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Information theory is gaining popularity as a tool to
characterize performance of biological systems. However,
information is commonly quantified without reference to
whether or how a system could extract and use it; as a result,
information-theoretic quantities are easily misinterpreted.
Here, we take the example of pattern-forming developmental
systems which are commonly structured as cascades of
sequential gene expression steps. Such a multi-tiered structure
appears to constitute sub-optimal use of the positional
information provided by the input morphogen because noise
is added at each tier. However, one must distinguish between
the total information in a morphogen and information that
can be usefully extracted and interpreted by downstream
elements. We demonstrate that quantifying the information
that is accessible to the system naturally explains the prevalence
of multi-tiered network architectures as a consequence of the
noise inherent to the control of gene expression. We support
our argument with empirical observations from patterning
along the major body axis of the fruit fly embryo. We use
this example to highlight the limitations of the standard
information-theoretic characterization of biological signalling,
which are frequently de-emphasized, and illustrate how they
can be resolved.

1. Introduction

As an inspiring example of productive collaboration between
computer science, physics and biology, information theory is

© 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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gaining popularity as a tool to characterize performance of biological systems. Although it may not have
become the ‘general calculus for biology’, as predicted by Johnson in his 1970 review [1], the scope of
its applications has been steadily expanding: from the earliest work measuring the information content
in DNA, RNA and proteins to topics like neuroscience, collective behaviour, ecology, developmental
biology, genetic regulation and signalling [2-5].

Specifically in the context of biochemical signalling, several recent reviews make compelling
arguments that the mutual information between input and output of a signalling pathway is not just
a useful quantity but is in fact the ‘only natural framework’” for characterizing the performance of such
systems. However, implicit in these arguments is the assumption that the ‘output’ in question is the final
target of signalling, the functionally relevant phenotypic trait. Unfortunately, in biological applications
of information theory, the information content is usually assessed for signals that constitute intermediate
steps, most commonly transcription factors, for example, NF-«B [6,7] or Drosophila patterning cues [8,9].
Such signals, however, still need to be interpreted by downstream processes. Therefore, the information
they carry is useful only to the extent that it can be extracted and used by the system. As we
will demonstrate, failure to recognize this can easily cause information-theoretic quantities to be
misinterpreted.

To show this, we take the example of gradient-mediated patterning circuits in embryonic
development. For a complex multicellular organism, the reliability of its developmental programme
directly determines the probability of reaching reproductive age; therefore, low error rate and/or high
error tolerance are likely to be key determinants of the structures of developmental circuits [10,11].

It thus seems surprising that, as we discuss below, many patterning circuits are structured as a cascade
of several signalling steps, each of which is susceptible to loss of information due to noise inherent in
biological control. We will see that treating information content of patterning cues as a one-size-fits-
all method to characterize system performance erroneously predicts that a single-step readout strategy
should be dominant in development. We will show that to understand the advantages of the multi-tiered
architectures observed in real systems, it is essential to distinguish between the total information in a
morphogen and the information that can be usefully extracted and interpreted. We support our reasoning
with experiments on the well-studied segmentation gene network responsible for anterior-posterior (AP)
patterning in the Drosophila embryo.

In many developing embryonic systems, cellular identities are conferred by graded input signals that
induce dose-dependent gene expression programmes as outputs [12,13]. Such graded inputs, termed
morphogens, often function as diffusible molecules produced by a localized expression source [14,15].
Localized expression generates concentration gradients in a field of otherwise naive and identical cells
(presented in simplified form as a one-dimensional array in figure 1). Cells activate specific expression
programmes in response to the local morphogen concentration ¢. When ¢ correlates closely with distance
x from the source, such gradients carry a large amount of ‘positional information” [16] quantified
via the mutual information I[¢,X] (here and everywhere below, the ‘hat’ notation refers to random
variables) [8,17]. In principle, a morphogen gradient carrying sufficient information could induce in
each cell the gene expression programme appropriate for its position, thus generating the required
spatial arrangement of cell fates [18] (figure 1a). In the most straightforward model, assuming the
input morphogen is sufficiently reproducible [19], local morphogen concentration could be directly
interpreted by each cell, i.e. the local input would activate all genes required at a given position,
with no additional cycles of gene expression modulation. A central tenet of information theory, the
information processing inequality, states that each transmission or processing step can only reduce the
total information contained in a signal. Direct decoding might therefore be expected to dominate in early
development as the optimal strategy for transmitting positional information. This expectation seems
all the more valid given the widespread observation that the processes of transcription and translation
exhibit considerable intrinsic variability, or noise [20,21]. Thus information loss in gene regulatory
processes should be particularly notable.

