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ON THE ACCURACY OF POISSON'S FORMULA BASED N{BODY

ALGORITHMS

�

Y. CHARLIE HU

y

AND S. LENNART JOHNSSON

z

Abstract. We study the accuracy{cost tradeo�s of a Poisson's formula based hierarchical

N{body method. The parameters that control the degree of approximation of the computational

elements and the separateness of interacting elements, govern both the arithmetic complexity and

the accuracy of the method. Empirical models for predicting the execution time and the accuracy of

the potential and force evaluations for three-dimensional problems are presented. We demonstrate

how these models can be used to minimize the execution time for a prescribed error and verify the

predictions through simulations on particle systems with up to one million particles. An interesting

observation is that for a given error, de�ning the near{�eld to consist of only nearest neighbor

elements yields a lower computational complexity for a given error than the two{element separation

recommended in the literature. We also show that the particle distribution may have a signi�cant

impact on the error.

Key words. N{body simulation, multipole algorithms, hierarchicalN{body methods, numeri-

cal simulation

AMS subject classi�cations. 65C99, 65G99, 70{08, 70F10

1. Introduction. Although O(N ) N{body methods [1, 8, 7, 6, 21, 20] are su-

perior to the direct O(N

2

) methods in terms of arithmetic complexity for large scale

simulations, they have yet to gain widespread acceptance. There are several reasons

for this. First, though the break{even point compared to the direct method occurs

at a few tens of thousands of particles in three dimensions, signi�cant gains is only

achieved for systems of a hundred thousand particles or more when good accuracy is

required. For large particle systems, e�cient parallel implementations are required

both with respect to memory and processing speed even if the arithmetic complex-

ity grows in proportion to the number of particles. Thus, one issue that is limiting

their rapid acceptance is their complex computational structures relative to the direct

method ampli�ed by the need for e�cient parallel computer implementations. An-

other important reason for the slow acceptance of the O(N ) methods is the limited

understanding of the error behavior of such methods, especially of the accuracy{cost

tradeo�s with respect to the parameters that control the errors and the arithmetic

complexity. A third limiting factor is that further algorithmic development is nec-

essary to cover the range of boundary conditions encountered in applications. Most

algorithmic developments and parallel computer implementations have focused on

applications with free space boundary conditions.

Like the multi{grid methods [3], the multipole{based N{body methods, or their

variations, are approximation methods. For all these methods higher accuracy can be

achieved at increased computational e�ort. Though the computational time is directly

proportional to the number of particles, the constant of proportionality depends upon

the desired accuracy.
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There are four sources of errors common to all the multi{pole like O(N ) N{body

methods:

1. Approximation errors in representing computational elements that represent

the aggregate e�ect of clusters of particles by �nite series expansion. Green-

gard and Rokhlin (GR) [6, 7], and Zhao [21] give error bounds on truncated

multipole expansions for individual computational elements as a function of

the number of terms in the expansions. Similarly, Anderson [1] provides some

insights into the error characteristics of methods based on Poisson's formula,

but no rigorous bounds. Clearly, the degree of approximation directly a�ects

the arithmetic complexity in evaluating element interactions, and therefore

that of the complete methods.

2. The de�nition of the near{�eld (and hence the far{�eld), i.e., the separateness

of interacting computational elements, determines the numbers of near{�eld

and interactive{�eld computational elements. The hierarchical evaluation

of interactive{�eld computational elements and the direct evaluation in the

near{�eld at the leaf{level are two computation dominating stages of O(N )

N{body methods. The degree of separateness also determines the base con-

stant of the exponentially growing error bound.

3. With near{�elds consisting of two or more computational elements in each

coordinate direction, the computational e�ort can be reduced through the use

of supernodes, i.e., the interactions of all child elements of a node with a given

element is replaced by the interaction of the parent node with that element,

or conversely, the interaction of a given element with all child elements of

a node is replaced by the interaction of the given element with the parent

element. Supernodes introduces additional errors.

4. Finite machine precision leads to round{o� error. The sensitivity to the

round{o� error in the direct evaluation in the near{�eld and in the hierarchy

traversal is not necessarily the same.

