
The ANT Architecture--
An Architecture for CS1

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ellard, Daniel J., Penelope A. Ellard, James M. Megquier, J. Bradley
Chen, and Margo I. Seltzer. 1998. The ANT Architecture--An
Architecture for CS1. Harvard Computer Science Group Technical
Report TR-13-98.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620472

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20ANT%20Architecture--An%20Architecture%20for%20CS1&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cd315d2b83645c8fb47b9dc35e3c51bb&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25620472
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

The ANT Architecture — An Architecture for CS1
Daniel J. Ellard, Penelope A. Ellard, James M. Megquier, J. Bradley Chen, Margo I. Seltzer

Harvard University

 A central goal of high-level programming
languages, such as those we use to teach
introductory computer science courses, is to
provide an abstraction that hides the complexity
and idiosyncrasies of computer hardware.
Although programming languages are effective at
achieving this goal, certain properties of computer
hardware cannot be hidden, or are useful for
students to know about. As a consequence, many
of the greatest conceptual challenges for beginning
programmers arise from a lack of understanding of
the basic properties of the hardware upon which
computer programs execute.

To address this problem, we have developed a
simple virtual machine called ANT for use in our
introductory computer science (CS1) curriculum.
ANT is designed to be simple enough that a CS1
student can quickly understand it, while at the
same time providing an accurate model of many
important properties of computer hardware. After
two years of experience with ANT in our CS1
course, we believe it is a valuable tool for helping
young students understand how programs and data
are represented in a computer system.

1 ANT Overview

The guiding philosophy of the ANT
architecture is simplicity, but not at the cost of
functionality. The result is an architecture that is
simple in every important aspect: easy for students
to learn, easy to implement, and whose assmbly
language is easy to assemble. Despite this
simplicity, the ANT architecture is rich enough to
support many interesting applications and to
accurately model how computers execute
programs. The ANT instruction set follows the
RISC design philosophy. It uses fixed-width
instructions with opcodes, registers, and constants
in fixed positions so that the instructions are very
easy to decode. The only ANT instructions that
directly access memory are the load and store
instructions. The ANT register set consists of 14
general-purpose registers and two special-purpose
registers. There are no status registers or condition

codes, and the program counter is not directly
accessible to the programmer.

ANT uses 8-bit two’s-complement integers, 8-
bit addresses, and 16-bit instruction words. In its
current implementation, it uses separate address
spaces for instructions and data, making it possible
to have as many as 256 16-bit instructions and 256
8-bit words of data simultaneously.

The ANT architecture also includes a single
sys instruction that can perform a variety of tasks,
depending on its parameters: it can be used to halt
the processor, dump the contents of registers and
memory (for debugging), and to read and write
characters and integers.

There are currently only twelve instructions in
the ANT architecture, including thesys
instruction. Although this seems like a small
number of instructions, we have found this set to
be adequate for our use and have even considered
removing some infrequently-used instructions

Despite its small number of instructions and
tiny address space, the ANT architecture is full-
featured enough to support a wide variety of
interesting programs of a level of complexity
similar to the first several programming
assignments in a CS1 course. Some examples
include:
• hello.asm – The “Hello World’’ program,

written in ANT assembly language (3
instructions).

• echo.asm – Copy stdin to stdout one
character at a time (7 instructions).

• reverse.asm – Reads lines from the user,
and prints them out in reversed order (7
instructions).

• sort.asm – Bubble-sorts numbers read from
user (40 instructions).

• rotate.asm – Prints ``rotated’’ versions of a
string (52 instructions).

• hi-q.asm – Plays the game of Hi-Q (253
instructions).

In fact, it is possible to implement a slightly
simplified ANT virtual machine in ANT and

execute simple ANT programs on this virtual
machine.

The limited size of the ANT address space
makes it easy to understand and debug ANT
programs—in fact, the ANT debugger can display
the contents of all of the registers and theentire
contents of data memory in a single 24-by-80 text
window. This simplicity is a crucial feature that
distinguishes ANT from a “real’’ architecture. The
smallness of the machine means that programs
never get too big or complex. As a result, there are
relatively few bugs that our students cannot find
and fix themselves, which increases their self-
confidence and reduces the time required from
teaching staff.

Because the complete machine specification
for ANT fits on fewer than seven pages, students
can be expected to understand every detail of the
specification. We consider this to be essential, and
we believe that this would be impossible for any
real architecture.

2 ANT Programming

The ANT programming environment consists
of an assembler, interpreter, and debugger. The
assembler converts an assembly language source
file into a simplified format that the interpreter can
directly read and execute.

The debugger is an extended version of the
interpreter. It allows the user to set and remove
breakpoints, generate a program trace, single step
through a program, or reinitialize the processor, as
well as examine the contents of registers and data
memory and disassemble the instructions.

It would be easy to combine the assembler,
interpreter, and debugger into one program. We did
not choose this approach, however, because it
would make some of our assignments more
difficult—in 1997, we had students write both an
ANT interpreter and an ANT assembler, and we
believe that keeping these programs separate
helped the students by giving them a concrete
example to emulate.

