
Efficient Learning of Real
Time One-Counter Automata

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Fahmy, Amr and Robert Roos. 1995. Efficient Learning of Real Time
One-Counter Automata. Harvard Computer Science Group Technical
Report TR-07-95.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829137

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH

https://core.ac.uk/display/154870843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Efficient%20Learning%20of%20Real%20Time%20One-Counter%20Automata&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=beea4e71966f74a6788f6a984c6ad260&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829137
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

E�cient Learning of Real Time

One-Counter Automata

Amr Fahmy

and

Robert Roos

TR-07-95

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

E�cient Learning of Real Time One Counter Automata

Amr F. Fahmy

�

Aiken Computation Lab.

Harvard University

amr@das.harvard.edu

Robert Roos

Department of Computer Science

Smith College

roos@sophia.smith.edu

April 14th 1995

Abstract

We present an e�cient learning algorithm for languages accepted by deterministic real time one

counter automata (ROCA). The learning algorithm works by �rst learning an initial segment,

B

n

, of the in�nite state machine that accepts the unknown language and then decomposing it

into a complete control structure and a partial counter. A new e�cient ROCA decomposition

algorithm, which will be presented in detail, allows this result. The decomposition algorithm

works in O(n

2

log(n)) where nc is the number of states of B

n

for some constant c.

If Angluin's algorithm for learning regular languages is used to learn B

n

and the complexity of

this step is h(n;m) where m is the length of the longest counter example necessary for Angluin's

algorithm, the complexity of our algorithm is thus O(h(n;m) + n

2

log(n)).

�

Contact author. Address: Aiken Computation Lab., Harvard University, Cambridge, MA 02138 USA. Phone: 617 495-

5841. Research supported in part by ARPA contract no. F19628-92-C-0113 and by NSF grant CDA-9308833.

0

1 Introduction

We present an e�cient learning algorithm for languages accepted by deterministic real time one counter

automata (ROCA). The learning algorithm works by �rst learning an initial segment, B

n

, of the in�nite

state machine that accepts the unknown language and then decomposing it into a complete control structure

and a partial counter. A new e�cient ROCA decomposition algorithm, which will be presented in detail,

allows this result. The decomposition algorithm works in O(n

2

log(n)) where nc is the number of states of

B

n

for some constant c.

If Angluin's algorithm for learning the regular languages is used to learn B

n

and the complexity of this

step is h(n;m) where m is the length of the longest counter example necessary for Angluin's algorithm, the

complexity of our algorithm is thus O(h(n;m) + n

2

log(n)).

Roos and Berman [BR87] and Roos [Roo88], were the �rst to �nd a polynomial time algorithm for the

exact learning of Deterministic One Counter Automata (DOCA) as de�ned by Valiant in [VP75]. The

polynomial is of large degree thus motivating this work to �nd a practical algorithm. Fahmy and Biermann

[FB93] and Fahmy [Fah89] introduced the idea of learning by automata decomposition. The method is

applicable to a very wide class of real time languages using a variety of data structures such as counters,

stacks, queues and double counters, however the algorithms they present are of exponential time in the worst

case. The de�nitions of control strcutures, data structures and behavior graphs that we use here and the

relation between them were �rst given in [Bie77] and subequently in [FB93].

A discussion and an example of the learning process will be presented in Section 2. Following this,

de�nitions of the control structure, the counter, the behavior graph and the relation between them are given

in Section 3. In Section 4 the decomposition theorem and decomposition algorithm will be presented. Some

notation and detailed proofs of lemmas are given in an Appendix.

2 The Learning Algorithm

We will present the learning process for a ROCA language using an example. Consider the language L =

fa

n

ccb

n

d j n > 0g[fa

n

d j n > 0g. This language is not regular and is accepted by an in�nite state machine

that we call the behavior graph (BG) and is denoted by B. An initial segment of B that includes all the

states that are distance n or less from the initial state of B will be denoted by B

n

. The BG for our example

appears in Figure 1. Note that transitions to dead states are not shown.

A ROCA A = (C;D) for L is a pair of state machines that also accepts L. C is a �nite state machine

called the control structure (CS) and D, called the data structure, is an in�nite state machine that simulates

the counter. State diagrams for a CS that accepts L and the counter also appear in Figure 1. L is accepted

by A in the following manner. Input symbols are read by C which, using the symbol, its current state and

the state of the counter, changes its states. While it is changing its state it sends a single instruction to the

counter which it uses to change its state too. The triple (sym, val, instr) appear on the transitions of the

CS in Figure 1 where sym is the input symbol, val is 0 if the counter state is 0 and :0 otherwise. If the �nal

symbol of an input string causes C to end up in a �nal state then we say that the ROCA has accepted the

input string.

In this paper we show that B is decomposable into C and D. We give e�cient algorithms to do this

decomposition.

