_running_ind) as: 
 

prob_running_ind = 1 – prob_blocked_ind, 
 

we can compute probabilities P that a processor is in any of the 
states described above as follows:  
 

iMi indblockedprobindrunningprob
i

M
iP −









= __*__*)( , 

 

where i is the number of threads that are running in this state. 
Then, we can compute the IPC of a multithreaded workload for a 
given L2 miss rate (IPC_mt) by multiplying the IPC achieved in 
each state by the probability of that state, and summing across all 
states, as follows: 
 

∑ == M
i

IPCiiPmtIPC
0

_*)(_    (7), 
  

Using the model described by Eq.7 requires knowing 
N_IPC, and we have a way of deriving it, which we describe in 
Section 4.1.2.2. However, first, we want to evaluate the technique 
for modeling latency-masking in isolation. Therefore, we are 
going to measure N_IPC, and use it in Eq.7. We describe the 

details next. 
  

4.1.2.1. Validating the model for latency-hiding 
To validate the technique for modeling latency-hiding, we 

use the five SPEC benchmarks included in our test set (listed in 
Section 3.2.3). We create a multithreaded workload by running 
four copies of the same benchmark, so we have a total of five 
multithreaded benchmark groups. (We present the experiments 
with non-identical threads in Section 4.2.) We run the benchmarks 
by fast-forwarding the simulation past the initialization phase, and 
then performing the detailed simulation for 400 million 
instructions.  

We obtain the ideal_IPC_mt (and ideal_CPI_mt) for each 
benchmark group by running it on a simulated processor 
configured with a large L2 cache (3MB). Since we have a total of 
four threads, we measure N_IPC for the values of one through 
three by running each benchmark group using one, two and three 
threads respectively.  

Then, we simulate each benchmark group on machines 
configured with three reduced cache sizes (48KB, 96KB and 
192KB) and measure the IPC and the L2 miss rate. We use the L2 
miss rate, the ideal_CPI_mt and N_IPC to compute the estimated 
IPC_mt using Eq. 5, 6, and 7. We compare the estimated IPC_mt 
to the actual IPC that was measured during the simulations with 
reduced caches. We show how the actual IPCs compare to the 
estimated in Figure 2.   

The estimated IPC_mt is on average within 3% of the actual 
IPC.  The median error is 2%, and the largest is 8%. Also note that 
the estimated IPC_mt follows the same trend as the actual IPC. 
For example, for twolf, the actual IPC increases by 30% with each 
larger cache size, and the estimated IPC_mt has the same 
property. This is also the case for the other benchmarks.  

These results suggest that our technique for modeling 
latency-hiding is accurate. The reason is that it is based on an 
intuitive representation of how individual threads’ memory 
latencies overlap with one another. This representation does not 
depend on processor architecture or workload characteristics. 
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Figure 2. Actual vs. predicted IPC (measured N_IPC substituted 
in Eq.7).  
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However, to use the model in practice, we need to be able to 
derive N_IPC. We explain how to do this next.  
 

4.1.2.2. Modeling N_IPC 
 We initially attempted to model N_IPC by scaling the ideal 
IPC in proportion to the fraction of a processor’s thread contexts 
that were occupied. For example, to compute 3_IPC, we 
multiplied the ideal IPC by ¾. Unfortunately, this simple 
approach consistently underestimates N_IPC. When some 
hardware contexts are left unused, the remaining threads are able 
to take advantage of the available resources, so this simple 
adjustment is not sufficient.  
 We observed that those thread groups whose ideal_IPC_mt 
is high (“fast threads”) are better able to take advantage of free 
resources than thread groups whose ideal_IPC_mt is low (“slow 
threads”). Therefore, fast threads achieve the N_IPC that is closer 
to their ideal IPC than do slow threads. Thus we model N_IPC as 
a function of ideal_IPC_mt and the number of running threads 
(N). Fitting a linear equation using regression analysis resulted 
with a good fit (R-squared of 90%) and produced the following 
formula describing the relationship among these quantities: 
 

mtIPCidealNIPCN __*94.0*2.069.0_ ++−=    (8) 
  

Figure 3 shows how the estimated IPC_mt compares to the 
actual IPC when, instead of using the measured N_IPC as in 
Figure 2, we used the N_IPC computed using equation 8. The 
estimations are still accurate – within 3% of the actual values. The 
median error is 3%, and the largest error is 8%.      