3 How Do We Use ANT in CS1?

We introduce the ANT architecture in the sixth
week of CS1, after the students have mastered the
basics of C programming, including loops,
conditional execution, and arrays, but before they

are exposed to pointers, structures, or dynamic
memory allocation.

Our purpose for teaching machine architecture
and assembly language programming in CS1 is to
focus on basic issues of data representation and
machine architecture. We use ANT extensively to
demonstrate these issues. However, ANT has
proven flexible enough to be tied in to a number of
other important concepts, as described below.

3.1 Data Representation and Machine
Architecture

Our CS1 begins to introduce elements of data
representation such as binary and hexadecimal
notation, two’s-complement arithmetic and ASCII
codes early in the semester, followed immediately
by the revelation that computer programs
themselves are stored in “machine language’’ using
a very similar representation, and are executed in
an entirely mechanical manner.

We use several small ANT programs to
illustrate these points, using the ANT debugger to
demonstrate how the state of the ANT machine
changes as it executes each instruction. Finally, to
reinforce these ideas, we have students write small
amounts of ANT assembly language code
themselves.

3.2 Pointers
Our CS1 is taught in C, and pointers in C are a

subject that confuses many CS1 students. Over the
past several years, we have experimented with
different methods of reducing the initial problems
with pointers. Teaching a small segment on
assembly language using ANT before teaching
pointers seems to help students over the initial
hurdles of understanding pointers—once students
are familiar with the relatively simple semantics of
load andstore, the concepts behind C pointers
are much easier to grasp. Similarly, students who
have written ANT code to stride through arrays
generally have an easier time understanding
address arithmetic and the convenient and crucial
relationship of arrays and pointers in C.

3.3 Design and Style
It is nearly impossible to write nontrivial

programs in assembly language without careful
planning and design. Similarly, it is very difficult to
understand, modify, or debug improperly
organized or uncommented assembly language.

This is even more true for ANT assembly language
programs, because the current assembler does not
support macros or similar constructs that would
make the resulting code more readable. Therefore,
the ANT assembly programming exercises force
students to think ahead before beginning to write
their ANT programs, allocating registers and
choosing label names with some care. They must
organize their code in a readable manner and
carefully document it. We believe that this is a
pivotal experience in the course for many of our
students—particularly the students who come in to
CS1 with some prior programming experience, and
therefore manage to hack through the first few
assignments without a clear design or
documentation. The ANT programming
assignments are generally two short problems,
each of which can be completed in approximately
one page of well-commented code—not
dauntingly difficult, but challenging enough so that
the benefit of thinking ahead is clear.

3.4 Virtual Machines
ANT is currently implemented only as a virtual

machine, although there has been some interest in
creating a hardware implementation for use in one
of the introductory hardware architecture courses.
Since ANT is a virtual machine, we can
conveniently introduce the topic of virtual
machines in the same context as machine
architecture.

To reinforce these concepts, we have students
implement nearly all of an ANT virtual machine
themselves. We supply the code to load ANT
programs from file, and code to implement most of
the sys instruction, because at this point in the
semester our students have not seen file I/O yet.
Our students have not yet seen structures, pointers,
or dynamic memory allocation, but the assignment
is designed so that it does not require these
constructs. A well-designed solution to this
assignment requires approximately 300 lines of
commented C code.

For this assignment, we provide the students
with an automated test suite that they could use to
test their ANT implementations for conformance
to the assignment specification. This introduces
them to the idea of rigorous, automated testing. We
also encourage students to write their own tests, to
augment our test suite.

3.5 Compilers and Assemblers
Even after being exposed to the ideas of

machine language and assembly language, it is not
clear to many students how these ideas are related
to higher-level languages. To demystify this
relationship, we “hand compile’’ some simple C
programs into ANT, leaving the students with an
intuition of how some parts of compilation can be
performed.

In an assignment near the conclusion of the
semester, students write a substantial fraction of an
assembler for ANT itself, allowing them to gain
deeper insight into how translation from one
language to another can be accomplished. The
students are required to implement functions to
translate assembly language statements into
machine code, check for illegal or ill-formed
instructions, maintain a symbol table of labels, and
perform backpatching. The solution typically
required 100 lines of code for the symbol table (not
counting reuse of code from libraries developed in
earlier assignments) and approximately 500–700
lines of code for the rest of the assembler.

With this assignment complete, students could
write their own programs in ANT assembly
language, assemble them with their own ANT
assembler, and execute them on their own ANT
virtual machine.

4 Conclusion

We have found ANT to be effective in our CS1
course. It allows introductory-level students to
develop good intuition about concepts such as
pointers and compilation, while avoiding the
complexity of real architectures. It also provides an
effective way to discuss topics such as virtual
machines and automated testing, while the
corresponding programming assignments give
ample opportunity for students to strengthen their
programming and design skills.

For more details on ANT, including tutorial
documentation for students, example programming
exercises, and the ANT specification, visit the
ANT home page1. Please contact Dan Ellard
(ellard@eecs.harvard.edu) for more information.

1. http://www.eecs.harvard.edu/~ellard/ANT