The learning process for a ROCA language L starts by constructing B

n

, for some natural number n, for

the unknown language. B

n

is constructed using a slight modi�cation of Angluin's algorithm for the regular

languages using queries and counter examples. After constructing B

n

and if n is large enough, the learning

algorithm will be able to decompose B

n

into a complete CS and a �nite counter. The �nite counter is then

replaced with an in�nite one and the learning algorithm will have constructed a complete ROCA for the

unknown language. The value of n depends only on the language being learned; it could be small for very

simple languages and large for complex ones.

We note that Angluin's algorithm will not terminate if the state machine that accepts L has an in�nite

number of states as in the case of ROCAs. Thus the teacher must choose a suitable depth n after which it

asks the learner to decompose B

n

. Also the teacher has to provide counter examples that will enable the

learner to construct a complete B

n

in the sense that no states will be missing from B

n

.

After constructing B

n

, the learner will attempt to decompose it into a complete CS and a �nite counter.

1

The CS must be complete in the sense that no transitions from it are missing. The decomposition is done

by performing what we call a parallel breadth �rst search (PBFS) from certain states. The PBFS marks the

states of B

n

, for our example, the PBFS starts at states b1, b2, b3, and b4.

The parallel searchs must mark isomorphic submachines of B

n

. In our example these isomorphic graphs

are labeled G

0

, G

1

, G

2

and G

3

in Figure 1. These markers are then used to construct partitions over the set

of states of B

n

that are necessary for the decomposition. Using the partitions it is then easy to construct

the CS and the �nite counter. To identify the states where the PBFS must start, a string w identifying a

path from the initial state of B

n

to an exit point in B

n

must be identi�ed. w is then broken into a string of

the form xw

0

where w

0

is of the form y

k

for some k. The PBFS starts from the states reachable using the

strings xy

i

1 � i � k. In our example there is only one exit point reachable using the string w = a

5

and w

is broken into x = a and y = a and the PBFS starts at states b1, b2, b3, and b4. The BFSs are performed

in a manner that guarantees that the resulting graphs are all isomorphic. In our example, the transitions

�(b1; c); �(b2; c); �(b3; c) and �(b4; c) are all done in parallel. If for any one of the searches a transition is

missing, then the PBFS is declared a failure. If the searches collide then we require that they all collide in

a single state as in state bf for this example. The searches can run into each other only in a well de�ned

manner where the search numbered i can collide with searches number i + 1 or i � 1. Again it is required

that they all collide in the same way. In general, it is possible to have more than one exit point and the

process would be repeated for each one.

In the reset of this paper we formalize the notions presented in this section and prove it correct.

3 De�nitions and Properties of Real Time One Counter Au-

tomata

3.1 The Counter

De�nition 3.1 A counter is a Moore type in�nite state machine. The set of states of the counter is N [E

where N is the set of natural numbers and E is an error state. The initial state of the counter is state 0.

The instructions, or input alphabet, of the counter is the set fi; d; n; rg where i increments the state of the

counter by one, d decrements the state by one, n is the no move or no change instruction and r is the reset

instruction. Each state of the counter also has an output value associated with it. The initial state has

output value 0, the error state has output value error and all the other states have output value :0. The

output function �

D

given a state, returns its output value. The state diagram of the counter appears in

Figure 1. A formal de�nition of the counter is given in the Appendix.

A counter can be thought of as the memory of a computing device; it cannot, on its own, accept or reject

input strings since it has no �nal states. It is a means by which a ROCA can count the occurrence of some

event such as counting the number of times a certain string has appeared in the input for example.

3.2 The Control Structure

The second component of a ROCA is the control structure which is a deterministic �nite state machine that

reads input symbols from a �nite non-empty alphabet �. Its next state depends on its own current state,

the output value of the current state of the counter and the input symbol. The control structure issues

instructions to the counter while it is changing states i.e. instructions to the counter appear on the control

structure's transitions.

De�nition 3.2 A control structure is a �nite deterministic state machine C = fS

C

;�

C

; O

C

; �

C

; c

0

; �

C

; F

C

g

where:

� S

C

is a �nite nonempty set of states.

� �

C

is a �nite set of symbols called the input alphabet to C. �

C

is the cross product of two alphabets;

the �nite nonempty input alphabet from the outside world, �, and the output alphabet of the counter

O

D

. Thus �

C

= �� O

D

.

� O

C

is a set of instructions that can be issued to the counter, O

C

= �

D

= fi; d; n; rg.

2

The Counter

i i i i

d d d

0 1 2 3

r

r

r

(a,~0,i)(a,0,n) (a,0,i)

(c,~0,n)

(c,~0,n)

(d,~0,r) (d,0,r)

(b,~0,d)(b,0,d)

(c,0,n)

(c,0,n)

(d,0,n)

a

c

c

b

a

c

c

b

a

c

c

b

a

c

c

a
d

d d
d

b

b0 b1 b2 b3 b4

b5b6b7b8

b9 b10 b11 b12

bf

G1 G2

•••

G3

d

b13

G0

The Behavior Graph

 The Control Structure

c0 c1

c2

c3c4

c5

•••

Figure 1: The BG for the language L = fa

n

ccb

n

d j n > 0g [fa

n

d j n > 0g, the state diagram for a CS for this

language and the state diagram of the counter. Transitions to dead states in the BG and the CS are not shown. Also

the error state of the counter and transitions from states to themselves are not shown for clarity.

