
Modeling the Effects of Memory
Hierarchy Performance on Throughput

of Multithreaded Processors
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Fedorova, Alexandra, Margo Seltzer, and Michael D. Smith. 2005.
Modeling the Effects of Memory Hierarchy Performance on
Throughput of Multithreaded Processors. Harvard Computer
Science Group Technical Report TR-15-05.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620494

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/154871355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Modeling%20the%20Effects%20of%20Memory%20Hierarchy%20Performance%20on%20Throughput%20of%20Multithreaded%20Processors&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8afb2f6af2bb35905a4f50aba361ab9d&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620494
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

� �������	��
������������������������ ��� ��!�"$#����%!'&(!'�)�*"
+,�%!'�-�.!/��&0
�1�32�
546�!'�87�.��9�7:�;�.�
� 7��<���=�'�!'�%&(���%�>+?!'���1�%���@�.!'�

A�BDCFE0G�H(IKJLGNMKC@I(O�JPO'QRG
S GRJUT1OWV�C�BYXPZ@C[J

G�H(I
S]_^a` G)C�Bcb6d.Vfe \ X `

g�hjiak�l�inm%l

o OpeWq0rsXPC[J�V ^[\ C@H ^ Cut,JPOprKq
v G)JUQRG)JLIxw�H \ Q1C@JPy \ Xnz

o G�eN{(J \ IKTpC�| S G�yUyLG ^a` r(y}C~XUX�y

Modeling the Effects of Memory Hierarchy Performance
On Throughput of Multithreaded Processors

Alexandra Fedorova†‡, Margo Seltzer‡, Michael D. Smith‡

†Sun Microsystems, ‡Harvard University

ABSTRACT
 Understanding the relationship between the performance of
the on-chip processor caches and the overall performance of the
processor is critical for both hardware design and software
program optimization. While this relationship is well understood
for conventional processors, it is not understood for new
multithreaded processors that hide a workload's memory latency
by executing instructions from several threads in parallel. In this
paper we present a model for estimating processor throughput as a
function of the cache hierarchy performance. Our model has a
closed-form solution, is robust against a range of workloads and
input parameters, and gives estimates of processor throughput that
are within 13% of measured values for heterogeneous workloads.
We demonstrate how this model can be used in an operating
system scheduler tailored for multithreaded processor systems.

1. INTRODUCTION
 In this study we develop an analytical model of the effects
of processor cache miss rates on the overall performance of a
multithreaded processor. Multithreaded (MT) processors are
designed to hide the effects of memory latency by running
multiple instruction streams in parallel [5-10]. An MT processor
has multiple thread contexts, and it interleaves execution of
instructions from different threads. As a result, if one thread
blocks on a memory access, other threads can make forward
progress. The motivation for this architecture is to improve
performance of an important class of modern memory-intensive
applications, such as web services, application servers, and on-
line transaction processing systems, that are notorious for causing
frequent processor stalls and have processor pipeline utilizations
of less than 20% [1, 2, 5, 21, 22]. While hardware multithreading
is not a new idea, the first commercial systems equipped with
multithreaded processors, such as Intel’s Hyper-threaded Pentium
4 [10] and IBM’s RS64 IV [29], have been made available only
recently. This architecture has quickly become popular: the
majority of new processors that are being released are
multithreaded. Even so, multithreaded processor architectures are
still evolving, and as they do their designs are becoming more
complex. IBM has recently released its first multithreaded chip
multiprocessor [25]; Sun Microsystems and Intel have plans to
release similar processors in the fall of 2005 [26, 27]. Our lack of
practical experience with multithreaded architectures suggests that
we do not yet have a complete understanding of how these
processors perform and how best to design them.

 Analytical modeling, along with simulation, is a valuable
tool in microarchitectural development and analysis. A model for
processor performance allows efficient exploration of the design
space. The amount of exploration available via simulation can be
limited, because accurate simulations are time-consuming;
analytical modeling does not have such limitations. Even though
analytical modeling is usually less accurate than detailed
simulation, it is useful for studies that explore how components in
the design interact with one another and for evaluating
hypothetical future designs where the lack of a design blueprint
makes complete accuracy impossible [28].
 In designing multithreaded processors, it is crucial to make
the right tradeoff between the chip real estate that is used for
cache and for thread hardware contexts. Having more hardware
contexts increases latency-hiding capabilities. On the other hand,
not having enough cache may cause memory latency to become so
high that multithreading will not be able to hide it. Our model
estimates the amount of latency that a multithreaded processor can
hide, depending on its cache size and the number of hardware
contexts, and can be used in studying the effects of such tradeoffs.
 Since hardware multithreading hides memory latency
software designers may need to place less emphasis on optimizing
their applications for high cache hit rates. It is, therefore,
necessary to develop new intuition for the kind of cache
performance that is acceptable for multithreaded processors.
Having the model for estimating the impact of cache miss rate on
processor performance aids in doing so.
 In addition to providing a valuable tool for design-space
exploration, in Section 7, we show how to use our model in the
implementation of a scheduling algorithm tailored for
multithreaded chip multiprocessors [20].
 Our model estimates processor throughput as a function of
cache hierarchy performance. As a metric for processor
throughput we use instructions per cycle (IPC). We chose this
metric because it is important for long-running throughput-
oriented workloads such as application servers and databases,
whose performance is often expressed as the sustained number of
requests per second – the quantity that is ultimately linked to
processor IPC. To capture the cache hierarchy performance, we
use cache miss rate – the number of cache misses per instruction.
Therefore, our model estimates processor IPC for a given cache
miss rate.
 The challenge in developing such a model for multithreaded
processors, which is fundamentally different from developing a

 2

similar model for conventional processors or multiprocessors, lies
in the fact that a multithreaded processor partially masks the
memory latency experienced by the threads (See Figure 1).
Modeling the extent of such masking is essential to producing an
accurate model, and we have developed a powerful technique for
doing this.
 Another challenge we address is modeling the effects of
memory bandwidth contention. When several threads issue
requests to main memory simultaneously, they compete for
memory bandwidth. A similar contention is present on
multiprocessor systems. Previously proposed modeling
techniques to address such contention were not appropriate for our
model because they either produced inaccurate estimates or were
too computationally expensive. We have developed a new
technique for modeling memory-bus delays, which produces
estimates that are on average within 12% of the measured values.
Because this technique targets our specific problem domain, it is
simple and has a closed-form solution.
 Our IPC model estimates processor IPC to within about
13% of the measured values and has a closed-form solution. In the
cases where the model produces errors, the errors are consistent in
magnitude and direction, which indicates that the model is
successful in predicting performance trends even when the actual
IPC cannot be predicted with precision. The strength of our
model comes from the fact that it is a function of how the
processor hides memory latency, which is independent of cache
architecture and workload characteristics. Because we developed
a powerful technique for modeling this effect, our model works
with a wide range of parameters and workloads.
 The rest of this paper is organized as follows: In Section 2

we describe the multithreaded processor whose behavior we
model, and the methodology. In Section 3 we introduce some
terminology and describe a base model for memory latency for
single-threaded workloads. In Section 4 we present our technique
for modeling how a multithreaded processor hides single-thread
memory latencies. In Section 5, we describe how we modeled
delays associated with competition for memory bandwidth. In
Section 6, we put together the pieces of our model, validate it and
discuss its strengths and weaknesses. In Section 7, we demonstrate
how our model can be used in practice. We discuss related work
in Section 8 and conclude in Section 9.