Therefore, from the perspective of information theory, it is surprising that many gradient-based
systems exhibit a multi-tiered architecture in which reiterated cycles of transcription and translation
are required to attain patterning goals (illustrated in figure 1b). For example, in the vertebrate central
nervous system, the unpatterned neuroectoderm exhibits a graded distribution of multiple diffusible
signalling molecules. These signals subdivide the prospective brain into relatively large fore-, mid-
and hindbrain territories, which are then segmented into smaller subunits by additional signalling
activity [22-24]. Similar patterns of broad subdivision followed by short-range refinement are found
during the specification of the vertebrate neural crest by reiterated rounds of extracellular signalling [25];
in the formation of segmented muscle precursors (somites) by FGF and Notch followed by short-range
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Figure 1. Direct versus multi-tiered decoding strategies for gradient-mediated patterning. (a) Direct decoding: to reduce noise
introduced by intrinsically variable gene expression, patterning proceeds through a single cycle of transcription and translation.
Differences in morphogeninput c(x) directly specify gene expression programmes A—F along axis x. (b) Multi-tiered decoding: morphogen
first elicits expression of short-range diffusible factors in domains spanning several cells. These gene products then induce programmes
A-F through a second cycle of transcription/translation. The added step introduces additional gene expression noise, reducing patterning
information compared to direct decoding (a).

Ephrin activity [26,27]; in the dorsal-ventral patterning of the Drosophila body axis, first by a gradient
of NF-«B activity (also called Dorsal) and then by members of the BMP family of secreted signalling
molecules [28,29]; and also in the fruit fly, in the patterning of the AP axis by gradients of diffusible
transcription factors within the shared cytoplasm of the nuclear syncytium [18,30,31].

These examples and others illustrate a common theme where long-range signalling gradients
subdivide a large field into smaller domains, within which the patterned expression of secondary factors
establishes elaborated patterns (figure 1b). Since each cycle of transcription and translation introduces
more noise, the widespread use of the multi-tiered architecture appears to conflict with the expectation
that development should favour circuits exhibiting efficient information utilization.

This apparent conflict arises because Shannon’s information content of a signal [17] has two important
limitations. First, the information content of a patterning cue or other biological signal is defined locally
in space and time, whereas its interpretation is non-local, and instead occurs over time and frequently
involves diffusive signals. For this reason, the naive application of information processing inequality in
these systems is incorrect, and the local, instantaneous information content in a signal does not in fact
provide an upper bound for the performance of downstream processes interpreting this signal [7,32,33].
Second, the same amount of information can be encoded in formats that are more or less easy for the
system to access, since the interpreting circuit is itself subject to noise. Thus, the local information content
of a signal is neither an upper bound nor a fair estimate of the amount of information this signal can
‘transmit’ to the downstream circuit. This is well illustrated by the recent experimental work on ERK,
calcium and NF-« B pathways [7]. If the output of any of these pathways is reduced to a single scalar, it is
found to transmit very little information about the input. If the output is treated as a dynamical variable,
its apparent information content increases considerably [32]. Neither of these quantities, however, can
be interpreted before it is established what fraction of that information can actually be extracted and
used by the system. Here, we use a simplified model to illustrate these limitations of what we call
‘raw’” information content, contrasting it with ‘accessible information’ that we introduce. We argue that
assessing the usefulness of a signal must always take into account the so-called input noise [34] of the
downstream circuit interpreting this signal.