3

� �

C

: S

C

� �

C

�! S

C

is a mapping by which C changes states called the transition function of C.

� c

0

is the initial state of C.

� �

C

: S

C

� �

C

�! �

D

is a mapping that assigns to each transition of C an instruction to the counter

called the instruction assignment function.

� F

C

� S

C

is a set of �nal states of C.

3.3 Real Time One Counter Automata

A Real Time One Counter Automaton (ROCA) A is a pair of state machines (C;D) where C, is a control

structure and D, the data structure, is an in�nite state machine that is isomorphic to a counter. A ROCA

reads one input symbol at a time. After reading each symbol the CS changes states from its current state by

examining the output symbol of the current state of the counter and using its transition function it makes

the transition to the next state. While it is doing so, it sends exactly one instruction from the set fi; d; n; rg

to the counter. The counter receives the instruction and executes it. The ROCA is now ready for a new

symbol. If the input symbol has caused the CS to be in a �nal state then we shall say that the ROCA has

accepted the input string, otherwise we say that the input string has been rejected.

The following de�nitions explain, in a more formal manner, how a ROCA works and how it accepts

strings. An instantaneous description (ID) of a ROCA is given by the pair < c; d > where c and d are the

current states of its CS and DS respectively. The initial ID of the ROCA is the ID < c

0

; d

0

>. If the current

ID of ROCA A is < c; d >, the following events take place when A reads an input symbol �:

�

C

(c; (�; �

D

(d))) = c

0

(Compute next state of C)

�

C

(c; (�; �

D

(d))) = I (Send instruction to D)

�

D

(d; I) = d

0

(Compute next state of D)

A ROCA A accepts a string � 2 �

�

i� the sequence of transitions induced by the letters of � leads from

< c

0

; d

0

> to < c

0

; d

0

> where c

0

2 F

C

and the counter never enters its error state. Let L(A) denote the

language accepted by A, that is L(A) = f� 2 �

�

j A accepts �: g Such a language will be called a ROCA

language.

3.3.1 The Real Time Constraint

From the previous de�nitions we can see that the CS of a ROCA, when given an input string of length n,

can issue exactly n instructions, some of which could be the null or do nothing instruction, to the counter;

one instruction per input symbol. So, for example, if the current state of the counter is d and if the current

input string is of length n, then after the CS reads the input string, it can leave the counter in a state d

0

such that

d� n � d

0

� d+ n

In this respect the ROCA is more restricted than the DOCA since DOCAs can change the value of the counter

by more than one per input symbol and also because ROCAs are not allowed to make epsilon transitions.

3.4 The Behavior Graph of a ROCA

A ROCA works in much the same way as �nite state machines that accept the regular languages work. It

consumes one input symbol at a time and after each such symbol we can determine if it has accepted the

input. We shall now de�ne a single in�nite state machine that can do the work that a ROCA does.

De�nition 3.3 The behavior graph (BG) of a ROCA A is the reduced Moore type state machine

B = fS

B

;�; �

B

; b

0

; F

B

g

that accepts L = L(A).

4

The BG is reduced in the sense that among its states, no two are equivalent. The BG of a ROCA is

unique, up to isomorphism. It is a state machine with in�nite number of states.

If �

L

is the right invariant equivalence relation de�ned by L over �

�

, �

�

L

(�) is the block of �

L

that

contains � and T

L

(�) is the set of su�xes of � with respect to L, then B is de�ned as follows:

� S

B

= �

L

, the set of states of the BG is the set of blocks of the partition �

L

where �

1

� �

2

(�

L

) i�

T

L

(�

1

) = T

L

(�

2

).

� � is the same input alphabet as that of A.

� �

B

: S

B

�� �! S

B

and is de�ned as follows �

B

(�

�

L

(�); �) = �

�

L

(��)

� b

0

= �

�

L

(e), where e is the null string. The initial state of B is the unique block of �

L

that contains

the null string.

� F

B

= f�

�

L

(�) j e 2 T

L

(�)g. The set of �nal states of B is the set of blocks of �

L

such that the null

string is a su�x for strings in the block.

�

B

is well de�ned since �

L

is a right invariant equivalence relation i.e. if �

1

� �

2

(�

L

) then 8� 2 �; �

1

� �

�

2

� (�

L

). A string � is accepted by a BG if it drives B from its initial state b

0

to a state b 2 F

B

, i.e. if the

null string is in T

L

(�).