2. SYSTEM AND METHODOLOGY
2.1. Multithreaded Processor
 For this study, we collect data and perform validation
experiments on a simulated machine. In contrast to using a real
machine, this gives us freedom to experiment with a variety of
machine configurations (i.e., cache size, memory bandwidth). In
this section we describe the processor that we simulate and the
simulator itself.
 The architecture of our simulated multithreaded processor is
based on fine-grained multithreading (interleaving), proposed by
Laudon et al. [6]. The processor has several hardware thread
contexts, where each context consists of a set of registers and
other thread state. The processor interleaves execution of
instructions from the threads, switching between contexts on each
cycle in a round-robin fashion. When one or more threads are
blocked, the processor continues to switch among the remaining
available threads. If there is not a thread that is ready to issue an
instruction, the processor stalls, waiting for some thread to
become ready.
 We model a simple RISC pipeline with one set of functional
units (i.e., arithmetic logical unit, instruction fetch unit, etc.). We
decided to simulate a simple, classical RISC processor, as
opposed to a complex out-of-order processor, because we believe
that this is a viable architecture for future MT processors. A
simple pipeline occupies less space and allows for placing more
hardware contexts on a chip; a previous study showed that for
transaction-style workloads, pipeline complexity should be traded
off for increased number of hardware contexts [11]. Additionally,
we believe that the results of our study are applicable to a wide
range of multithreaded architectures, because, as we will show,
our model decouples the performance of the memory hierarchy
from the performance of the processor pipeline.
 For the purposes of validating our model, we use an MT
system simulator [12], built on top of the Simics simulator of the
UltraSPARC II® processor [13]. Simics can bootstrap the
simulated machine with the Solaris™ operating system and
standard Unix environment. All the simulations described in this
paper are execution-driven and include both user-level and OS
code.
 The simulator accurately simulates pipeline contention, the
L1 cache, bandwidth limits on crossbar connections between the

Single-threaded Multi-threaded

R

B

R

R

R

R

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

Time running - 20%
IPC = 0.2

Time running - 20% per thread
IPC = 0.8

R thread running B
thread blocked on
memory access

Figure 1. Each box denotes the state of the processor pipeline for a
single cycle. For a single-threaded processor, if a thread spends
20% of its time running and the remainder of its time blocked
handling cache misses, the processor is blocked 80% of the time
and completes only one instruction in five cycles, yielding IPC of
0.2. A multithreaded processor hides memory latency. Although
each thread spends 80% of the time in the blocked state, overall,
the processor is blocked only 20% of time, yielding IPC of 0.8

 3

L1 and L2 caches, the L2 cache, and bandwidth limits on the path
between the L2 cache and memory. The processor is configured
with four hardware contexts (this configuration has been shown to
perform best with our workload [6]), a write buffer, an 8KB L1
data cache, a 16KB L1 instruction cache (both 4-way set-
associative) and a unified 12-way set-associative write-back L2
cache, whose size we vary depending on the experiment. We
chose cache sizes to be similar to those used in the hyper-threaded
Pentium 4, a multithreaded processor that is commercially
available at the time of this writing [10].

2.2. Methodology
 In a previous study we found that multithreaded processors
are able to effectively hide latency from faults in the L1 cache,
however poor performance in the L2 can adversely affect
processor IPC [20]. This implies that variation in the L2 miss
rates produces greater variation of processor IPC than variation in
the L1 miss rates. In this study we model the effects of L2 miss
rates on processor IPC, because this way we are able to validate
our model for a wider range of IPCs. However, there is nothing in
our model that precludes it from being used for other levels of the
cache hierarchy, such as L1 or L3 caches.
 To develop and validate our model, we use the SPEC CPU
2000 benchmark suite. These benchmarks are appropriate for
studies of memory hierarchy, because this benchmark suite has
been improved from previous versions to include programs whose
memory footprints are much larger than traditional cache sizes
[17]. We experiment only with integer benchmarks, because our
simulator does not simulate contention for the floating-point unit.
To ensure that our model works for multiple workloads, we train
and test our model using distinct sets of benchmarks. To validate
that our model is robust against a range of input parameters, we
use several L2 cache sizes, ranging from an unrealistically small
48KB to a more realistic 192 KB. Development of our model
followed a three-step process: first we modeled the L2-miss
latency for a single-threaded workload. Then, to estimate the
effect of such latency for the multithreaded workload, we
developed a technique for estimating how a multithreaded
processor hides individual threads’ latencies. Next, so that we
could validate our model using a realistic machine configuration,
we developed a method to estimate delays associated with
contention for the memory-bus. We describe these three pieces of
our model in Sections 3, 4 and 5, respectively.

3. MODEL PRIMER
 We introduce our model by stating our assumptions and
demonstrating how we model L2-miss latencies for a single-
threaded workload. Our ultimate goal is to model how the
processor hides individual threads’ latencies, but as a prerequisite
we need to be able to estimate them.

3.1. Assumptions
 The performance of the L2 cache is only one factor that

affects processor IPC. Processor IPC is determined by a multitude
of other factors, such as the architecture of processor pipeline, the
instruction mix of the workload, and the performance in the L1
caches. Modeling the effects of these factors is outside the scope
of this work. Our goal is to study the effects of the L2
performance on IPC in an isolated fashion. In order to do this, we
assume the knowledge of the ideal IPC – the IPC that the
workload has when there are no capacity or conflict misses in the
L2. In other words, a workload experiences its ideal IPC when it
runs with an infinitely large L2 cache. Using this assumption is a
standard approach when modeling the effects of memory
hierarchy on the overall performance [18, 19].
 To develop our model, we assume that we can measure the
L2 read-miss rate and the L2 write-miss rate. The read-miss rate
includes both data and instruction misses. These quantities can be
measured by reading hardware performance counters usually
available on modern processors.

3.2 Single-threaded workload model
 We begin by modeling the L2-miss latency for a single-
threaded workload, so that later we could model how a
multithreaded processor hides such single-thread latencies. The
model estimates latency per instruction: how many cycles per
instruction a thread spends handling L2 misses.
 First let us introduce some definitions:

L2_CPI – Per-instruction L2-miss latency. For a given L2 miss
rate, the number of cycles per instruction that a thread is
blocked handling misses in the L2 cache.

Ideal_CPI – the inverse of ideal IPC (recall section 3.1);
CPI – cycles per instruction given some L2 miss rate;
L2_MR – Number of L2 misses per instruction – this includes the

read-miss rate and the write-miss rate.
L2_MCOST – the cost, in cycles, of handling each miss in the L2

cache. This is the cost of going to memory from the L2
cache1 (we set it to 120 cycles). In this section we assume
that the bandwidth between the L2 and main memory is
infinite, so there is no delay associated with waiting for the
memory bus.