2. Results
2.1. Responding to a graded input signal

Consider a one-dimensional array of cells i located at positions (0 <x; <L) and exposed to a noisy
linear gradient of an input morphogen ¢ spanning the range [0, ¢max]. To build intuition, we will
assume the noise of input ¢ to be Gaussian, of constant magnitude oy, and uncorrelated between cells':

IThe assumption of uncorrelated noise is intentionally strong. In a real system, correlated noise can be introduced, for example, by
variations in the total amount of morphogen deposited maternally. These fluctuations, which cannot be reduced by averaging, lead to
imperfect reproducibility of morphogen activity at a given location across multiple embryos. Much work has focused on investigating
the limitations imposed on patterning by this type of fluctuations [8,35,36]. In contrast, our model is applicable for understanding
the effects of imperfect precision of gene expression (at a given location within the same embryo). The distinction between ‘raw’ and
“accessible’ information does not rely on the assumption of uncorrelated noise.
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Figure 2. The two patterning strategies. (a) In the direct strategy, target genes are controlled directly by averaged morphogen ¢ with
only one ‘access’ operation. (b) The two-tier strategy involves a second patterning factor ¢*); target genes are separated from the input
by two tiers of ‘access’ operations. /5y, raw information content of the controlling morphogen; /.., accessible information.

¢ = (x/L) cmax + 6, where o; is a Gaussian random variable of variance 002 (figure 2a). Cells respond to
morphogen ¢ by modulating gene expression through intrinsically noise-prone signal transduction and
regulation processes. We will model this response as a composition of three steps, three elementary
operations that constitute the ‘toolkit’ with which cells can access and process information contained
in patterning cues: access, amplify and average.

Let ¢°" be a gene product whose expression is controlled by ¢. The simplest readout is achieved by
placing gene ¢°* under the control of a promoter that is responsive to ¢ and by accumulating the output
protein for some time 7. In our model, we express the amount of g°" produced during this time by a cell
as §OUt = F(¢%%t), where ¢t is a noisy estimate of the true concentration ¢ that the system could obtain in
time 7 (‘access’), and F is some deterministic input—output function (‘amplify’); for simplicity, we first
consider F to be pure linear amplification with coefficient A, denoted F;. The ‘access’ operation (a noisy
estimate of the input) is the key element of our framework. Specifically, we write

where 7 reflects the intrinsic stochasticity of transcriptional regulation due to promoter switching,
random arrival of molecules and, in principle, many other noise sources. In our simplified framework,
this ‘input noise’ [34] is the only type we consider, and we will model # as a Gaussian random variable
of variance 775- In other words, we postulate that each ‘access” operation takes time v and comes at the
price of corrupting the signal with extra noise of magnitude 7.

The final toolkit operation is averaging. Because patterning systems typically act over durations
that are long (hours) compared to the time required to synthesize mRNA and protein (minutes),
cells can perform temporal averaging by allowing stable gene products to accumulate [37]: if T
is the time available for patterning, the system can effectively perform T/t access operations. In
addition, the production of soluble factors that can be shared between cells gives rise to spatial
averaging [37,38]. Conveniently, for linear expression profiles, spatial averaging affects only the
fluctuations, leaving the mean shape intact except at the boundary of the patterned region; for weak
averaging, boundary effects can be neglected for our purposes. Both types of averaging offer the
system some capacity to perform multiple measurements of the input, which we capture formally by
an averaging operator Gy,,. Here, N indicates the effective number of independent measurements,
so that application of Gy, to a morphogen, by definition, reduces expression fluctuations by a
factor 1/Neg.