So far we have two di�erent views of the language accepted by a ROCA; the CS and the counter of the

ROCA working together to accept strings in the language and the BG that accepts the language. In the

next section we will relate the two views. Our goal is to show that the CS and DS are a decomposition of

the BG.

3.5 The Product of a Control Structure by the Counter

Let A = fC;Dg be a ROCA, the product of the CS by the counter is going to be a third machine M

C�D

.

The set of states of the product machine is a subset of S

C

� S

D

. The alphabet of the product machine is

going to be the input alphabet, � of the ROCA. To connect state (c; d) to state (c

0

; d

0

), there must be a

transition from c to c

0

in C and a transition from d to d

0

in D. The instruction labeling the transition from

c to c

0

must be the same as that leading from d to d

0

. Also the transition from c to c

0

must be labeled with

a test value from O

D

which is the same as that of d. The initial state of the product machine is (c

0

; d

0

).

State (c; d) will be labeled as a �nal state of the product machine if c is a �nal state of C. Notice that the

product machine will contain many useless states, i.e. states that are unreachable and states that have no

tails. If all the useless states are deleted from the set of states of the product machine, it will not a�ect the

language it accepts. Formally,

De�nition 3.4 For a ROCA, A = fC;Dg where

C = fS

C

;�

C

; O

C

; �

C

; c

0

; �

C

; F

C

g and D = fS

D

;�

D

; O

D

; �

D

; d

0

; �

D

g

the product C �D is the Moore type state machine M

C�D

= fS

C�D

;�; �

C�D

; p

0

F

C�D

g where

� S

C�D

� S

C

� S

D

.

� 8� 2 � �

C�D

((c; d); �) = (�

C

(c; (�; �

D

(d))); �

D

(d; I)) where I = �

C

(c; (�; �

D

(d))).

� p

0

= (c

0

; d

0

).

� (c; d) 2 F

C�D

if c 2 F

C

.

The following theorem characterizes the language accepted by M

C�D

and relates it to B.

Theorem 3.1 Let A = fC;Dg be a RTA with BG B, we have

L(B) = L(M

C�D

):

5

Proof: A proof is immediate by induction on the length of strings accepted by A and M

C�D

. 2

Since the BG of a ROCA is equivalent to the product machine, there is an equivalence between the states

of the two machines. Recall that two states are equivalent if the two states have the same set of tails. Every

useful state, (c; d), ofM

C�D

is equivalent to some state b of the BG and every state, b of the BG is equivalent

to some useful state (c; d) of M

C�D

. If state b is equivalent to state (c; d) we shall write b = (c; d). It is

going to be very useful to think of every state of the BG as having two components; a CS-component and a

DS-component.

3.6 The Repetitive Structure of the Behavior Graph

De�ne the mapping g from the set of con�gurations to the set of states in the BG so that each state ofM

C�D

is

mapped to the state corresponding to it. Then g(p; i) = g(q; j) i� (p; i) is equivalent to (q; j). In other words,

g maps con�gurations, (c; d)-pairs into their equivalence classes, which, in turn, are the states of the BG.

Extend g to submachines in the obvious way, i.e., map transitions using g(�

C�D

((p; i); a)) = �

B

(g(p; i); a).

Then a subgraph of M

C�D

is mapped into a subgraph of the BG.

Let X be a set of con�gurations, let G(X) be the graph induced byX, i.e., the portion of the con�guration

graph containing X and all transitions among elements of X. Let X

m;n

be the set of reachable con�gura-

tions nX

m;n

= (p; i) : p 2 S

C

;m � i < n We call this a "slice" of the con�guration graph; it consists of all

con�gurations with counter values bounded above and below by �xed constants.

The overall goal is to prove that:

There exist two constants, H and K, such that the graphs

G(X

H;H+K

); G(X

H+K;H+2K

); G(X

H+2K;H+3K

); ::::

all have isomorphic images under the mapping g. Moreover, either all these images coincide, or

they are all distinct subgraphs of the BG.

Because a ROCA can distinguish only between zero and nonzero counter values, the in�nite transition

diagram of the automaton M

C�D

has a special kind of translational invariance with respect to the counter

value. More precisely, if �

C�D

((p; i); a) = (q; j), for i; j > 0, then �

C�D

((p; i + k); a) = (q; j + k) for any

k > 0, and if �

C�D

((p; i); a) = (q; 0) for some i > 1, then �

C�D

((p; i+ k); a) = (q; 0) for all k > 0.

We now show that we can assign arti�cial counter values to the states of the behavior graph B to give

it a similar repetitive structure; one way to do this is by examining the equivalence classes of the reachable

states inM

C�D

. We will drop the subscript \C�D" on our transition function � in the following discussion.

We need the following fact, whose proof should be self-evident:

If �((p; i); w) is �nal and �((p; j); w) is non�nal, for some i; j > 0, then at least one of the two

computations on w must visit a state (q; 0) without performing a reset.