L2_CPI depends on the L2 miss rate and the cost of each miss:

 MCOSTLMRLCPIL _2*_2_2 = (1)

We also observe that the thread’s CPI is comprised of its ideal CPI
and the CPI that is due to handling the misses in the L2:

 CPILCPIIdealCPI _2_ += (2)

1 If a workload is multithreaded, there is also a cost associated with
waiting for a cache line if it is in use when the thread accesses it. We
observed from our data that this cost does not have a high impact on
performance, so we disregard it altogether. Neither do we account for
communication costs associated with a cache consistency protocol. This
would be relevant for systems with multiple caches on the same level of
the memory hierarchy. A model for such costs has been described
elsewhere [18] and can be easily incorporated into our model if needed.

 4

 In the simplest case, we use equation (1) to compute the L2-
miss latency given a particular L2 cache miss rate. This approach
works if we have a write-though cache and a processor that is not
equipped with a write buffer. However, we model a more
sophisticated system with a write-back cache and a write buffer,
where this approach does not work for the following reasons:
Writing in the cache creates dirty cache lines that need to be
written back: this may increase the cost a of a cache miss. Write
buffer absorbs the write misses, making them non-blocking.
Therefore, a write miss does not necessarily stall the thread. We
explain how we account for the effects of write-backs and the
write buffer in the following sub-sections.

3.2.1. Effect of write-back transactions
 A write-back transaction occurs whenever the cache needs
to evict a dirty cache line. For example, if a read transaction
misses in the cache and the cache line that it needs to use is dirty,
this line will be written to memory before it is used. In this case, a
read transaction has to pay an additional penalty of L2_MCOST.

Therefore, in order to fully account for all memory-access
penalties, the L2 miss rate must include write-back transactions.
We assume that the rate of write-back transactions is known to us,
i.e., we can measure it by reading hardware counters. However,
for situations when the write-back rate cannot be directly
measured, we developed a way to estimate it.

Intuitively, the write back rate depends on the write miss
rate, because it is the write misses that create dirty cache lines.
We used linear regression analysis to analyze the relationship
between the write-miss rate and the write-back rate, and obtained
a linear model with a good fit. Using this model, it is possible to
estimate the write-back rate of a workload to within 22% of actual
values.

In the rest of this paper, when we talk about the L2 miss
rate, we include the write-back rate, thereby accounting for all
cache transactions that result in memory-access penalty.

As will become evident in the next section, for our model
we need to distinguish between the read miss rate and the write
miss rate. Therefore, we need to know which fraction of the write-
back rate should be included in the read-miss rate, and which
should be included in the write-miss rate. As one could expect, it
turns out that this fraction is proportional to the fraction that the
read- or write- miss rate contributes to the overall miss rate. For
example, if read misses constitute 60% of all misses, then about
60% of all write-backs are triggered by read-miss transactions,
and so 60% of the write-back rate should be included in the read-
miss rate.

3.2.2. Write buffer effects
 A write buffer cushions the effect of write misses: when a
thread performs a write, the value is placed into the buffer, and
the transaction completes immediately. The written values are
propagated through the memory hierarchy asynchronously,
without stalling the thread. The only time a write can stall the
thread is when the write buffer becomes full – in this case the

thread waits until some space becomes available in the write
buffer.
 In our simulated system, we model a write buffer with eight
double-word entries. The write buffer is shared among threads that
run on the same processor and is positioned above the first-level
cache hierarchy. Our first-level cache is non-write-allocate: it does
not allocate space in the cache in the event of a write miss.
Therefore, all writes from the write buffer go directly to the L2
cache. As a result, the L2 performance affects the likelihood of
the write buffer stalling the processor.
 Queuing theory provides a natural approach to modeling the
effect of a write buffer: a write buffer can be modeled as a server,
and threads that send write requests as customers. Using a closed-
network queuing model with limited buffer size, it is possible to
estimate the delay associated with the buffer filling up. However,
because solving such models is computationally expensive [18,
23, 24] (and we wanted our model to be suitable for on-line
deployment), and because our model showed little sensitivity to
this effect, we decided to use the following simplified approach.
 We estimate the fraction of L2 write misses that are not
absorbed by the write buffer and eventually stall the processor.
This quantity depends on the write miss rate that a workload
generates: the more writes that miss in the cache the longer it
takes for the write buffer to propagate the writes and the more
likely it is to fill up.
 For our simulated architecture, if a workload has a writes-
per-cycle rate of roughly 6,000 per million cycles or greater, about
90% of the L2 write misses stall the processor. At any rate less
than that – only about 5% of L2 write misses stall the processor.
We can use these numbers to augment Eq.1 as follows.
1. Split the L2 miss rate (L2_MR) into two parts: L2 read miss

rate (L2_RMR) and L2 write miss rate (L2_WMR). The read
miss rate includes both data reads and instruction fetches.
Equation 2 now becomes:

MCOSTLWMRLRMRLCPIL _2*)_2_2(_2 += (3)

2. For workloads whose writes-per-cycle rate is above 6,000 per
million cycles, multiply L2_WMR by 0.9 – to reflect that for
such workloads about 90% of L2 write misses stall the
processor. Similarly, for workloads whose writes-per-cycle
rate is lower, multiply L2_WMR by 0.05. Let us call this
multiplier WMM – the write miss multiplier. Equation 3 now
becomes:

MCOSTLWMMWMRLRMRLCPIL _2*)*_2_2(_2 +=
 (4)

 Our approach to modeling the effect of write misses is
architecture-dependent. In order to derive the WMM coefficient
for a particular architecture it is necessary to characterize the
effect of write miss rate on the write buffer on that architecture. In
order to develop an architecture-independent method a more
general approach needs to be used. Since accurately modeling
this effect was not critical to the overall accuracy of our model,

 5

and was not the focus of this study, our approach suffices.

3.2.3. Evaluation
 To train and test our model we separated the SPEC CPU
2000 integer benchmark suite in two groups2. The training set
contained 164.gzip, 175.vpr-place, 175.vpr-route, 176.gcc,
186.crafty, 197.parser, and 255.vortex. The test set contained
181.mcf, 252.eon-cook, 254,gap, 256.bzip2 and 300.twolf.
 To obtain ideal_CPI for these benchmarks, we simulated
each one on a machine configured with a large L2 cache (3 MB),
and measured the resulting CPI. (To perform a simulation, we
fast-forward the execution past the initialization phase, and then
perform a detailed measured simulation for 100 million
instructions.)

To evaluate the model for single-thread L2-miss latency, we
simulated the benchmarks in the test set on a machine with
reduced L2 cache sizes (48KB, 96KB, 192KB), measured the CPI
and the L2 miss rate. We use the L2 miss rate and the ideal_CPI
to estimate the CPI using Eq.2 and 4. Our estimates were within
1% of the CPI measured during the simulation. Such high
accuracy is not surprising because we model a simple and well-
understood behavior using straightforward techniques. In the next
section we explain how we tackled a more complicated problem.