When we compared the measured N_IPC to the N_IPC 
computed using Eq.8, they were within 19% of each other on 
average (the median error was 10%).  Although this produces the 
impression that the model is not sensitive to N_IPC estimates, this 
is not precisely the case. The model is more sensitive to N_IPC 
estimates for large N (e.g., N=3), because the probability that 
many threads are running is usually larger than the probability 
that few threads are running. Our estimates of 3_IPC are actually 

much better than overall – within 5% of actual values on average, 
and with 10% being the largest error. When errors in 3_IPC 
estimates are larger, the overall IPC estimates also suffer 
significantly. 
 This approach to modeling N_IPC is architecture dependent. 
Eq.8 will not work across different processor architectures, 
because the extent to which the IPC is affected when some 
hardware contexts are left unused greatly depends on how the 
processor schedules instructions, how many functional units it has, 
etc. Therefore, the relationship between ideal_IPC and N_IPC 
needs to be derived for a given microprocessor. Modeling this 
dependency precisely is a difficult problem.  
 

4.2 Model evaluation 
 So far we have assumed that all threads running on a 
processor are executing identical workloads, and we have trained 
and tested our model using such workloads. It is not realistic to 
expect that real workloads would have such a property. Therefore, 
we now test our model using a heterogeneous workload. 

To create heterogeneous workloads, we randomly combined 
the SPEC CPU integer benchmarks into groups of four. While we 
validated the model using a large number of such heterogeneous 
groups, in this paper we show validation experiments from only a 
sample of such groups, for clarity of presentation and in 
consideration for space. The sample that we chose is 
representative of the errors in estimated IPCs for all the groups we 
validated. We made sure that each SPEC benchmark is 
represented in at least one group in the sample. We present 
validation experiments from the following groups: 
 

1. PVVV – 197.parser, 255.vortex, 175.vpr-place, 175.vpr-route 
2. VVVC – 255.vortex, 175.vpr-place, 175.vpr-route, 186.crafty, 
3. VVCG – 175.vpr-place, 175.vpr-route, 186.crafty, 176.gcc 
4. VCGG – 175.vpr-route, 186.crafty, 176.gcc, 164.gzip 
5. GMTV – 254.gap, 181.mcf, 300.twolf, 175.vpr-place 
6. BEGV – 256.bzip2, 252.eon-cook, 176.gcc, 255.vortex 
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Figure 3. Actual vs. predicted IPC (modeled N_IPC, instead of 
measured N_IPC, substituted into Eq.7)  
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Figure 4. Actual vs. predicted IPC for a heterogeneous workload. 
Predicted IPC is on average within 6% of the actual. 
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We use the same methodology for obtaining the estimated 
IPC_mt and the actual IPC as described in Section 4.1.2.1, and we 
compute N_IPC using Eq.8As Figure 4 demonstrates, 
heterogeneity does affect our model to a certain extent: errors in 
IPC estimates for heterogeneous workload are 6% on average; this 
is 3% greater than for the homogeneous workload.  The median 
error is 5%, and the largest is 14%. 

Heterogeneity in the workload may violate the following two 
assumptions that we made. The first is the assumption that all 
threads have equal individual probabilities of being blocked. 
When several threads share the cache, some threads may have 
worse cache locality than others; those threads could contribute 
more to the overall miss rate, and have greater probabilities of 
being blocked.  From the analysis of our data, we learned that 
when threads share the cache, they all experience the same 
individual miss rates. Therefore, the workload heterogeneity does 
not affect the assumption of equal blocked-probabilities. 

 The second assumption we made is that N_IPC for a given 
N is the same regardless of which N threads are running.  
However, when the workload is heterogeneous and all threads are 
different, the N_IPC for a given N does depend on which 
particular N threads are running, because each N-tuple of threads 
uses the processor resources in a unique way. For example, in 
benchmark group BEGV, the IPC when B, E, and G are running is 
not the same as the IPC when E, G, and V are running. Violation 
of this assumption is the cause for an increase in errors for 
heterogeneous workloads. 
  

5. MODELING MEMORY-BUS DELAY 
 While the focus of our study was to model how 
multithreaded processors hide individual threads' memory delays, 
in order to evaluate our model on a realistic machine 
configuration, we had to factor in the delays that threads 
experience due to competition for the memory bus. 
 Memory can be thought of as a server responding to 
requests from clients. Clients are processors. In a multithreaded 
processor, clients are hardware contexts, because each hardware 
context issues memory requests independently.  Although queuing 
theory is the canonical way to model such systems, we developed 
a simpler solution tailored to our specific problem. In Section 5.1, 
we explain how queuing theory could be used to model bandwidth 
delays and then in Section 5.2, we describe and evaluate our 
approach. 
 