The next fact is an immediate consequence of the preceding one:

For each w 2 �

�

, for each p 2 S

C

, there is a threshold value t (no larger than 1 + jwj) such that

the states �((p; t+ i); w) are all �nal or are all non�nal for every i � 0.

Lemma 3.1 For each p 2 S

C

, there are constants t and k such that for each j, 0 � j < k, either:

� all states (p; t+ j + rk); r � 0, are pairwise nonequivalent, or

� all states (p; t+ j + rk); r � 0, are equivalent

Proof sketch. A detailed proof appears in the Appendix.

Suppose there exist i; j > jS

C

j and string w such that �((p; i); w) and �((p; j); w) consist of

a �nal and a non�nal state. By \pumping" a certain substring of w we can obtain pairwise

nonequivalence for an in�nite set of states f(p; r

i

)g where the r

i

belong to an in�nite index set

with a regular structure parameterized by a constant d � jS

C

j. Iterate this process. We achieve

the lemma with threshold t = maxflengths of all witnesses usedg and k = least commonmultiple

of all the ds. (See �gure 2(a).) 2

6

(p,i+d)

d

(p,i)

(q,j+d’)

(q,j)

(p,i+d)

(p,i)

d

d’

(a) Lemma 3.1

(b) Lemma 3.2

(p,j)

(p,j+d)

Figure 2:

Corollary 3.1 There is some threshold t and constant k such that, for any p 2 S

C

, the results of the

previous lemma hold.

Proof. Repeat the lemma for each state; take the largest threshold and the least common multiple of all

the ks. 2

Lemma 3.2 Let p and q be any two states. There is a threshold t and a constant k such that, for each

i; j; 0 � i; j < k, either:

� (p; t+ i +mk) and (q; t+ j +mk) are nonequivalent for each m � 0; or

� (p; t+ i +mk) and (q; t+ j +mk) are equivalent for all m � 0.

Proof sketch. A detailed proof appears in the Appendix. Suppose we have a witness w to the nonequiv-

alence of some state pair (p; i) and (q; j). In the only hard case that needs to be considered, we consider the

two witness computations side-by-side. Some pair of states must repeat, forming \descending loops" in both

computations over the same substring of w. By a case analysis, we can show that the family of witnesses

obtained by \pumping" the loop will yield in�nitely many nonequivalences of p- and q-state pairs above a

certain threshold t. (See �gure 2(b)). 2

We can now observe the desired regularity condition in B by assigning the labels to its states. Let t

and k be the constants guaranteed by the lemma. For each state s of B, consider the set E(s) of states

of M

C�D

that are equivalent to s. Uniformly choose some representative state (p; i) from E(s) (e.g., the

lowest-numbered state in the equivalence class, and the lowest counter value appearing with that state).

If E(s) is an in�nite set, or if it contains only states whose counter values are less than the threshold t

determined by the last lemma, assign a unique state name and a counter value of zero to s. Otherwise, i is

of the form t+ kr+ j, so assign s the name [p; j] and the counter value r. The translational invariance now

holds.

Now that we know that a labeling exists which establishes the regular structure of B, we know that any

search for such a labeling will take place in a nonempty search space (although we will obtain our labels in

a di�erent way).

4 Decomposing the Behavior Graph of a ROCA

Hartmanis and Stearns [HS66] developed a theory for the decomposition of �nite state machines in the early

sixties. By decomposing a state machine into a number of state machines that emulate the behavior of the

7

composite machine they were able to use less electronic components to realize the machine. They invented

what is known as partition pairs, see the Appendix for a de�nition, The basic idea behind decomposition is to

merge states, and thus the use of partitions, while preserving the transitions. Merged states in one machine

must not be merged in at least one other component machine. In this section we discuss the decomposition

theorem that will tell us exactly when a decomposition is possible.

4.1 The Associated Partitions of a ROCA

Given a ROCA and its BG, Theorem 3.1 states that every state of the BG is equivalent to a state of

M

C�D

and vice versa. We shall de�ne two partitions over the states of BG that group states with the same

components in the same block. One partition groups states of the BG that have the same CS component in

the same block and the second groups states of the BG that have the same counter component in the same

block. Using these two partitions we can decompose the BG into a CS and a counter.

De�nition 4.1 Given a ROCA A = fC;Dg with BG B, let b

1

and b

2

be two states of the BG, c

1

; c

2

be

states of the CS and d

1

; d

2

be two states of the counter such that

b

1

= (c

1

; d

1

) and b

2

= (c

2

; d

2

)

We de�ne the four partitions �

C

, �

D

, �

CD

and �

DC

over the set of states of B as follows

� b

1

� b

2

(�

C

) i� c

1

= c

2

.

� b

1

� b

2

(�

D

) i� d

1

= d

2

.

� b

1

� b

2

(�

CD

) i� 8� 2 �; 8v 2 O

D

; �

C

(c

1

; (�; v)) = �

C

(c

2

; (�; v)). Two states of B share the same

block of �

CD

i�, for every letter of the alphabet and every test value of the DS, the CS-components of

the behavior states send the same instructions to the DS.