4. MODELING LATENCY-HIDING
 When a processor is executing a single-threaded workload,
all cycles spent handling L2 misses stall the processor. Recall
from Figure 1, however, that with a multithreaded workload, the
processor hides the memory-access latencies of individual threads
by running the threads in parallel. While a particular thread may
be stalled on a cache miss, the processor could still be running,
because there may be other threads that are not stalled. Therefore,
only a fraction of all cycles spent handling L2 misses by
individual threads stall the processor. In this section we show
how to model this latency-masking effect by using the knowledge
of how much time each individual thread stalls, and figuring out
how this stall time overlaps with the non-stall time of the other
threads. Then, we are able to estimate the effect of L2 miss rate on
processor IPC.

4.1. The model
 The key to understanding our representation of how the
processor masks individual threads’ memory latencies is the
notion of the probability that an individual thread is blocked on
an L2 cache miss. We refer to it as thread-block probability. In
Section 4.1.1, we explain how we derive it. In Section 4.1.2, we
show how to estimate the processor IPC based on it.

4.1.1. Thread-block probability
 We derive a thread-block probability by examining how the
thread spends its cycles during execution (recall Eq.2). Ideal_CPI

2
 We did not use 253.perlbmk, because it is a multi-process benchmark,

and we needed to have single-threaded benchmarks.

gives us the number of cycles (per instruction) that the thread
spends doing useful work. L2_CPI (Eq.4) gives us the number of
cycles that a thread spends handling L2 cache misses. From this,
we can determine what fraction of all cycles the thread spends
blocked, handling L2 misses – this is the thread-block probability.
 Although we derive the probability from per-instruction
quantities, we are not concerned with the fact that an instruction
may require varying number of cycles to complete depending on
its type and that some instructions may not stall at all. Our
objective is to derive a rough probability of a thread being in the
blocked state: if we were to look at a window of thread’s time on a
processor, what fraction of this time would the thread be blocked?
The thread-blocked probability estimates this fraction.
 While it is sufficient to use a thread’s ideal_CPI to derive
thread-blocked probability for a single-threaded workload, for the
multithreaded workload we need to use the ideal CPI of the
multithreaded workload. When threads share the processor
pipeline, they sometimes have to wait for their turn to use it.
Therefore, each thread runs more slowly than it would had it had
the pipeline all to itself, and the ideal_CPI of an individual thread
increases, reflecting this competition. The ideal CPI of a
multithreaded workload, ideal_CPI_mt, is defined as the CPI of a
multithreaded workload that it achieves under no conflict- or
capacity-misses in the L2. We estimate ideal_CPI_ind, the ideal
CPI that an individual thread achieves when it shares the
processor with the other threads as follows:

MmtCPIidealindCPIideal *____ = (5),

where M is the number of thread hardware contexts on the
processor. To understand why this works, consider how threads
share the pipeline on our simulated processor with four hardware
contexts. The processor issues instructions from one thread at a
time, switching between the threads on every cycle in a round-
robin fashion. Therefore, for each cycle that a thread spends
doing useful work, it has to spend three cycles waiting while other
threads are using the processor. We reflect this by multiplying the
ideal_CPI_mt by the number of thread contexts.
 Ideal_CPI_ind gives us the number of cycles per instruction
that each thread spends doing useful work in a multithreaded
scenario. Knowing the L2 miss rate for the multi-threaded
workload and assuming that all threads equally contribute to the
overall miss rate, we can compute the thread-blocked probability
for the multithreaded scenario (prob_blocked_ind):

CPILindCPIideal

CPIL
indblockedprob

_2__

_2
__

+
= (6),

Note that in Eq.6 we use L2_CPI from Eq.4 without modification.
If all threads equally contribute to the overall L2 miss rate, their
individual misses-per-instruction are the same as the misses-per-
instruction for the entire processor: each thread handles 1/Mth of
all misses, but it also executes only 1/Mth of all instructions. We
discuss the validity of the assumption that all threads equally
contribute to the overall miss rate in Section 4.2.

 6

Next we show how to use prob_blocked_ind to estimate the
processor IPC for a multithreaded workload.

4.1.2. Modeling multithreaded IPC
 When modeling how the multithreaded processor hides
individual-thread memory latencies, we assume that all threads
have equal probabilities of being blocked, prob_blocked_ind. We
discuss how this assumption affects our model in Section 4.2.
 If M is the total number of threads on a multithreaded
processor, when executing a multithreaded workload where each
thread periodically blocks on an L2 cache miss, the processor can
be in one of the following M+1 states:

(0) All M threads are blocked, none are running;
(1) Exactly one thread is running – the rest are blocked;
(2) Exactly two threads are running – the rest are blocked;
…
(M) All threads are running – none are blocked.

In State M, the processor is running at IPC equal to ideal_IPC_mt
(the inverse of ideal_CPI_mt). In State 0, the processor is running
at IPC equal to zero: when all threads are blocked it is not
completing any instructions. When some threads are running and
some are blocked, the processor is running at some IPC that is less
than ideal_IPC_mt – we will refer to this quantity as N_IPC,
where N corresponds to the number of threads that are running.
So, for example, on a machine with four threads, when exactly
three threads are running and one is blocked, the processor is
running at 3_IPC. We will return to N_IPC later in Section
4.1.2.2.
 Knowing the probability that an individual thread is
blocked, and defining the corresponding probability that a thread
is running (prob_running_ind) as:

prob_running_ind = 1 – prob_blocked_ind,

we can compute probabilities P that a processor is in any of the
states described above as follows:

iMi indblockedprobindrunningprob
i

M
iP −

= __*__*)(,

where i is the number of threads that are running in this state.
Then, we can compute the IPC of a multithreaded workload for a
given L2 miss rate (IPC_mt) by multiplying the IPC achieved in
each state by the probability of that state, and summing across all
states, as follows:

∑ == M
i

IPCiiPmtIPC
0

*)((7),

Using the model described by Eq.7 requires knowing
N_IPC, and we have a way of deriving it, which we describe in
Section 4.1.2.2. However, first, we want to evaluate the technique
for modeling latency-masking in isolation. Therefore, we are
going to measure N_IPC, and use it in Eq.7. We describe the

details next.

4.1.2.1. Validating the model for latency-hiding
To validate the technique for modeling latency-hiding, we

use the five SPEC benchmarks included in our test set (listed in
Section 3.2.3). We create a multithreaded workload by running
four copies of the same benchmark, so we have a total of five
multithreaded benchmark groups. (We present the experiments
with non-identical threads in Section 4.2.) We run the benchmarks
by fast-forwarding the simulation past the initialization phase, and
then performing the detailed simulation for 400 million
instructions.

We obtain the ideal_IPC_mt (and ideal_CPI_mt) for each
benchmark group by running it on a simulated processor
configured with a large L2 cache (3MB). Since we have a total of
four threads, we measure N_IPC for the values of one through
three by running each benchmark group using one, two and three
threads respectively.

Then, we simulate each benchmark group on machines
configured with three reduced cache sizes (48KB, 96KB and
192KB) and measure the IPC and the L2 miss rate. We use the L2
miss rate, the ideal_CPI_mt and N_IPC to compute the estimated
IPC_mt using Eq. 5, 6, and 7. We compare the estimated IPC_mt
to the actual IPC that was measured during the simulations with
reduced caches. We show how the actual IPCs compare to the
estimated in Figure 2.