5.1. Using queuing theory  
 A canonical way to model contention for memory bus is 
using closed queuing network models with finite population [23, 
24]. In this model, there is a finite population of customers that 
circulates within the system, and the arrival rate (and, 
consequently, the service time) depends on the number of 
customers that are already in the system. This model matches well 
to how the memory system operates: there are a fixed number of 
thread contexts, and the arrival rate of memory requests depends 

on how many threads are already waiting for the memory system. 
This arrival process is called state-dependent. Unfortunately, such 
queuing networks are difficult to solve – solutions usually do not 
have a closed form and involve iterative methods.   
 Matick et al have successfully used a simpler open-queue 
model to estimate memory-bus delays [18].  This model assumes 
that the arrival rate is independent of the state of the system. We 
attempted to use this model as well, and discovered that the 
independent arrival assumption is viable only if memory 
contention is low or moderate. When it is high, the model 
produced estimates for memory-bus delays that were sometimes 
off by as much as a factor of ten.  Since for us it was important to 
accurately estimate both small and large delays, this method was 
not appropriate.  

As an alternative, we developed a model that produces 
accurate estimates for a wide range of delays and has a closed-
form solution. 
 

5.2. Our approach 
 We represent our memory system as a server that answers 
requests for values stored in main memory. In our system, there 
are five concurrent streams of memory requests originating from 
four instruction streams and the write buffer (recall Section 3).  
We refer to these request originators as threads, and the number of 
request originators as NUM_THREADS. 
 Having sent a memory request, the thread spends some time 
waiting for the memory bus (memory-bus delay). Once the bus 
becomes available, the thread reserves it for a period of 
WIRE_TIME cycles (set to 80 in our simulator to correspond to 
the memory bandwidth of 1 GB/s) 3. Once the request has been 
serviced, the thread goes away and computes for a while until it 
needs to send another request. We call the combination of 
WIRE_TIME and compute time the request cycle window 
(REQUEST_CYCLE_WINDOW) – this is the number of cycles 
that passes between the point in time when a request begins being 
serviced and the arrival of the next request. Figure 5 illustrates 
this.   

The concept of REQUEST_CYCLE_WINDOW is at the 
heart of our memory-bus delay model, because the size of this 
window determines the intensity of competition for the memory 
bus.  The REQUEST_CYCLE_WINDOW expires upon the arrival 
of a new request to the memory system.  The shorter the window 
is, the more often it expires, the higher the request arrival rate, and 
the more intense the memory-bus competition. Since WIRE_TIME 
is fixed, the size of REQUEST_CYCLE_WINDOW is determined 
by the compute time – the time that the thread spends away from 
the memory bus. The greater this time the less the competition for 
the memory bus, and vice versa. We now show how to compute 
the size of REQUEST_CYCLE_WINDOW, and then explain how 

                                                 
3 This memory bandwidth is more limited than that on modern processors. 
When bandwidth is less limited, the memory-bus delays are usually small. 
We wanted to test the ability of our model to estimate both small and large 
delays, so we configured the memory bandwidth to be more limited than 
in a realistic configuration.  
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to model the memory-bus delay using it.   
REQUEST_CYCLE_WINDOW is equivalent to the number 

of cycles that pass between the arrivals of two subsequent 
memory requests from the same thread when there are no 
memory-bus delays (See Figure 5).  We can compute this quantity 
using the IPC model for infinite memory bandwidth (Eq.7).  
Using the number of misses per instruction and the estimated 
IPC_mt, we can compute the number of misses per cycle. The 
inverse of misses-per-cycle is the number of cycles between two 
subsequent misses (i.e. arrivals) – this is the 
REQUEST_CYCLE_WINDOW.  

We use the following equation to compute the number of 
misses per cycle (L2_MR_CC):  

 

THREADSNUM

mtIPCWMRLRMRL
CCMRL

_

_*)_2_2(
__2

+
=  (9),  

 

where L2_RMR and L2_WMR are the L2 read miss rate and L2 
write miss rate  (defined in Section 3) and IPC_mt is the IPC for 
the multithreaded processor (derived in equation 7).  We divide 
the quantity in the numerator by the number of threads in order to 
compute the number of misses per cycle for a single thread; as we 
explained in Section 4.2, the assumption that all threads send 
memory requests at the same rate holds even for heterogeneous 
workloads.   
    We use the following equation to compute the size of 
REQUEST_CYCLE_WINDOW:  
 

REQUEST_CYCLE_WINDOW = 1 / L2_MR_CC (10). 
 