Note that the direct method only su�ers from round{o� errors, while the contri-

butions to the total error in the hierarchical methods are quite complex. For instance,

the evaluation of the near{�eld potentials and/or forces via the direct method is sub-

ject only to round{o� error, while the error in the evaluation of the far{�eld potentials

and/or force via hierarchy traversal is due to all issues raised above. Thus, varying the

hierarchy depth changes the proportion of particles in the near{�eld and in the far{

�eld, and therefore may a�ect the error of the hierarchical methods. The hierarchy

depth also directly a�ects the total number of arithmetic operations.

In using the Poisson's formula based method introduced by Anderson [1], sphere

integration introduces one more source of error.

The main contribution of this paper are empirical models for the error as a func-

tion of the approximation parameters of the Poisson's formula based nonadaptive

method by Anderson. We demonstrate how to use these models to minimize the

execution time for a desired accuracy and illustrate the sensitivity of the models to

particle distribution. Our study shows that using near{�elds consisting of only near-

est neighbor computational elements minimizes the number of arithmetic operations

(and execution time) for a given accuracy.

We devised some simple model distributions in studying the impact of the parti-

cle distributions on the error. Our experiments show that the accuracy may degrade

signi�cantly for nonuniform distributions. We observed an accuracy degradation by

a factor of six for one variation of the uniform distribution. This range is an illus-
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tration of the impact of the particle distribution, not a bound on the range. The

more nonuniform the particle distribution is with respect to the center of the spheres,

the less accurate the method will be. Enlarging the outer spheres, which intuitively

will smooth out the integrations, improves the accuracy. With respect to the radii

of spheres used in the integration required in using Poisson's formula for the compu-

tational elements, we numerically verify the optimum choices given by Anderson for

uniform particle distributions.

The empirical study reported in this paper was performed on the Connection Ma-

chine system CM{5E using a data{parallel implementation of Anderson's method [10].

Using an e�cient implementation of the direct method, we are able to verify the accu-

racy and the accuracy{cost tradeo�s of Anderson's method via simulations of systems

of up to one million particles within reasonable execution time. To our knowledge,

this is the �rst numerical veri�cation of the accuracy of Anderson's method.

The paper is organized as follows. Section 2 describes the parameters common

to all multipole{like O(N ) N{body methods. Section 3 details the computational

elements of Anderson's multipole method. Section 4 describes the simulation envi-

ronment and de�nes how the simulation errors are determined. Section 5 discusses the

accuracy{cost tradeo�s of Anderson's method, and Section 6 presents experimental

results on the choices of sphere radii in Anderson's method and their impact on the

error for small variations of the uniform particle distribution. Section 7 summarizes

the paper.

Previous work. Table 1.1 lists the parameter choices used in some previous im-

plementations of multipole{like methods. All simulations but the ones by Greengard{

Rokhlin used uniform distributions. Greengard and Rokhlin [6], and Zhao [21] nu-

merically examined the accuracy of their respective methods as a function of the

number of terms retained in the multipole expansions, and the number of particles.

Schmidt and Lee [16] examined the accuracy and the execution time for a few combi-

nations of hierarchy depth and number of terms in the multipole expansions for a 3{D

GR method with one{separation (i.e., the near{�eld consists of only nearest neigh-

bor elements). Shimada et al. [17] examined a few combinations of hierarchy depth,

one{separation and two{separation (i.e., the near{�eld consists of nearest neighbor el-

ements and their nearest neighbors as well). Using a shared{memory implementation

of the GR method, Leathrum [13] numerically examined the tradeo�s between the

accuracy and the execution time for six combinations of the degree of separation and

the use of supernodes, namely, one{separation, two{separation, one{two{separation

(two{separation for the leaf{level and one{separation for the rest of the hierarchy),

and the same simulations using supernodes. The simulations were performed for only

10,000 particles with a hierarchy depth of three for all simulations. The simulations

showed that two{separation with supernodes gives the smallest execution time for any

speci�ed error less than 0.0002, while one{separation without supernodes gives the

smallest execution time for errors between 0.0002 and 0.0005. One{separation with

supernodes gave signi�cantly worse execution time than the other approximations for

a wide range of errors. Esselink [5] studied the arithmetic complexity, accuracy and

execution times on uniprocessors for the GR method, Appel's method, a combinations

of the two, and Ewald's summation method. Limited by the memory, he performed

simulations for up to 92,762 particles with hierarchy depths two, three, and four.