� b

1

� b

2

(�

DC

) i� �

D

(d

1

) = �

D

(d

2

). Two states of B share the same block of �

DC

i� the DS-components

of the two behavior states have the same test value.

The four partitions are called the associated partitions of ROCA A over the set of states of B. They tell us

which states of the BG will have the same properties when B is decomposed into C and D.

4.2 The Decomposition Theorem

The following theorem tells us exactly when a BG can be decomposed into a CS and a counter given a set

of partitions over the set of states of the BG. This theorem is a special case of a theorem that appeared in

[FB93], [Fah89] and [HS66] and thus will be stated here without proof. Also the reader is refered to the

Appendix for de�nitions and properties of partitions and partitions pairs.

Theorem 4.1 Let A be a ROCA with BG B. Let �

C

, �

D

, �

CD

and �

DC

be four partitions over the set of

states of B. The four partitions are the associated partitions of ROCA A over the BG B i�

(i) . (�

C

:�

DC

; �

C

) is a partition pair.

(ii) . (�

D

:�

CD

; �

D

) is a partition pair.

(iii) . �

C

� �

CD

(iv) . �

D

� �

DC

(v) . �

C

:�

D

= 0

(vi) . The number of blocks of �

C

is �nite.

(vii) . �

C

� �

F

, i.e. �

C

is output consistent.

(viii) . The machine D = fS

D

;�

D

; O

D

; �

D

; d

0

; �

D

g is isomorphic to a counter where D is de�ned by

8

� S

D

= �

D

.

� �

D

= �

CD

� �

DC

� �.

� O

D

= �

DC

.

� d

0

= �

�

D

(b

0

).

� �

D

(�

�

D

) = �

�

DC

(�

�

D

).

� �

D

(�

�

D

(b); (�

�

CD

(b); �

�

DC

(b); �)) = �

�

D

(�

B

(b; �))

4.3 A Decomposition Algorithm

Given B

n

, our aim now is to describe an algorithm that will mark states of B

n

with (c; d)-pairs such that

the necessary partitions for the decomposition can be created.

Since B

n

is a submachine of B there are transitions in B

n

that lead to states that are not in B

n

, such

transitions will be called exit points.

Let w be a shortest string that leads from the initial state of B

n

to an exit point e in B

n

. Such strings

can be found in an e�cient manner. The following algorithm uses w to identify a periodic structure in B

n

(and, hence, B).

for each pre�x x of w do

let w = xw

0

let p

0

= �

B

n

(q

0

; x)

for each pre�x y of w

0

do

let p

i

= �

B

n

(p

0

; y

i

) for i = 1; 2; : : :, until

p

i

= e for some i or until a state is repeated.

if e reached in previous step then

PARBFS(p

0

; p

1

; : : :)

if success then exit;

end if

end if

end for

end for

The outer loop searches for a pre�x of w su�ciently long to reach states above some (unknown) threshold t.

The inner loop searches for a pair of states, p

0

and p

1

, that are isomorphic under some periodic description

of B, then uses the substring y to try to determine additional isomorphic copies of these states. Procedure

PARBFS is described below; it performs breadth-�rst searches \in parallel" from each of the states p

1

; p

2

; : : :

and succeeds if it detects a periodic structure. (The precise mechanism for simulating this parallelism is

unimportant.) Searches are synchronized so that, for any string m that labels a path from the root of a BFS

search tree, the searches simultaneously visit the nodes �

B

n

(p

i

;m), for i = 0; 1; : : :.

A single breadth-�rst search from state p

i

marks nodes with a \search number" i and a word m (which

describes the path used to reach that node). A BFS halts when it can't extend the search without using nodes

that are already labelled (possibly by one of the searches operating in parallel with it). Each individual BFS

is a standard queue-based breadth �rst search; the search queue contains (state,string) pairs, and initially

contains (p

i

; �). When we remove (q;m) from the queue, we label it (i;m) and then, for each a 2 � and each

neighbor r of q, we add (r;ma) to the queue if r has not already been labelled.

Two graphs G

i

and G

j

visited by BFS(p

i

; i) and BFS(p

j

; j) are called isomorphic if there is a one-to-one

correspondence f between their nodes that preserves membership in F

n

, the set of �nal states, and such that

p = f(q) if and only if, for some constant c and for each a 2 �, �

B

n

(p; a) = f(�

B

n

(f(q); a)), the label of p

is (i;m) and the label of q is (i + c;m) (for some string m). A �nite sequence of graphs G

0

; G

1

; : : : satis�es

the property isom if there is a nonempty subsequence G

i

; G

i+1

; G

i+2

; : : : such that G

i

is isomorphic to G

i+1

with constant c = 1.