Now, let us show how to model the memory bus delay using 
REQUEST_CYCLE_WINDOW. We model the memory-bus delay 
from the point of view of an individual thread, t0, and we assume 
that all threads experience the same delays.  
 We assume that if all other threads send their requests at the 
same non-bursty rate as t0, those threads' requests will arrive to 

the memory system sometime during t0's 
REQUEST_CYCLE_WINDOW.   As a result, the amount of time 
that t0 has to wait for the memory bus once its 
REQUEST_CYCLE_WINDOW expires depends on a) the size of 
REQUEST_CYCLE_WINDOW and b) at which position in this 
window the other threads’ requests arrive.  Intuitively, if the other 
threads’ requests arrive early in t0’s window, they may have time 
to finish before t0’s window expires (if the window is large 
enough). T0, then, will not have to wait for the memory bus when 
it sends its next request. If the other requests arrive late, on the 
other hand, then they will not finish before t0’s window expires, 
and t0 will need to wait.  

We divide the REQUEST_CYCLE_WINDOW into two 
portions: the top portion and the bottom portion, where the top 
portion corresponds to the early arrival of the other threads’ 
requests, and the bottom portion corresponds to the late arrival.  

We model the memory-bus delay by estimating the wait 
times for the top and bottom portions, computing the probabilities 
that the requests’ arrival falls into a particular portion, and then 
weighing the delay in each portion by its respective probability. 
Figure 6 illustrates how we divide the window into the portions 
and how we estimate the delays for each portion. We now 
describe this in detail.   

The top portion starts at the top of the window. If the 
window is large enough such that the other threads’ requests can 
be serviced before REQUEST_CYCLE_WINDOW expires, the top 
portion stretches until the latest point at which those requests must 
arrive so that they can free the wire before the window expires. 
Figure 6a) illustrates this case. If the other threads’ requests arrive 
in the interval of time covered by the top portion of the window, 
t0’s associated wait time will be zero.  

However, if the window is not large enough, then the top 
portion covers the stretch of the window when the wire is still 
reserved by t0’s memory request – this is the top interval of the 
window equal to WIRE_TIME (Figure 6b). In this case, t0 will 
need to wait for the duration of time equal to (WIRE_TIME * 
NUM_THREADS - REQUEST_CYCLE_WINDOW) once its next 
request arrives. Figure 6b) illustrates this.   

We compute the wait times associated with the top portion 
of the window using the following formula: 
 
WAIT_TOP =  MAX(0,  

WIRE_TIME * NUM_THREADS –
REQUEST_CYCLE_WINDOW)  (11). 

 
The bottom portion of the window is the part of the window 

not covered by the top portion. The minimum amount of wait for 
the bottom portion equals to WAIT_TOP (Eq.11), because the 
bottom portion commences where the top portion ends.  To 
understand what the maximum wait would be, consider Figure 6c. 
The maximum wait for the bottom portion occurs if the other 
threads’ requests arrive just before the 
REQUEST_CYCLE_WINDOW expires. The wait in this case is 
equal to the amount of time it takes to service those threads’ 
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Figure 5. The request cycle window. 
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requests, WIRE_TIME * (NUM_THREADS – 1). We summarize 
the minimum and the maximum wait times associated with the 
bottom portion below:  

 
MIN_WAIT_BOTTOM = WAIT_TOP 
 
MAX_WAIT_BOTTOM = WIRE_TIME * (NUM_THREADS – 1).  

 

The key distinction between the top and the bottom portions is 
that the wait time in the top portion is fixed (the exact wait time 
depends in the window size). The wait time in the bottom portion 
ranges between MIN_WAIT_BOTTOM and MAX_WAIT_BOTTOM. To 
understand this, consider Figure 6d.  We compute the wait time 
corresponding to the bottom portion as the average of the 
minimum and maximum wait times: 
 

2

____
_

BOTTOMWAITMAXBOTTOMWAITMIN
BOTTOMWAIT

+=

          (12) 
From our definitions of the top and bottom portions, the lengths of 
these portions can be easily computed: 
 