2. Parameters in multipole{likehierarchicalN{body methods. Multipole{

like hierarchical methods [1, 2, 6] for the N{body problem partition the potentials
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Table 1.1

Characteristics of some previous implementations of multipole{like O(N) N -body methods.

Author Method Degree of Use of Hierarchy

separation supernodes depth

Greengard{Rokhlin [7, 9] GR 2 No blog

N

8

c

Zhao [21] Zhao 2 Yes blog

N

8

c

Schmidt{Lee [16] GR 1 No 3,4,5

Shimada et al. [17] GR 1,2 No log

N

8

Leathrum [13] GR 1,2,mixed 1 and 2 Yes and No blog

N

8

c

Esselink [5] GR 2 Yes 2,3,4

into two parts:

�

total

= �

near�field

+ �

far�field

;(2.1)

where �

near�field

is the potential due to nearby particles and �

far�field

is the poten-

tial due to faraway particles. The near{�eld is evaluated through the classical N{body

technique of pairwise interactions, while the far{�eld is evaluated hierarchically.

The multipole{like O(N ) methods share the same computational structure, but

di�er in the computational elements they use. There are four parameters in these

methods that govern both the errors and the arithmetic complexity: the truncation

error in representing computational elements by �nite series expansions, the degree

of separation of the near{�eld, the use of supernodes, and the hierarchy depth. The

later three controls the computational structure. In the typical error bounds O(c

�p

)

of O(N ) methods, p is the error decay rate (related to the truncation error), and

the base constant c is controlled by the separateness of interacting computational

elements.

2.1. Parameters in computational elements. There are two key ideas in

hierarchical methods that lead to reduced arithmetic complexity. The �rst is to rep-

resent a cluster of particles su�ciently far away from an evaluation point by a single

computational element, called far{�eld potential representation. The exact repre-

sentation of computational elements would require an in�nite number of terms in

multipole expansions or in Poisson's formula (Anderson), and hence, in practice must

be truncated to a �nite number of terms. The O(N ) methods also introduces a local{

�eld potential representation { a second kind of computational element. This element

approximates the potential �eld in a \local" domain due to particles in the far domain.

Table 2.1 summarizes the computational elements in Barnes{Hut's [2]O(N log

2

N )

method, and the O(N ) methods by GR [6], Zhao [21], and Anderson [1], and the co-

ordinate systems used. The relationship between the truncation error, or error decay

rate, p in the methods by GR and by Zhao, and the integration order and number of

integration points K in Anderson's method is discussed in Section 2.4.

In O(N ) methods, three kinds of translations on the computational elements

are performed during the hierarchy traversal, as shown in Figure 2.1(b){(d). In all

implementations so far, the translations are between far{�eld potentials or local{�eld

potentials with the same truncation order. The error bounds of the three translations

given below for multipole{based methods are proved by Greengard{Rokhlin [8, 7],

and Zhao [21], and are summarized in Table 2.2. The errors of the translations in

Anderson's method are expected to have similar form [1], and is described in detail

in Section 3.

� T

F2F

: shifting a far{�eld potential representation centered at o with radius

� to a new center o

0

at a distance a away, as shown in Figure 2.1(b). In
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Table 2.1

Computational elements of four hierarchical methods. p denotes the number of terms retained

in the GR and Zhao's methods, while K denotes the number of integration points in Anderson's

method.