We distinguish between two patterning strategies. In the first (‘direct strategy’; figure 2a),
cell-fate-specific target genes are controlled directly by ¢ and no other patterning factors are involved.
Any available averaging mechanisms are applied to ¢ itself. In the second (‘two-tier’) strategy, cells
perform an amplifying readout of ¢ with input—output function F;, to establish a spatial profile of a second
factor ¢*) (figure 2b). The pattering time T is spent on accumulating and averaging ¢*). Mathematically,
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in the two scenarios, the cell-fate-specific target genes are controlled by

¢0 = Gnlc]= Ecmax -2 (direct strategy) 2.1
L Nef
and oW = GNylFr(C+ D)= %)\.Cmax + X U;]_ 7 (two-tier strategy) (2.2)
eff

We now ask: when, if ever, does the noisy amplification step of the two-tier strategy provide a benefit to
the system?

2.2. Standard information-theoretic considerations do not explain the benefits of amplification

For a linear morphogen ¢ with dynamic range cmax and noise oy, the standard positional information
I[¢, %], which we will call its ‘raw information content’, is given by

i [a&]=1n< Cmax )
raw |C, o0 e

(this expression assumes that noise is small and the number of cells is large; see the electronic
supplementary material for details). It depends only on the ratio ¢ = cmax/0,; for convenience, we define
Z(¢) = In(¢/~/27e), which is an increasing function of ¢.

Let us compare the two patterning strategies from the point of view of the raw information content
carried by the controlling signal. In the direct strategy (2.1), the application of Gy, reduces the noise to
00/+/Neff and so the controlling signal ¢ carries 1§22N = Z(cmax/(00/+/Negf)) bits of raw information. In

the two-tier strategy (2.2), the amplified profile ¢™) is characterized by noise &, =1,/ (ag + n%) /Neg, and
its raw information content is therefore

A N,
18, =1 (CL) 7 (emax | et} <19, 23)
& oy +my

Averaging mitigates the loss of positional information caused by noisy readout [38]. If Neg is
sufficiently large, the amplified-and-averaged profile carries even more information than the original
input. (Note that the information-processing inequality is not violated, as it states only that the output
cannot carry more information than Ng independent copies of the input.) Nevertheless, applying
averaging directly to the input (the direct strategy) always yields more raw information; thus, the
multi-step scenario appears inferior to a direct readout.

In real systems, the three operations we treat as independent may be mechanistically linked. For
example, if ¢ is an intracellular factor while spatial averaging requires a small diffusible molecule, then
performing an extra readout can provide access to an otherwise unavailable averaging mechanism. By
assuming that the two strategies (2.1) and (2.2) can benefit from equal amounts of averaging, which
in our model simply reduces expression noise and is obviously beneficial, we can focus specifically on
the effect of signal amplification. Multi-tier patterning proceeds through rounds of amplification: small
differences in input result in large differences in gene expression so as to establish increasingly sharp
boundaries delimiting expression domains [39], yet in our expression (2.3) for the information content
of the amplified profile ¢*), the amplification factor A cancels out. Thus, considerations based on raw
information content fail to explain the prevalence of signal amplification.

2.3. The benefits of the multi-tiered strategy lie in making the raw” information more accessible

The benefits of amplification and the advantages of the multi-tier strategy become clear when we
observe that, due to the intrinsic noise in the regulatory readout, the raw information content is an
inadequate measure of a morphogen’s usefulness to the system. The purpose of a morphogen is to
activate downstream processes; the relevant quantity is therefore not the amount of information a
morphogen carries, but the amount of information it can transmit to its downstream targets. Since
biological control is intrinsically noisy, the two quantities are distinct.

Our model was designed to make this particularly clear: since the system can never access the true
concentration of any signal ¢,, but only its noisy estimate ¢, I;a[2,] is beyond the system’s reach.
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Figure 3. (a) Noisy amplification can increase accessible information even if raw information is reduced. Inner error bars are the signal
variability and increase when amplification adds new noise, reducing /.. Outer error bars represent the signal observed by the noisy cell
machinery (corrupted by noise 7). After amplification, the relative importance of g is reduced, increasing /.. (b) The ‘segmentation’
input—output function F; forinteger A (here A = 3) preserves the dynamic range of morphogen concentration. Locations such as those
indicated by dots now have identical expression levels of z*) (the y-axis), but can be distinguished using the input morphogen c (the
x-axis on this plot).