)_*___

;_(

_

TIMEWIRETHREADSNUMWINDOWCYCLEREQUEST

TIMEWIREMAX

portiontop

−

=
 

 
bottom _portion = REQUEST_CYCLE_WINDOW – top_portion 
 
And the probability of the requests arriving in a given portion is 
simply the fraction of the REQUEST_CYCLE_WINDOW that the 
portion occupies: 

WINDOWCYCLEREQUEST

portiontop
topatarriveP

__

_
)__( =  

WINDOWCYCLEREQUEST

portionbottom
bottomatarriveP

__

_
)__( =  

 
To compute the overall memory-bus delay per transaction 
(MEM_BUS_DELAY), we weight the wait times associated with 
the top and bottom portions by their respective probabilities:  
 

MEM_BUS_DELAY =  
 P(arrive_at_top) *  WAIT_TOP + 
 P(arrive_at_bottom) * WAIT_BOTTOM   (13). 
 

The quantity in Eq. 13 expresses the expected memory-bus delay 
per L2 miss transaction. In the next section we evaluate its 
accuracy. 
 

5.3. Evaluation and discussion 
 We used the heterogeneous workload described in Section 
4.2 to validate how well we can estimate memory-bus delays. 
Using Equation 13 we were able to estimate memory-bus delays 
to within 12% of the actual quantities, on average  (See Figure 7).  
The median error was 10%, and the largest was 25%.  

We made a simplifying assumption that all threads send 
memory requests at the same rate. While this holds for the four 
hardware contexts, as we explained in Section 4.2, the requests 
from the write buffer usually arrive at a different rate.  While we 
observed that for our workload this dissimilarity did not affect the 
accuracy of memory-bus delay estimates, we believe that this 
phenomenon should be investigated further, for a wider range of 
workloads.  

Another assumption that we made when describing how 
requests of the other threads arrive from the viewpoint of a 
particular thread is that those requests arrive in lockstep. We 
believe that this assumption does not hurt our estimates. By 
representing the hypothetical positioning of other threads’ request 
arrivals we tried to capture both the best and the worst cases.  
Lockstep arrival positively affects the wait time for the best case 
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Figure 6. Shows how the memory-bus wait time for t0 depends 
on how requests of the other four threads are positioned in its 
REQUEST_CYCLE_WINDOW.  
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and exacerbates the wait time for the worst case. Therefore, this 
assumption, in fact, helps us to define the two extremes. 

Although our model for memory-bus delays is simple, it 
works, because the basis for our approach is well-matched to the 
problem: we identify the best and the worst wait times that a 
thread may experience and assign rough probabilities to these wait 
times. We base those probabilities on the size of the 
REQUEST_CYCLE_WINDOW, which, as we explained in Section 
5.4 determines the magnitude of contention.  Based on this 
observation and the validation results, we believe that our model 
is robust against a wide range of workloads and input parameters. 
We also believe that this model can be used for other 
multithreaded architectures and in general for multiprocessor 
systems, because the underlying causes of memory contention are 
the same irrespective of processor architecture.  
 

6. PUTTING IT ALL TOGETHER 
In Section 4 we described how we model the latency-hiding 

effect of hardware multithreading.  In Section 5 we presented a 
model for memory-bus delay.  Now we put these two pieces 
together and validate the entire model.   

Eq.13 gives us the memory-bus delay per L2 miss 
transaction. To factor this delay into our IPC model (Eq.7), we 
augment the cost of handling the L2 miss, L2_MCOST, by 
MEM_BUS_DELAY. This changes Eq.4 as follows: 

 

)___2(

*)*_2_2(_2

DELAYBUSMEMMCOSTL

WMMWMRLRMRLCPIL

+
+=

   (14). 

 

We use this version of the equation to compute L2_CPI, which we 
substitute into Eq.6, and eventually into Eq.7 to estimate IPC_mt. 

To validate the accuracy of the estimated IPC_mt we use 
the same group of heterogeneous workloads described in Section 
4.2.  We run these benchmarks on a simulated system configured 
with memory bandwidth limited to 1 GB/s and measure the 
resulting IPC. Figure 8 shows how it compares to IPC_mt.  

On average, the estimated IPC_mt is within 13% of the 
actual.  The median error is 16%, and the largest error is 32%.  In 
all but one case, the direction of the error for a given workload is 
consistent across cache sizes: we either consistently overestimate 
or underestimate the IPC; the magnitude of error is usually 
consistent for a given workload. This means that our model is 
successful at predicting the general performance trend and the 
magnitude of the effect of cache miss rate on IPC even when the 
estimates are not precise.  