Method Dim Computational Element Coordinate Translation Cost f(p)

Barnes{Hut 2{D/3{D center of mass Cartesian

Greengard{ 2{D multipole/local Complex O(p

2

), O(p logp) with FFT

Rokhlin expansions

3{D multipole/local Spherical O(p

4

), O(p

2

logp) with FFT

expansions

Zhao 3{D multipole/local expansions Cartesian O(p

6

)

Anderson 2{D outer/inner ring Cartesian O(K

2

)

approximations

3{D outer/inner sphere Cartesian O(K

2

)

approximations

.
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Fig. 2.1. The three translations in O(N) hierarchical N{body methods.

multipole{based methods, the coe�cients of the new p{term multipole ex-

pansion can be computed exactly in exact arithmetic from the coe�cients of

the original p{term multipole expansion. Thus, no approximation error is

introduced, only round{o� errors. The relative error in evaluating the new

multipole expansion at an evaluation point at distance r from the new center

is bounded by (

�+a

r

)

p

.

� T

F2L

: converting a far{�eld potential representation centered o

0

to a local{

�eld potential representation centered at o at a distance r away from o

0

,

as shown in Figure 2.1(c). Each coe�cient in the local expansion depends

on all coe�cients of the far{�eld multipole expansion, and therefore cannot

be computed exactly from a �nite term far{�eld expansion, even in exact

arithmetic. The truncation of the far{�eld representation induces an error in

local{�eld expansion. If the coe�cients of the p{term local expansion were

computed exactly, i.e., computed from an in�nite far{�eld expansion with no
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Table 2.2

Three translations and their error bounds in multipole{based methods.

Translation Coe�cients in p{term Relative error

to p{term translation

T

F2F

exact (

�+a

r

)

p

T

F2L

not exact (

a

r

)

p

if coe�cients are exact

T

L2L

exact (

�

r

0

)

p

if coe�cients in T

F2L

are exact

round{o� error, then the relative error from evaluating the local{�eld at any

evaluation point inside a sphere of radius a would be bounded by (

a

r

)

p

.

� T

L2L

: shifting a local{�eld potential representation centered at o to be cen-

tered at o

0

, as shown in Figure 2.1(d). The coe�cients of the new p{term

local expansions can be computed exactly from the coe�cients of the original

p{term local expansions in the absence of round{o� errors. No approximation

error is introduced in the shifting operation. The error in evaluating the new

local expansion at an evaluation point at a distance � from the new center is

bounded by (

�

r

0

)

p

, if the original p{term local{�eld potential were a correct

p{term expansion. However, since the original local expansion is not exact

due to its derivation from a truncated far{�eld potential representation, the

error bound is not guaranteed to be an upper bound.

Using the two types of computational elements and the three types of translations,

the multipole{like hierarchical methods transform the interactions among particles

that are well separated into interactions among particles and computational elements

(in the BH method) [2] or among computational elements (in the multipole{likemeth-

ods) [1, 7].

2.2. Parameters in computational structure. The second key idea in the

hierarchical methods is hierarchical formation and evaluation of the computational

elements.

Hierarchical methods divides the computational domain into a hierarchy of sub-

domains (meshes) (see Figure 2.2). Mesh level 0 represents the entire domain (box).

Mesh level l + 1 is obtained from level l by subdividing each subdomain at level l

(parent box) into four (in two dimensions) or eight (in three dimensions) equally sized

subdomains (child boxes). In an adaptive method, only subdomains with su�ciently

many particles are further subdivided. Boxes that are not further subdivided are

leaves. Hierarchical methods can be easily extended to rectangular domains in two

dimensions and parallelepipedic domains in three dimensions [1].

The multipole{likeO(N ) methods distinguish between three regions with respect

to each subdomain (box) in the hierarchy. The de�nition of the three regions has

a signi�cant impact on the constant in the asymptotic arithmetic complexity. In

the original formulation of multipole{based methods [8, 7], the near{�eld is de�ned

as those subdomains that share a boundary point with the considered subdomain

in two dimensions, and those subdomains which share a boundary point with the

considered subdomain and second nearest neighbor subdomains which share a bound-

ary point with the nearest neighbor subdomains in three dimensions. We denote

these two kinds of near{�elds as one{separation (1{Sep) and two{separation (2{Sep)

neighborhoods, respectively. In general, the d{separation near{�eld in two and three

dimensions contain (2d+1)

2

�1 and (2d+1)

3

�1 subdomains, respectively. The far{

�eld of a subdomain is the entire domain excluding the subdomain and its near{�eld

subdomains. The interactive{�eld of a subdomain at level l is the part of the far{�eld
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Fig. 2.2. Recursive domain decompositions, the near{�eld, and the interactive{�eld in two

dimensions.

that is contained in its parent's near{�eld. In three dimensions, these de�nitions yield

7(2d+1)

3

interactive{�eld subdomains (a 2(2d+1)�2(2d+1)�2(2d+1) subdomain

excluding the near{�eld and the box itself).