We define accessible information I,c. in a morphogen as the amount of information the system can access
in time 7:

Iacc[e*] = Iraw[afSt] = Iraw[a* + ﬁ]r (2~4)

where 7 (the input noise of the downstream readout circuit), again, is a Gaussian noise of magnitude g
within our model.

The amount of accessible information provided by the direct strategy (equation 2.1) is given by

A x G R c
Iacc[c(o)] = lraw Ecmax +—+1|= — . (2.5)
Neft o2 o
Nett +m

For the amplified profile c® (equation 2.2), a similar calculation yields

A AC c
L[t =7 | —=Lmax |7 fmax | (2.6)
242 242 2
2% W+

In this expression, the intrinsic noise 79 of regulatory readout enters twice, corresponding to the two
‘access operations’ required in the two-tier strategy (figure 2).

The amplification factor A no longer cancels out in (2.6); amplifying dynamic range is beneficial, since
it reduces the relative importance of the intrinsic readout noise (figure 31). Comparing (2.5) and (2.6),
we find that the extra tier of noisy amplification is beneficial if and only if

5 1 1

m (1_@_F>>O (2.7)
Note that the condition (2.7) is never satisfied if Nog =1 (no averaging) or A =1 (no amplification).
Intuitively, our argument demonstrates that the patterning system is a mechanism that invests some
effort into making a careful measurement (Nggf > 1) and encodes this information in a more accessible
format where steeper concentration changes (1 > 1) can be interpreted with a faster, and therefore noisier
readout. This mechanism is useful precisely because regulatory readout is intrinsically noisy, otherwise
direct readout would have been the better strategy. In other words, to understand the purpose of the
patterning system, it is essential to distinguish between the total information in a morphogen and
information that can be usefully extracted and interpreted.

2.4. Multiple tiers can improve gradient interpretation even when raw information decreases

So far, we considered the information content (raw or accessible) in each tier separately. However, in
principle, downstream processes could access all patterning cues and not simply the final tier [40,41]. As
a result, extra readout tiers can be beneficial even when they carry very little information on their own.
To see this, consider the input-output function F; depicted in figure 3b. In some respects, it is more
realistic than the purely amplifying linear readout F; considered above, since real patterning systems
must operate within a limited global dynamic range of morphogen concentrations. Let 2*) be the
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morphogen profile established by the new F;-shaped readout of c:
2% = G [F2 @ + )] =2 () + 2230
eff

here 2M)(x) is the zigzag-shaped mean profile (cf. figure 3b; once again, we assume for simplicity that
the spatial component of averaging operator is sufficiently weak that its smoothing effect on the mean
profile shape can be neglected; for example, we can assume that averaging is predominantly temporal).
This morphogen 2™ has noise magnitude &, (same as the noise in ?:(A)), but is folded onto itself A times,
reminiscent of the spatially reiterated expression of genes involved in Drosophila axis segmentation.
Repeatedly using the same output values at multiple positions naturally reduces mutual information
between the output concentration and position:

Iraw[i()\)] = Iraw[a(x)] —Inx

and
Iacc[i%(”] = Iacc[e()‘)] —InA.

However, the A locations with identical concentrations of 2*) are made distinguishable by the
original morphogen ¢ (figure 3b; this statement invokes the small-noise assumption; see the electronic
supplementary material). Therefore, under the small-noise assumption, the joint information that the
original and the amplified profiles together provide about a cell’s location is the same for F; as it was
for Fy:

114, 2%, x] = I[{&, e}, x].