Finally, here is PARBFS; k is a small constant which may be used to ignore \bad" searches caused by

being too near the zero counter states or too near the exit points:

9

PARBFS(p

0

; p

1

; : : :):

for i = 0; 1; : : : paralleldo

G

i

= BFS(p

i

; i);

if k < i < n � k and G

i

and G

i+1

violate the isom property then

return failure

end if

end for

return success;

4.4 Complexity OF The Learning Algorithm

We measure the complexity of the learning algorithm in terms of the number of states of B

n

, nc for some

constant c. Assume that Angluin's algorithm is used to construct B

n

and assume that the complexity of

this step is in O(h(n;m)) steps where m is the length of the longest counter example necessary for this

algorithm. The decomposition step �rst searches for a string w to an exit point which can be found in O(n)

steps. The string w is then partitioned into the form xw

0

which can be done in O(n) steps. For each such

x, w

0

is partitioned into a string of the form y

i

in another O(n) steps for a total of O(n

2

) steps to rewrite w

in the form xy

i

. See [ML84] for an O(nlog(n)) to perform this last step. For each such form of w, a PBFS

must be performed. If there are k such BFSs then each must be of depth n=k and the complexity is O(n).

The complexity of the decomposition step is thus O(n

3

) or O(n

2

log(n)) if the algorithm in [ML84] is used.

The complexity of the learning algorithm is thus O(h(n;m) + n

2

log(n)).

References

[Bie77] A.W. Biermann. A fundamental theorem for real time programs. Technical report, Duke Univerity

Department of Computer Science, 1977.

[BR87] P. Berman and R. Roos. Learning one-counter languages in polynomial time. Proceedings of the

28th IEEE Symposium on Foundations of Computer Science, pages 61{67, 1987.

[Fah89] A. F. Fahmy. Synthesis of Real Time Programs. PhD thesis, Duke University, 1989.

[FB93] A. F. Fahmy and A. W. Biermann. Synthesis of real time acceptors. Journal of Symbolic Compu-

tation, 15:807{842, 1993.

[HS66] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice-Hall,

1966.

[ML84] M. Main and R. Lorentz. An O(nlog(n)) algorithm for �nding all repetitions in a string. Journal

of Algorithms, 5:422{432, 1984.

[Roo88] R. Roos. Deciding Equivalence of Deterministic One-Counter Automata in polynomial time with

applications to learning. PhD thesis, The Pennsylvania State University, 1988.

[VP75] L. G. Valiant and M. S. Paterson. Deterministic one-counter automata. Journal of Computer and

System Sciences, 10:340{350, 1975.

10

Appendix

Formal De�nition of the Counter

Formally, the counter is de�ned by

D = fS

D

;�

D

; O

D

; �

D

; d

0

; �

D

g

where

� S

D

= N [E, where N is the set of natural numbers and E is an error state.

� �

D

= fi; d; n; rg.

� O

D

= f0;:0; errorg.

� �

D

is de�ned by: 8x 2 N ,

�

D

(x; i) = x+ 1

�

D

(x; n) = x

�

D

(0; d) = E

�

D

(x; d) = x� 1; x 6= 0

�

D

(x; r) = 0

�

D

(E; I) = E 8I 2 fi; d; n; rg

� d

0

= 0.

� �

D

(d) is the output function that assigns an output value from O

D

to each state d and is given by:

8x 2 N; x 6= 0

�

D

(x) = :0

�

D

(0) = 0

�

D

(E) = error

Partitions and Partition Pairs

A partition, �, on a set S is a collection of pairwise disjoint subsets of S whose union is S. Each subset

is called a block of the partition. If two elements, s and t of S, are in the same block of �, we shall write

s � t (�). The block of � containing an element s will be denoted by �

�

(s). If �

1

and �

2

are two partitions on

a set S then the product of �

1

and �

2

denoted by �

1

:�

2

is also a partition on the set S such that s � t (�

1

:�

2

)

i� s � t (�

1

) and s � t (�

2

). The partition that puts every element in a block by itself is called the zero

partition and will be denoted by 0. If �

1

and �

2

are two partitions on a set S, then �

2

is said to be larger

than or equal to �

1

, denoted by �

1

� �

2

, if every block of �

1

is a subset of a block of �

2

. It is clear that

�

1

� �

2

i� �

1

:�

2

= �

1

.

Let � be a partition over the set of states of some machine M . � will be called output consistent i�

b � b

0

(�) implies that either both states are �nal or both are non �nal. The largest output consistent

partition will be denoted �

F

and is the unique partition that groups all the �nal states in one block and all

non-�nal states in another block.

De�nition 4.2 Let � and �

0

be two partitions on the set of states, S, of some machine M . The ordered

pair (�; �

0

) is called a partition pair (pp) i�

8s; t 2 S; 8� 2 �; s � t (�)) �(s; �) � �(t; �) (�

0

)

11

If (�; �

0

) is a pp then from the block of � that contains the current state of the machine we can �nd the

block of �

0

that contains the next state on every letter of the alphabet. We can see that �(�

�

; �) � �

�

0

.