The estimated IPC_mt is on average within 3% of the actual
IPC. The median error is 2%, and the largest is 8%. Also note that
the estimated IPC_mt follows the same trend as the actual IPC.
For example, for twolf, the actual IPC increases by 30% with each
larger cache size, and the estimated IPC_mt has the same
property. This is also the case for the other benchmarks.

These results suggest that our technique for modeling
latency-hiding is accurate. The reason is that it is based on an
intuitive representation of how individual threads’ memory
latencies overlap with one another. This representation does not
depend on processor architecture or workload characteristics.

0

0.2

0.4

0.6

0.8

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 cache size (KB)

IP
C

Actual Predicted

bzip eon gap mcf tw olf

Figure 2. Actual vs. predicted IPC (measured N_IPC substituted
in Eq.7).

 7

However, to use the model in practice, we need to be able to
derive N_IPC. We explain how to do this next.

4.1.2.2. Modeling N_IPC
 We initially attempted to model N_IPC by scaling the ideal
IPC in proportion to the fraction of a processor’s thread contexts
that were occupied. For example, to compute 3_IPC, we
multiplied the ideal IPC by ¾. Unfortunately, this simple
approach consistently underestimates N_IPC. When some
hardware contexts are left unused, the remaining threads are able
to take advantage of the available resources, so this simple
adjustment is not sufficient.
 We observed that those thread groups whose ideal_IPC_mt
is high (“fast threads”) are better able to take advantage of free
resources than thread groups whose ideal_IPC_mt is low (“slow
threads”). Therefore, fast threads achieve the N_IPC that is closer
to their ideal IPC than do slow threads. Thus we model N_IPC as
a function of ideal_IPC_mt and the number of running threads
(N). Fitting a linear equation using regression analysis resulted
with a good fit (R-squared of 90%) and produced the following
formula describing the relationship among these quantities:

mtIPCidealNIPCN __*94.0*2.069.0_ ++−= (8)

Figure 3 shows how the estimated IPC_mt compares to the
actual IPC when, instead of using the measured N_IPC as in
Figure 2, we used the N_IPC computed using equation 8. The
estimations are still accurate – within 3% of the actual values. The
median error is 3%, and the largest error is 8%.

When we compared the measured N_IPC to the N_IPC
computed using Eq.8, they were within 19% of each other on
average (the median error was 10%). Although this produces the
impression that the model is not sensitive to N_IPC estimates, this
is not precisely the case. The model is more sensitive to N_IPC
estimates for large N (e.g., N=3), because the probability that
many threads are running is usually larger than the probability
that few threads are running. Our estimates of 3_IPC are actually

much better than overall – within 5% of actual values on average,
and with 10% being the largest error. When errors in 3_IPC
estimates are larger, the overall IPC estimates also suffer
significantly.
 This approach to modeling N_IPC is architecture dependent.
Eq.8 will not work across different processor architectures,
because the extent to which the IPC is affected when some
hardware contexts are left unused greatly depends on how the
processor schedules instructions, how many functional units it has,
etc. Therefore, the relationship between ideal_IPC and N_IPC
needs to be derived for a given microprocessor. Modeling this
dependency precisely is a difficult problem.

4.2 Model evaluation
 So far we have assumed that all threads running on a
processor are executing identical workloads, and we have trained
and tested our model using such workloads. It is not realistic to
expect that real workloads would have such a property. Therefore,
we now test our model using a heterogeneous workload.

To create heterogeneous workloads, we randomly combined
the SPEC CPU integer benchmarks into groups of four. While we
validated the model using a large number of such heterogeneous
groups, in this paper we show validation experiments from only a
sample of such groups, for clarity of presentation and in
consideration for space. The sample that we chose is
representative of the errors in estimated IPCs for all the groups we
validated. We made sure that each SPEC benchmark is
represented in at least one group in the sample. We present
validation experiments from the following groups:

1. PVVV – 197.parser, 255.vortex, 175.vpr-place, 175.vpr-route
2. VVVC – 255.vortex, 175.vpr-place, 175.vpr-route, 186.crafty,
3. VVCG – 175.vpr-place, 175.vpr-route, 186.crafty, 176.gcc
4. VCGG – 175.vpr-route, 186.crafty, 176.gcc, 164.gzip
5. GMTV – 254.gap, 181.mcf, 300.twolf, 175.vpr-place
6. BEGV – 256.bzip2, 252.eon-cook, 176.gcc, 255.vortex

0

0.2

0.4

0.6

0.8

1

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 cache size (KB)

IP
C

Actual Predicted

bzip eon gap mcf tw olf

Figure 3. Actual vs. predicted IPC (modeled N_IPC, instead of
measured N_IPC, substituted into Eq.7)

0.0

0.2

0.4

0.6

0.8

1.0

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 cache size (KB)

IP
C

Actual Predicted

PVVV VVVC VVCG VCGG GMTV BEGV

Figure 4. Actual vs. predicted IPC for a heterogeneous workload.
Predicted IPC is on average within 6% of the actual.

 8

We use the same methodology for obtaining the estimated
IPC_mt and the actual IPC as described in Section 4.1.2.1, and we
compute N_IPC using Eq.8As Figure 4 demonstrates,
heterogeneity does affect our model to a certain extent: errors in
IPC estimates for heterogeneous workload are 6% on average; this
is 3% greater than for the homogeneous workload. The median
error is 5%, and the largest is 14%.

Heterogeneity in the workload may violate the following two
assumptions that we made. The first is the assumption that all
threads have equal individual probabilities of being blocked.
When several threads share the cache, some threads may have
worse cache locality than others; those threads could contribute
more to the overall miss rate, and have greater probabilities of
being blocked. From the analysis of our data, we learned that
when threads share the cache, they all experience the same
individual miss rates. Therefore, the workload heterogeneity does
not affect the assumption of equal blocked-probabilities.

 The second assumption we made is that N_IPC for a given
N is the same regardless of which N threads are running.
However, when the workload is heterogeneous and all threads are
different, the N_IPC for a given N does depend on which
particular N threads are running, because each N-tuple of threads
uses the processor resources in a unique way. For example, in
benchmark group BEGV, the IPC when B, E, and G are running is
not the same as the IPC when E, G, and V are running. Violation
of this assumption is the cause for an increase in errors for
heterogeneous workloads.

5. MODELING MEMORY-BUS DELAY
 While the focus of our study was to model how
multithreaded processors hide individual threads' memory delays,
in order to evaluate our model on a realistic machine
configuration, we had to factor in the delays that threads
experience due to competition for the memory bus.
 Memory can be thought of as a server responding to
requests from clients. Clients are processors. In a multithreaded
processor, clients are hardware contexts, because each hardware
context issues memory requests independently. Although queuing
theory is the canonical way to model such systems, we developed
a simpler solution tailored to our specific problem. In Section 5.1,
we explain how queuing theory could be used to model bandwidth
delays and then in Section 5.2, we describe and evaluate our
approach.