Replacing information content of a single profile by this joint information, our argument demonstrating
that amplification increases accessible information can now be repeated verbatim?, and we again find
that the extra readout is beneficial as long as (2.7) is satisfied (see electronic supplementary material for
more detail). Note, however, that on its own, 2*) may carry less information than the original morphogen
¢. The easiest way to see this is to compare their noise levels:

0o Negs op

If the effect of amplification is stronger than that of averaging, we find &) /op > 1. In this scenario, the
amplified profile 2*) has the same dynamic range but lower precision than the original morphogen ¢,
and therefore, on its own, carries less information (whether raw or accessible). This shows that evaluating
the usefulness of a particular cue from information-theoretic standpoint can lead to misleading results,
unless all other relevant cues (which are often hard to establish) are taken into account simultaneously.
Here, we demonstrated that systems can benefit from multi-tiered interpretation even in cases where
intermediate amplification steps occur at a net loss of information, increasing noise.

2.5. The multi-tier structure of Drosophila segment patterning increases information accessibility

To illustrate our theoretical point in a real system, we consider the AP axis patterning of Drosophila. In
this system, segmentation of the AP axis proceeds through four tiers of gene activity, termed maternal
gradients, gap genes, pair-rule genes and segment polarity genes [31]. The sequential activity of each
tier subdivides the naive blastoderm into smaller domains of gene expression with increasingly sharp
boundaries, culminating in the designation of each row of cells with its own unique set of expressed
genes (figure 4a). This process is subject to transcriptional noise with a large intrinsic component [37], as
well as several other noise sources with different signatures [34,42—-44]. No single value of 9 adequately
characterizes such readout noise. Nevertheless, we can gain important insight by computing accessible
information I7%[c.] as a function of ng, treating it as a variable parameter: the decay of I1%[c.] with
no characterizes the tolerance to added noise of the information encoded in a morphogen (or set of
morphogens) c,. Applied to gene expression data from the early Drosophila segmentation gene network,
this analysis will show how our simple model explains the use of multi-tier gradient interpretation in a
real system (figure 4).

We focus on a particular node in this network whereby, in early embryos, two gap genes, hb and
Kr, regulate a pair-rule gene eve. For 0.37 < xap < 0.47, where Kr and hb expression form opposing

2For multiple profiles {c?,c@, ...}, we define accessible information as the joint information content in the set of morphogen profiles,
independently corrupted with noise of magnitude 7o (compare with equation (2.4)): Licc ({c®, ¢®, .. .}) = Law ({c® + 7D, c@ + 5@, }).
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Figure 4. (a) Inmunostaining of three AP axis patterning genes in the same embryo. Rather than specifying cell fate directly, the ‘gap
genes’ such as hunchback (Hb; top) and Kriippel (Kr; middle) control ‘pair-rule” genes such as even-skipped (Eve, bottom). Both tiers
regulate other genes further downstream. Boxes indicate the selected ROI, where at this time, Hb and Kr are the only relevant inputs
to Eve, as shown in the cartoon. (b) Within the ROI (shaded), Eve exhibits higher expression noise than either Hb or Kr. Expression noise
computed as RMS difference between expression level of a nucleus and its immediate dorsal or ventral neighbour (see the electronic
supplementary material), plotted against AP distance from the Hb/Kr boundary (denoted xp). Error bars are standard deviation over
N = 8 embryos. (c) Idealized morphogen profiles, restricted to the RO. Profile shape obtained as smooth spline-fit to expression values
and noise magnitudes calculated for the profiles of panel (a) after projection onto the AP axis. (d) For all but the lowest readout noise
magnitude, joint accessible information content in the triplet (Hb, Kr, Eve) exceeds the accessible information provided by Hb and Kr
alone, even in an extreme hypothetical case when they are rendered entirely noiseless.

boundaries, they are jointly responsible for creating the trough between eve stripes 2 and 3; other inputs
to eve are negligible in this region at this time [45,46]. Protein levels are measured simultaneously in each
nucleus by a triple immunostaining experiment (figure 4a) in N =8 single embryos. We determine the
expression noise of each gene by comparing levels in a given nucleus with those of its immediate dorsal
and ventral neighbours (see the electronic supplementary material).