A partial ordering, �, is de�ned on pps by comparing the respective components of pps. If (�; �

0

) and

(�; �

0

) are two pps then (�; �

0

) � (�; �

0

) i� � � � and �

0

� �

0

.

See [HS66] for more properties of partition pairs.

Proof of Lemma 3.1

Suppose there exist i

1

; j

1

> jS

c

j such that (p; i

1

) and (p; j

1

) are nonequivalent. Let w

1

be a (smallest) witness

to their nonequivalence. By the pigeonhole principle applied to a sequence of states with decreasing counter

values, the computation paths traced by �((p; i

1

); w

1

) and �((p; j

1

); w

1

) must contain a descending loop (a

path that loops in the control structure while decreasing the counter). Write w

1

= �

1

�

1

1

, where �

1

6= �

is the loop. The \drop" d

1

of �

1

can be bounded by jS

C

j (consider only the states in the computation

path that have counter components between i

1

� jS

C

j and i

1

). Consider the in�nite family of witnesses

f�

1

�

i

1

1

: i � 0g. These can be used to prove that (p; i

1

+ t

1

+ rd

1

is not equivalent to (p; j

1

+ t

1

+ sd

1

) for

any r; s � 0, for some threshold t

1

bounded by jw

1

j+1. In addition, for at least one of the two values i

1

and

j

1

, say i

1

, we have the pairwise nonequivalence of all states in the set f(p; i

1

+ t

1

+ rd

1

) : r � 0g. (The latter

follows from the fact that, because w

1

was chosen smallest, �

1

1

is not a witness between (p; i

1

) and (p; j

1

);

hence, it is a witness between either (p; i

1

) and (p; i

1

� d

1

) or (p; j

1

) and (p; j

1

� d

1

); now we can \pump"

�

1

.)

If an in�nite number of nonequivalences among p-states remain unaccounted for, repeat this construction

on other pairs of p-states (p; i

r

), (p; j

r

), r = 2; 3; : : :, obtaining witnesses w

r

. This process cannot continue

forever; at any stage, the set of p-states containing nonequivalent pairs that have not been accounted for will

be a union of periodic (with respect to the counter) sets, with period at most the least common multiple of

all of the loop drops used so far. The above construction shows that some in�nite periodic subset of this,

with period bounded by jS

C

j, will be covered in the next step. Therefore, we will achieve the lemma with

a threshold t that is no more than the maximum of all jw

r

j+ 1 and a value of k that is no worse than the

least common multiple of the d

r

.2

Proof of Lemma 3.2

Choose constants t

0

and k

0

using the construction of corollary 3.1. Suppose neither condition of the lemma

holds. Then we have a witness w

1

to the nonequivalence of some state pair (p

1

; i

1

) and (q

1

; j

1

), where

i

1

; j

1

> t

0

. Consider the sequence of state pairs visited during the computations of �((p

1

; i

1

); w

1

) and

�((q

1

; j

1

); w

1

). If neither contains a state with zero counter value, or if both reach zero states using the reset

operation, we can extend the nonequivalence to in�nitely many state pairs (p

1

; i

1

+ r), (q

1

; j

1

+ s) using the

same witness. Therefore, assume at least one computation descends to zero by counting down. If t

0

is at

least jS

C

j

2

, some pair of states repeats in the two computations, forming loops in both computations over

the same substring �

1

. This repetition can be chosen so that the loop is descending in at least one of the

computations (speci�cally, the one that \counts down").

Let w

1

= �

1

�

1

1

. For each state r � 0, let m

r

denote the smallest value of m such that f�((p

1

; i

1

+

d

1

r); �

1

�

m

1

1

); �((p

1

; i

1

+d

1

r); �

1

�

m�1

1

1

)g contains both a �nal and a non�nal state. Let n

r

be the smallest

n such that f�((q

1

; j

1

+d

0

1

r); �

1

�

n

1

1

); �((q; j

1

+d

1

r); �

1

�

n�1

1

1

)g contains a �nal and a non�nal state. When

both d

1

r and d

0

1

r are greater than jw

1

j, each of these sequences will be either constant or will consist of

consecutive integers. If both are constant, w is a witness between any pair of states (p

1

; i

1

+d

1

r), (q

1

; j

1

+d

0

1

s)

(since it was a witness between (p

1

; i

1

) and (q

1

; j

1

). If either or both sequences consist of consecutive integers,

a witness between (p

1

; i

1

+ d

1

r) and (q

1

; j

1

+ d

0

1

s) is �

1

�

k

1

1

, where k = min(m

r

; n

s

).

Let t

1

= min(t

0

; jw

1

j+ 1), let k

1

be the least common multiple of k

0

and the drops d

1

, d

0

1

.

If there are still unaccounted-for nonequivalences among states, repeat the process on state pairs

(p

2

; i

2

); (q

2

; j

2

), : : : . The process must halt after only a �nite number of steps.2

12