5.1. Using queuing theory
 A canonical way to model contention for memory bus is
using closed queuing network models with finite population [23,
24]. In this model, there is a finite population of customers that
circulates within the system, and the arrival rate (and,
consequently, the service time) depends on the number of
customers that are already in the system. This model matches well
to how the memory system operates: there are a fixed number of
thread contexts, and the arrival rate of memory requests depends

on how many threads are already waiting for the memory system.
This arrival process is called state-dependent. Unfortunately, such
queuing networks are difficult to solve – solutions usually do not
have a closed form and involve iterative methods.
 Matick et al have successfully used a simpler open-queue
model to estimate memory-bus delays [18]. This model assumes
that the arrival rate is independent of the state of the system. We
attempted to use this model as well, and discovered that the
independent arrival assumption is viable only if memory
contention is low or moderate. When it is high, the model
produced estimates for memory-bus delays that were sometimes
off by as much as a factor of ten. Since for us it was important to
accurately estimate both small and large delays, this method was
not appropriate.

As an alternative, we developed a model that produces
accurate estimates for a wide range of delays and has a closed-
form solution.

5.2. Our approach
 We represent our memory system as a server that answers
requests for values stored in main memory. In our system, there
are five concurrent streams of memory requests originating from
four instruction streams and the write buffer (recall Section 3).
We refer to these request originators as threads, and the number of
request originators as NUM_THREADS.
 Having sent a memory request, the thread spends some time
waiting for the memory bus (memory-bus delay). Once the bus
becomes available, the thread reserves it for a period of
WIRE_TIME cycles (set to 80 in our simulator to correspond to
the memory bandwidth of 1 GB/s) 3. Once the request has been
serviced, the thread goes away and computes for a while until it
needs to send another request. We call the combination of
WIRE_TIME and compute time the request cycle window
(REQUEST_CYCLE_WINDOW) – this is the number of cycles
that passes between the point in time when a request begins being
serviced and the arrival of the next request. Figure 5 illustrates
this.

The concept of REQUEST_CYCLE_WINDOW is at the
heart of our memory-bus delay model, because the size of this
window determines the intensity of competition for the memory
bus. The REQUEST_CYCLE_WINDOW expires upon the arrival
of a new request to the memory system. The shorter the window
is, the more often it expires, the higher the request arrival rate, and
the more intense the memory-bus competition. Since WIRE_TIME
is fixed, the size of REQUEST_CYCLE_WINDOW is determined
by the compute time – the time that the thread spends away from
the memory bus. The greater this time the less the competition for
the memory bus, and vice versa. We now show how to compute
the size of REQUEST_CYCLE_WINDOW, and then explain how

3 This memory bandwidth is more limited than that on modern processors.
When bandwidth is less limited, the memory-bus delays are usually small.
We wanted to test the ability of our model to estimate both small and large
delays, so we configured the memory bandwidth to be more limited than
in a realistic configuration.

 9

to model the memory-bus delay using it.
REQUEST_CYCLE_WINDOW is equivalent to the number

of cycles that pass between the arrivals of two subsequent
memory requests from the same thread when there are no
memory-bus delays (See Figure 5). We can compute this quantity
using the IPC model for infinite memory bandwidth (Eq.7).
Using the number of misses per instruction and the estimated
IPC_mt, we can compute the number of misses per cycle. The
inverse of misses-per-cycle is the number of cycles between two
subsequent misses (i.e. arrivals) – this is the
REQUEST_CYCLE_WINDOW.

We use the following equation to compute the number of
misses per cycle (L2_MR_CC):

THREADSNUM

mtIPCWMRLRMRL
CCMRL

_

_*)_2_2(
__2

+
= (9),

where L2_RMR and L2_WMR are the L2 read miss rate and L2
write miss rate (defined in Section 3) and IPC_mt is the IPC for
the multithreaded processor (derived in equation 7). We divide
the quantity in the numerator by the number of threads in order to
compute the number of misses per cycle for a single thread; as we
explained in Section 4.2, the assumption that all threads send
memory requests at the same rate holds even for heterogeneous
workloads.
 We use the following equation to compute the size of
REQUEST_CYCLE_WINDOW:

REQUEST_CYCLE_WINDOW = 1 / L2_MR_CC (10).

Now, let us show how to model the memory bus delay using
REQUEST_CYCLE_WINDOW. We model the memory-bus delay
from the point of view of an individual thread, t0, and we assume
that all threads experience the same delays.
 We assume that if all other threads send their requests at the
same non-bursty rate as t0, those threads' requests will arrive to

the memory system sometime during t0's
REQUEST_CYCLE_WINDOW. As a result, the amount of time
that t0 has to wait for the memory bus once its
REQUEST_CYCLE_WINDOW expires depends on a) the size of
REQUEST_CYCLE_WINDOW and b) at which position in this
window the other threads’ requests arrive. Intuitively, if the other
threads’ requests arrive early in t0’s window, they may have time
to finish before t0’s window expires (if the window is large
enough). T0, then, will not have to wait for the memory bus when
it sends its next request. If the other requests arrive late, on the
other hand, then they will not finish before t0’s window expires,
and t0 will need to wait.

We divide the REQUEST_CYCLE_WINDOW into two
portions: the top portion and the bottom portion, where the top
portion corresponds to the early arrival of the other threads’
requests, and the bottom portion corresponds to the late arrival.

We model the memory-bus delay by estimating the wait
times for the top and bottom portions, computing the probabilities
that the requests’ arrival falls into a particular portion, and then
weighing the delay in each portion by its respective probability.
Figure 6 illustrates how we divide the window into the portions
and how we estimate the delays for each portion. We now
describe this in detail.

The top portion starts at the top of the window. If the
window is large enough such that the other threads’ requests can
be serviced before REQUEST_CYCLE_WINDOW expires, the top
portion stretches until the latest point at which those requests must
arrive so that they can free the wire before the window expires.
Figure 6a) illustrates this case. If the other threads’ requests arrive
in the interval of time covered by the top portion of the window,
t0’s associated wait time will be zero.

However, if the window is not large enough, then the top
portion covers the stretch of the window when the wire is still
reserved by t0’s memory request – this is the top interval of the
window equal to WIRE_TIME (Figure 6b). In this case, t0 will
need to wait for the duration of time equal to (WIRE_TIME *
NUM_THREADS - REQUEST_CYCLE_WINDOW) once its next
request arrives. Figure 6b) illustrates this.

We compute the wait times associated with the top portion
of the window using the following formula:

WAIT_TOP = MAX(0,

WIRE_TIME * NUM_THREADS –
REQUEST_CYCLE_WINDOW) (11).

The bottom portion of the window is the part of the window

not covered by the top portion. The minimum amount of wait for
the bottom portion equals to WAIT_TOP (Eq.11), because the
bottom portion commences where the top portion ends. To
understand what the maximum wait would be, consider Figure 6c.
The maximum wait for the bottom portion occurs if the other
threads’ requests arrive just before the
REQUEST_CYCLE_WINDOW expires. The wait in this case is
equal to the amount of time it takes to service those threads’

request
arrival

R
E

Q
U

E
S

T_
C

YC
LE

_W
IN

D
O

W

request
arrival

W
IR

E
_

T
IM

E

m
em

o
ry

bu
s

de
la

y

co
m

p
ut

e
 ti

m
e

request
service
begins

Figure 5. The request cycle window.