In the defined region of interest (ROI), eve expression noise is higher than the respective noise
in hb or Kr expression (figure 4b). The information content of eve must therefore be lower than that
carried by either of its two inputs. Due to the curvature of the embryo (figure 4a), the positional
information of a real morphogen is only approximately related to that derived from projection onto the
imaginary AP axis. Therefore, to estimate the information content for each of the three genes, we consider
‘idealized” Gaussian-noise profiles (figure 4c) with mean and noise obtained by smoothing the measured
values in real embryos. This approach neglects correlations in the fluctuations of these genes which
may be significant in practice [47]; this will not be an issue, as detailed below. The idealized profiles
are normalized to the same maximum and are, by construction, functions of xap carrying positional
information I(c(xap), xap). Restricted to the ROI, the information content of Hb and Kr is, respectively,
2.6 and 2.7 bits, whereas the larger noise of Eve reduces its information content to only 2.0 bits. Why, then,
does the system use Eve to regulate downstream processes, rather than utilizing Kr and Hb directly?

The answer becomes clear when we consider the accessibility of information encoded in these
morphogens, namely I1o. as a function of 5o (figure 4d). A patterning strategy lacking Eve can access
only Hb and Kr. Even if some hypothetical filtering mechanism could reduce their expression noise to
arbitrarily low level (in particular, making the correlation of noise between the two genes irrelevant), the
readout noise magnitude 19 > 0 imposes an upper bound that Io.[cpp, ck;] must satisfy. This corresponds
to the information in a hypothetical pair of noiseless Hb and Kr and cannot be achieved in practice; it is
a theoretical best-case scenario for any strategy lacking Eve.

When the readout noise 1y is zero, I/lo; coincides with the raw information content, which for perfectly
noiseless Hb and Kr would be infinite. However, as readout noise increases, the performance bound
becomes finite and drops quickly (figure 4d, black curve). This behaviour contrasts with the joint
accessible information of the triplet (Hb, Kr, Eve) (magenta curve) as calculated for the idealized profiles
using their actual measured noise. The accessible information content in the triplet is, of course, always
finite, but it is also more tolerant to readout noise: due to the steeper slopes of the Eve profile, as ng
increases, the accessible information content of the triplet (Hb, Kr, Eve) decreases slowly: importantly,
more slowly than the black curve. Therefore, a crossing point is observed, whose presence does not
qualitatively depend on the specifics of the readout noise model (e.g. absolute noise magnitude can be
replaced by fractional). Remarkably, although Eve is measurably noisier than either of its inputs, its
presence enables the system to access more information than could have been extracted from Hb and
Kr alone, even if these inputs could be rendered perfectly noiseless. In practice, the enhancers of the
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pair-rule genes also contain binding sites for maternal transcription factors [40,41], which may lead to
a further increase in the precision of gene expression. However, our framework demonstrates that even
if Eve were regulated by Hb and Kr only, and so were fully redundant in the standard information-
theoretic sense, the additional tier would still confer an advantage, because transcriptional regulation is
intrinsically noisy.

3. Discussion

The Drosophila patterning network has been described as performing a ‘transition from analogue to
digital specification” of cell identity [39]. The ‘digital’ metaphor has its limitations: even for Eve, the
graded distribution within gene expression domains contains information [8]; nevertheless, it expresses
the correct intuition that the final pattern is more tolerant to noise. Importantly, the standard information-
theoretic formalism does not capture this intuition: for instance, the profile depicted in figure 3b has
the same information content for all A. Noise tolerance—a critically important feature in biological
systems—becomes manifest only when the readout process is considered explicitly, for example, as
we have done in our definition of accessible information. This point is implicit in the theoretical work
investigating the so-called “input noise” [34], but has not been emphasized. This is because in a theoretical
discussion of an abstract biochemical circuit, the quantities for which information is computed are easily
postulated to be the complete input and the final output; in this manner, valid theoretical results can be
derived without a concern for information accessibility (for some recent examples, see [48,49]). However,
when information-theoretic arguments are applied to experimental data where the measured quantity
is only an intermediate step, e.g. a transcription factor regulating downstream events, the question
of information accessibility (the unavoidable input noise of the downstream circuit) can no longer
be neglected.