In [21], Zhao de�nes the near{�eld according to the distance between individual

boxes and the box under consideration. The interactive{�eld and far{�eld are de�ned

accordingly. Under this de�nition, there are only 81 near{�eld and 567 interactive{

�eld boxes in three dimensions.

Hierarchical methods can be abstracted in terms of three functions G;�;	, the

three aforementioned translation operators T

F2F

; T

F2L

and T

L2L

, and a set of recur-

sive equations. G is the potential function in an explicit Newtonian formulation, �

l

i

is the contribution of subdomain i at level l to the potential �eld in domains in its

far{�eld. 	

l

i

represents the contribution to the potential �eld in subdomain i at level

l due to particles in subdomain i's far{�eld region, i.e., the local{�eld potential in

subdomain i at level l. We assume all �

l

i

and 	

l

i

are computed using computational

elements of the same approximation order. The computational structure is described

as follows by Katzenelson [12]:

Algorithm: (A generic hierarchical method)

1. Compute �

h

i

for all boxes i at the leaf level h.

2. Upward pass: for l = h� 1; h� 2; :::; 2, compute

�

l

n

=

X

i2fchildren(n)g

T

F2F

(�

l+1

i

):

3. Downward pass: for l = 2; 3; :::; h, compute

	

l

i

= T

L2L

(	

l�1

parent(i)

) +

X

j2finteractive�field(i)g

T

F2L

(�

l

j

):

4. Far{�eld: evaluate local{�eld potential at particle k inside every leaf{level

subdomain

�

k; far�field

= 	

h

box(k)

(k):

5. Near{�eld: evaluate the potential �eld due to the particles in the near{�eld of

leaf{level subdomains, using a direct evaluation of the Newtonian interactions
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with nearby particles,

�

k; near�field

=

X

j2fnear�field(box(k))g

G

j

(k):

2.2.1. Errors. In multipole{basedmethods, Step 1 computes p{term expansions

at the leaf{level thereby introducing a truncation error and is subject to round{o�

errors as well. Step 2 computes p{term expansions at all the nonleaf levels and is

subject only to roundo� errors. Step 3 evaluates the local expansions at all the

levels; the goal is to compute the local expansions at the leaf{level. The coe�cients

of the local expansions are subject to errors induced by the truncation of the far{

�eld representation, which are accumulated during T

L2L

translations. The local{�eld

representation introduces new truncation errors by being themselves �nite expansions,

and are subject to round{o� errors. Like T

F2F

, T

L2L

is only subject to round{o�

errors. If the p{term local expansions obtained from the far{�eld expansions were

exact p{term expansions, then the relative error in the evaluation of local expansions

at particles inside the leaf{level subdomains would be bounded by ((2d+2)=

p

3�1)

�p

using d{separation near{�elds. But, since the p{term expansions are not exact due

to truncation errors a�ecting each coe�cient and round{o� errors, the upper bound

for the error is at least ((2d + 2)=

p

3� 1)

�p

. Therefore, in the rest of the paper, we

simply refer to this bound as the error estimate. Step 5 evaluates the potential due

to near{�eld particles using the direct method, incurring only round{o� errors.

Although varying the hierarchy depth does not change the separateness of inter-

acting computational elements, it changes the portion of the particles in the near{�eld

and far{�eld. Since the contribution from the particles in the two �elds are computed

di�erently, the overall error may di�er with the hierarchy depth.

Note that in hierarchical methods, it may be bene�cial to use higher order approx-

imations for the far{�eld potentials than for the local{�eld potentials, since accuracy

is lost in the far{�eld to local{�eld potential conversion.