 10

requests, WIRE_TIME * (NUM_THREADS – 1). We summarize
the minimum and the maximum wait times associated with the
bottom portion below:

MIN_WAIT_BOTTOM = WAIT_TOP

MAX_WAIT_BOTTOM = WIRE_TIME * (NUM_THREADS – 1).

The key distinction between the top and the bottom portions is
that the wait time in the top portion is fixed (the exact wait time
depends in the window size). The wait time in the bottom portion
ranges between MIN_WAIT_BOTTOM and MAX_WAIT_BOTTOM. To
understand this, consider Figure 6d. We compute the wait time
corresponding to the bottom portion as the average of the
minimum and maximum wait times:

2

_

BOTTOMWAITMAXBOTTOMWAITMIN
BOTTOMWAIT

+=

 (12)
From our definitions of the top and bottom portions, the lengths of
these portions can be easily computed:

)_*___

;_(

_

TIMEWIRETHREADSNUMWINDOWCYCLEREQUEST

TIMEWIREMAX

portiontop

−

=

bottom _portion = REQUEST_CYCLE_WINDOW – top_portion

And the probability of the requests arriving in a given portion is
simply the fraction of the REQUEST_CYCLE_WINDOW that the
portion occupies:

WINDOWCYCLEREQUEST

portiontop
topatarriveP

__

_
)__(=

WINDOWCYCLEREQUEST

portionbottom
bottomatarriveP

__

_
)__(=

To compute the overall memory-bus delay per transaction
(MEM_BUS_DELAY), we weight the wait times associated with
the top and bottom portions by their respective probabilities:

MEM_BUS_DELAY =
 P(arrive_at_top) * WAIT_TOP +
 P(arrive_at_bottom) * WAIT_BOTTOM (13).

The quantity in Eq. 13 expresses the expected memory-bus delay
per L2 miss transaction. In the next section we evaluate its
accuracy.

5.3. Evaluation and discussion
 We used the heterogeneous workload described in Section
4.2 to validate how well we can estimate memory-bus delays.
Using Equation 13 we were able to estimate memory-bus delays
to within 12% of the actual quantities, on average (See Figure 7).
The median error was 10%, and the largest was 25%.

We made a simplifying assumption that all threads send
memory requests at the same rate. While this holds for the four
hardware contexts, as we explained in Section 4.2, the requests
from the write buffer usually arrive at a different rate. While we
observed that for our workload this dissimilarity did not affect the
accuracy of memory-bus delay estimates, we believe that this
phenomenon should be investigated further, for a wider range of
workloads.

Another assumption that we made when describing how
requests of the other threads arrive from the viewpoint of a
particular thread is that those requests arrive in lockstep. We
believe that this assumption does not hurt our estimates. By
representing the hypothetical positioning of other threads’ request
arrivals we tried to capture both the best and the worst cases.
Lockstep arrival positively affects the wait time for the best case

(a) (b) (c)

R
E

Q
U

E
S

T_
C

Y
C

LE
_W

IN
D

O
W

 (
t0

)

t0

- bus reserved (WIRE_TIME)

t0 t0

wait = 0 wait time

MAX_WAIT_BOTTOM

t1 t2 t3 t4

top portion

t1 t2 t3 t4 t1 t2 t3 t4

top portion

bottom portion

wait time

window
lengthtop portion bottom portion

WAIT_TOP

MIN_WAIT_BOTTOM

MAX_WAIT_BOTTOM

(d)

Figure 6. Shows how the memory-bus wait time for t0 depends
on how requests of the other four threads are positioned in its
REQUEST_CYCLE_WINDOW.

0

50

100

150

200

250

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 cache size (KB)

M
em

or
y-

bu
s

de
la

y
(c

yc
le

s)

Actual Predicted

PVVV VVVC VVCG VCGG GMTV BEGV

Figure 7. Actual vs. estimated memory-bus delay per transaction.

 11

and exacerbates the wait time for the worst case. Therefore, this
assumption, in fact, helps us to define the two extremes.

Although our model for memory-bus delays is simple, it
works, because the basis for our approach is well-matched to the
problem: we identify the best and the worst wait times that a
thread may experience and assign rough probabilities to these wait
times. We base those probabilities on the size of the
REQUEST_CYCLE_WINDOW, which, as we explained in Section
5.4 determines the magnitude of contention. Based on this
observation and the validation results, we believe that our model
is robust against a wide range of workloads and input parameters.
We also believe that this model can be used for other
multithreaded architectures and in general for multiprocessor
systems, because the underlying causes of memory contention are
the same irrespective of processor architecture.

6. PUTTING IT ALL TOGETHER
In Section 4 we described how we model the latency-hiding

effect of hardware multithreading. In Section 5 we presented a
model for memory-bus delay. Now we put these two pieces
together and validate the entire model.

Eq.13 gives us the memory-bus delay per L2 miss
transaction. To factor this delay into our IPC model (Eq.7), we
augment the cost of handling the L2 miss, L2_MCOST, by
MEM_BUS_DELAY. This changes Eq.4 as follows:

)___2(

*)*_2_2(_2

DELAYBUSMEMMCOSTL

WMMWMRLRMRLCPIL

+
+=

 (14).

We use this version of the equation to compute L2_CPI, which we
substitute into Eq.6, and eventually into Eq.7 to estimate IPC_mt.

To validate the accuracy of the estimated IPC_mt we use
the same group of heterogeneous workloads described in Section
4.2. We run these benchmarks on a simulated system configured
with memory bandwidth limited to 1 GB/s and measure the
resulting IPC. Figure 8 shows how it compares to IPC_mt.

On average, the estimated IPC_mt is within 13% of the
actual. The median error is 16%, and the largest error is 32%. In
all but one case, the direction of the error for a given workload is
consistent across cache sizes: we either consistently overestimate
or underestimate the IPC; the magnitude of error is usually
consistent for a given workload. This means that our model is
successful at predicting the general performance trend and the
magnitude of the effect of cache miss rate on IPC even when the
estimates are not precise.

Our model is successful across a wide range of input
parameters: it has worked for L2 miss ratios ranging from as low
as 1% to as high as 46%, and has predicted memory-bus delays
from as low as 82 cycles per transaction to as high as 238. The
workload contained benchmarks with diverse instruction mixes
and localities of reference, which is demonstrated by the range of
ideal_IPC_mt: from a high of 0.96 (multithreaded bzip) to a low
of 0.49 (multithreaded eon). The reason for the effectiveness of
our model is tied to the abstractions that we used to model latency
hiding and memory-bus delays. We developed a technique to
model latency-hiding in a way that is not dependent on the cache
architecture or the workload. For memory-bus delay, we observed
that the magnitude of contention is determined by how much time
each thread spends away from the memory bus, and used the
abstraction of REQUEST_CYCLE_WINDOW to represent the
degree of contention.

Because our model is based on the principles that are not
tied to details of processor microarchitecture, we are confident
that it will work for a variety of multithreaded processors.
Verifying this is an area of future research.