For example, it has been suggested that certain signalling circuits may have evolved towards optimal
information transmission [4,5]. Although the argument is plausible, applying it in practice requires
two conditions. First, information transmission must be calculated from the input to the entire set of
functional genes; in the case of developmental circuits, this means hundreds of cell-fate-specific targets.
Second, its optimization must be performed under some ‘bounded complexity” constraint: presumably,
information transmission could be enhanced if all regulatory elements were as complex as gap genes
enhancers of Drosophila with combinatorial, cooperative regulation.

Unfortunately, considering hundreds of genes is intractable, and the constraint on regulatory
complexity is hard to formulate. The usual, more economical approach to patterning recognizes that
the bulk of the patterning task is accomplished by only a small subset of dedicated, cross-regulated
genes that establish the pattern that all other genes can then interpret simply. If we focus only on this
core subset, the problem becomes tractable, and the ‘economy of complexity’ constraint is conveniently
imposed by construction. We must, however, realize that maximizing information transmission to the
target genes (downstream of the patterning core) imposes a different requirement than merely efficient
information transfer within the core itself. Instead, the core circuit must function as a format converter,
re-encoding information at its input into a format that can be accessed with a simpler and faster readout,
that of a patterning cue by a functional gene.

Curiously, it has been shown that in small networks with a realistic model of noise, maximizing
raw information transmission leads to network structures exhibiting features such as tiling of patterned
range with amplifying input/output readouts [50-52], i.e. features that tend to also make information
more accessible, even though the optimization scheme employed in these studies did not specifically
consider the encoding format. This remarkable coincidence, however, should not obscure the fact that
ultimately the two tasks—maximizing information transmission and re-encoding it in a more accessible
format—could be conflicting.

Information theory is a powerful tool; its formalism does not, however, aim to replace considerations
of what constitutes useful information or how it might be used by the system. As it is gaining popularity
in biological applications, it is important to remember that for a channel X+ Y, the relation between
mutual information I(X,Y) and the ability to use Y to determine X is only asymptotic: Shannon [17]
proved that it is the maximum rate of error-free communication via this channel, in the limit of infinite
uses of the channel. Importantly, in development and biological signalling, the number of channel uses
(e.g. integration time of the signal) is fundamentally finite [3]. Further, Shannon’s results assumed an
encoder/decoder of infinite computational power [17]. This asymptotic rate is never in fact achieved
in practice [53], but in biological context, performance is constrained even further, since the ‘encoding
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scheme’ is usually limited to measuring the same signal multiple times. In communication theory, this
is called a ‘repetition code” and is formally classified as a ‘bad code’, i.e. a code that does not attain
Shannon’s bound even asymptotically. This means that extracting all the ‘raw” information from a signal
is impossible even in principle. For example, a signalling pathway with capacity of 1 bit is never sufficient
to make a reliable binary decision [3], and therefore should not be conceptualized as a binary switch.
Taken narrowly, the results presented here explain an architectural property shared by multiple

patterning circuits responding to a graded signal. Perhaps more importantly, the example we construct
highlights a general theoretical point: assessing the usefulness of a signal must always take into account
the input noise of the downstream circuit interpreting this signal. Here, this type of noise manifests itself
in the distinction that we draw between ‘raw” and “accessible” information. Our definition of the latter
relied on a simplistic noise model; in general, encoding the effects of input noise in a re-defined notion of
information content is not possible. In general, quantifying the usefulness of information-bearing signals
in contexts where channel uses are limited will require reinstating considerations of rate/fidelity trade-
off, which Shannon could eliminate by taking the limit of infinite-time communication. Nevertheless,
information theory remains a most adequate framework to address these issues, provided its limitations
are understood.
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