Our model is successful across a wide range of input 
parameters: it has worked for L2 miss ratios ranging from as low 
as 1% to as high as 46%, and has predicted memory-bus delays 
from as low as 82 cycles per transaction to as high as 238. The 
workload contained benchmarks with diverse instruction mixes 
and localities of reference, which is demonstrated by the range of 
ideal_IPC_mt: from a high of 0.96 (multithreaded bzip) to a low 
of 0.49 (multithreaded eon). The reason for the effectiveness of 
our model is tied to the abstractions that we used to model latency 
hiding and memory-bus delays.  We developed a technique to 
model latency-hiding in a way that is not dependent on the cache 
architecture or the workload. For memory-bus delay, we observed 
that the magnitude of contention is determined by how much time 
each thread spends away from the memory bus, and used the 
abstraction of REQUEST_CYCLE_WINDOW to represent the 
degree of contention. 

Because our model is based on the principles that are not 
tied to details of processor microarchitecture, we are confident 
that it will work for a variety of multithreaded processors. 
Verifying this is an area of future research. 

 

7. USING THE MODEL 
 In previous work we proposed an operating system 
scheduler tailored for multithreaded chip multiprocessors (CMT) 
– processors that have multiple multithreaded processor cores on a 
single chip [20]. We found that such a scheduler has the potential 
to reduce L2 miss ratios by 19-37% and improve processor IPC by 
27-45%. We are now working on implementing this scheduling 
algorithm, and we plan to use our IPC model in the scheduler.  
 The scheduler reduces L2 contention by employing a 
balance-set approach: it arranges threads in schedules, such that 
threads in the schedule produce low L2 miss rate when run 
together. The scheduler then assigns each schedule to run for a 
time slice.  

One challenge in implementing this algorithm is deciding 
how many threads should belong to a schedule. Ideally, it should 
be the same as the number of the available hardware contexts, 
because leaving contexts unused may poorly affect performance.  
However, scheduling too many threads may cause thrashing in the 
L2, and negatively affect processor IPC. There is a clear trade-off.   
 Our scheduler needs to decide (on-line) whether it pays to 
trade unused hardware contexts for better performance in the L2 
for a given workload. Our IPC model would aid it in making the 
decision. The scheduler would compute the L2 miss rates (as 
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described in the scheduling paper [20]) for various schedule sizes. 
Then, using our model, it would estimate the corresponding IPCs.  
It would choose the schedule size with the best estimated IPC. 
 We also plan to use our model to address fairness in the 
scheduler. The nature of the balance-set scheduling algorithm 
creates pressure to schedule cache-frugal threads more often than 
cache-greedy threads, trading-off fairness for performance. Our 
IPC model can serve to estimate the magnitude of performance 
gains for thread schedules with different levels of fairness, and 
help the scheduler decide how much fairness to give up. 
 

8. RELATED WORK 
 The techniques we used for modeling IPC for single-
threaded workloads were inspired by Denning's work on modeling 
the relationship of processor utilization and the performance of 
the virtual memory system [19].   Denning's study offers some 
basic approaches, such as using ideal IPC in the model. His model 
is high-level, it does not take into account details of the hardware 
and is not validated against real data.    
 Matick et al. describe a model for multi-processor IPC 
based on cache miss rates [18].  Their model of cache delays for 
single-threaded workloads uses approaches similar to ours.  The 
fundamental distinction of our work is that we model how a 
multithreaded processor hides individual threads’ memory 
latencies – this has not been addressed in Matick’s study or 
elsewhere.  
 

9. CONCLUSIONS 
 We presented a model for the relationship between the 
performance of on-chip caches and processor IPC for 
multithreaded processors. The fundamental challenge that we 
addressed in our work was to model how a multithreaded 
processor hides cache-related delays experienced by the threads.  
 We also presented a model for memory-bandwidth delays 
that uses a simple approach, but produces accurate estimates.  
 Our model has a closed-form solution and produces IPC 
estimates that are on average within 13% of actual quantities.  
Because the model is based on simple principles that do not 
depend on processor architecture, it works for a wide range of 
workloads and input parameters. We are optimistic that for this 
reason it will work for a variety of multithreaded processors, 
irrespective of the details of their microarchitecture.  
 By developing this model we have paved the way towards a 
better understanding of how the performance of multithreaded 
processors depends on the interactions between its components. 
Such an understanding will help designers make beneficial 
tradeoffs both in multithreaded hardware architectures and in the 
software that runs on these new systems.  
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