7. USING THE MODEL
 In previous work we proposed an operating system
scheduler tailored for multithreaded chip multiprocessors (CMT)
– processors that have multiple multithreaded processor cores on a
single chip [20]. We found that such a scheduler has the potential
to reduce L2 miss ratios by 19-37% and improve processor IPC by
27-45%. We are now working on implementing this scheduling
algorithm, and we plan to use our IPC model in the scheduler.
 The scheduler reduces L2 contention by employing a
balance-set approach: it arranges threads in schedules, such that
threads in the schedule produce low L2 miss rate when run
together. The scheduler then assigns each schedule to run for a
time slice.

One challenge in implementing this algorithm is deciding
how many threads should belong to a schedule. Ideally, it should
be the same as the number of the available hardware contexts,
because leaving contexts unused may poorly affect performance.
However, scheduling too many threads may cause thrashing in the
L2, and negatively affect processor IPC. There is a clear trade-off.
 Our scheduler needs to decide (on-line) whether it pays to
trade unused hardware contexts for better performance in the L2
for a given workload. Our IPC model would aid it in making the
decision. The scheduler would compute the L2 miss rates (as

0.0

0.2

0.4

0.6

0.8

1.0

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 cache size (KB)

IP
C

Actual Predicted

PVVV VVVC VVCG VCGG GMTV BEGV

Figure 8. Actual vs. estimated IPC with limited memory
bandwidth.

 12

described in the scheduling paper [20]) for various schedule sizes.
Then, using our model, it would estimate the corresponding IPCs.
It would choose the schedule size with the best estimated IPC.
 We also plan to use our model to address fairness in the
scheduler. The nature of the balance-set scheduling algorithm
creates pressure to schedule cache-frugal threads more often than
cache-greedy threads, trading-off fairness for performance. Our
IPC model can serve to estimate the magnitude of performance
gains for thread schedules with different levels of fairness, and
help the scheduler decide how much fairness to give up.

8. RELATED WORK
 The techniques we used for modeling IPC for single-
threaded workloads were inspired by Denning's work on modeling
the relationship of processor utilization and the performance of
the virtual memory system [19]. Denning's study offers some
basic approaches, such as using ideal IPC in the model. His model
is high-level, it does not take into account details of the hardware
and is not validated against real data.
 Matick et al. describe a model for multi-processor IPC
based on cache miss rates [18]. Their model of cache delays for
single-threaded workloads uses approaches similar to ours. The
fundamental distinction of our work is that we model how a
multithreaded processor hides individual threads’ memory
latencies – this has not been addressed in Matick’s study or
elsewhere.

9. CONCLUSIONS
 We presented a model for the relationship between the
performance of on-chip caches and processor IPC for
multithreaded processors. The fundamental challenge that we
addressed in our work was to model how a multithreaded
processor hides cache-related delays experienced by the threads.
 We also presented a model for memory-bandwidth delays
that uses a simple approach, but produces accurate estimates.
 Our model has a closed-form solution and produces IPC
estimates that are on average within 13% of actual quantities.
Because the model is based on simple principles that do not
depend on processor architecture, it works for a wide range of
workloads and input parameters. We are optimistic that for this
reason it will work for a variety of multithreaded processors,
irrespective of the details of their microarchitecture.
 By developing this model we have paved the way towards a
better understanding of how the performance of multithreaded
processors depends on the interactions between its components.
Such an understanding will help designers make beneficial
tradeoffs both in multithreaded hardware architectures and in the
software that runs on these new systems.

10. REFERENCES
[1] J. Lo et al., “An Analysis of Database Workload

Performance on Simultaneous Multithreaded Processors”,
ISCA'98.

[2] A. Ailamaki, D. DeWitt, M. Hill, D. Wood. "DBMSs on
modern processors: Where does time go?" VLDB `99.

[3] A. Barroso, K. Gharachorloo, E. Bugnion, "Memory System
Characterization of Commercial Workloads", ISCA’98.

[4] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker,
"Performance characterization of a Quad Pentium Pro SMP
using OLTP Workloads", ISCA’98.

[5] D. Tullsen, S. Eggers, H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”,
ISCA’95.

[6] R. Alverson et al., “The Tera Computer System”, Proc.
1990 Intl. Conf. on Supercomputing.

[7] A. Agarwal, B-H. Lim, D. Kranz, J. Kubiatowicz, “APRIL:
A Processor Architecture for Multiprocessing”, ISCA’90

[8] J. Laudon, A. Gupta, M. Horowitz, “Interleaving: A
Multithreading Technique Targeting Multiprocessors and
Workstations”, ASPLOS VI, October 1994.

[9] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, D. Tullsen,
“Converting thread-level parallelism into instruction-level
parallelism via simultaneous multithreading”, ACM TOCS
15, 2, August 1997.

[10] D. Marr et al., “Hyper-Threading Technology Architecture
and Microarchitecture”, Intel Technology Journal Q1, 2002.

[11] L. Barroso et al., “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing”, ISCA'00.

[12] D. Nussbaum, A. Fedorova, C. Small, “The Sam CMT
Simulator Kit.”, Sun Microsystems TR 2004-133, 2004.

[17] SPEC CPU2000 Web site:
 http://www.spec.org/cpu2000/analysis/memory/
[18] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical

analysis of finite cache penalty and cycles per instruction of
a multiprocessor memory hierarchy using miss rates and
queuing theory”, IBM Journal Of Research And
Development, Vol. 45 NO. 6, November 2001.

[19] P. Denning, “Thrashing: Its causes and prevention”, Proc.
AFIPS 1968 Fall Joint Computer Conference, 33, pp. 915-
922, 1968.

[20] A.Fedorova et al., "Performance of Multithreaded Chip
Multiprocessors And Implications For Operating System
Design", Sun Microsystems TR 2004-0797, 2004

[21] A. Barroso, K. Gharachorloo, E. Bugnion, "Memory System
Characterization of Commercial Workloads", ISCA’98.

[22] K. Keeton, D. Patterson, Y. He, R. Raphael, and W. Baker,
"Performance characterization of a Quad Pentium Pro SMP
using OLTP Workloads", ISCA’98.

[23] R. Onvural, “Survey of Closed Queuing Networks With
Blocking”, ACM Computing Surveys, v. 22, issue 2, pp. 83-
121, 1990

[24] L. Kleinrock, “Queuing Systems Vol I”, Wiley, 1975.
[25] “IBM eServer iSeries Announcement”, http://www-

1.ibm.com/servers/eserver/iseries/announce/
[26] Jonathan Schwartz on Sun’s Niagara processor:

http://blogs.sun.com/roller/page/jonathan/
20040910#the_difference_between_humans_and

[27] Intel web site, http://www.intel.com/pressroom/
archive/speeches/otellini20030916.htm

[29] J. M. Borkenhagen et al., “A multithreaded PowerPC
processor for commercial servers”, IBM Journal Of
Research And Development, Vol. 44 NO. 6, 2000.

[28] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, David
J. Lilja, and Vijay S. Pai, “Challenges in Computer
Architecture Evaluation”, IEEE Computer, August 2003.