2.2.2. Arithmetic operations. For N uniformly distributed particles and a

hierarchy of depth h having 8

h

leaf{level boxes, the numbers of operations required

for the �ve stages of the above generic hierarchical method are listed in Table 2.3.

It can be easily derived that the total number of arithmetic operations is minimized

when

8

h

�

p

N

near

=N

int

f(p) �N;(2.2)

i.e., number of particles in each leaf{level box is independent of N . We term the

hierarchy depth that minimizes the total number of arithmetic operations the optimal

hierarchy depth. Since the hierarchy depth can only be integer, the optimal hierarchy

depth is either blog

8

p

N

near

=N

int

f(p) �Nc or dlog

8

p

N

near

=N

int

f(p) �Ne, whichever

yields fewer total arithmetic operations. Clearly the optimal hierarchy depth bal-

ances the arithmetic operations at the two computation{dominant stages, namely,

the downward pass and the direct evaluation in the near{�eld, since their arithmetic

operation counts are proportional to 8

h

and N

2

=8

h

, respectively. Ignoring the in-

signi�cant terms at the other three stages, the total arithmetic operation count at the

optimal hierarchy depth is O(

p

N

near

�N

int

� f(p) �N ), i.e., linear in the square root

of translation costs.

Lowering the degree of separation of the near{�eld can result in signi�cantly

reduced arithmetic complexity. For example, the constant

p

N

near

�N

int

is reduced
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Table 2.3

Arithmetic operations for the �ve stages of multipole{like hierarchical methods. g(p) rep-

resent the computational cost as a function of the truncation order in establishing the compu-

tational elements. f(p) represents the translation cost. N

int

and N

near

are the numbers of

interactive{�eld boxes and near{�eld boxes for interior nodes, respectively. Without using supern-

odes, N

near

= (2d+ 1)

3

and N

int

= 7(2d+ 1)

3

for d{separation near{�elds in three dimensions.

Stage Arithmetic operations

Init{potential O(g(p) �N)

Upward pass O(f(p) � 8

h

)

Downward pass O((N

int

� f(p) + f(p)) � 8

h

)

Far{�eld O(g(p) �N)

Near{�eld O(N

near

�N

2

=8

h

)

Minimized total O((g(p)+

p

N

near

�N

int

� f(p)) �N)

Table 2.4

The impact of using supernodes on arithmetic complexities and analytic error bounds of

multipole{like O(N) methods in three dimensions.

N

near

N

int

p

N

near

�N

int

Error bound

1{Sep 27 189 71 1:3

�p

1{Sep/supernode 27 56 39 1

�p

2{Sep 125 875 331 2:5

�p

2{Sep/supernode 125 189 154 2:1

�p

3{Sep 343 2401 907 3:6

�p

3{Sep/supernode 343 315 329 2:8

�p

by a factor of 4:6 by changing the separateness from two{separation to one{separation.

The reduced separation will lower the base in the error estimate ((2d+ 2)=

p

3� 1)

�p

and therefore increase the error for a �xed p.

2.3. Supernodes. The use of supernodes [9, 21] reduces the e�ective value of

N

int

for a given separation, which brings about a dramatic improvement in the overall

performance.

In [21], Zhao observes that for two{separations in three dimensions, there are

many groups of eight sibling nodes of common parents in the the 567 interactive{

�eld boxes of a destination box for the far{�eld to local{�eld conversion. Zhao then

suggests converting the far{�eld of the parent node instead of the far{�eld of all

eight sibling nodes, as shown in Figure 2.3. In this case, 488 parent nodes have all

their children in the interactive{�eld, and using the concept of supernodes reduces

the number of far{�eld to local{�eld conversions per destination node from 567 to

140. In GR's method in three dimensions, using supernodes reduces the number of

interactive{�eld interactions per box from 875 to 189.

The idea of using supernodes can be generalized to any degree of separation.

Table 2.4 lists the impact of using supernodes on arithmetic complexities and error

bounds for one{, two{, and three{separations. If good error estimates were known,

then for any given method that uses an optimal hierarchy depth and whose translation

cost f(p) is known, the tradeo� between arithmetic operations (cost) accuracy could

easily be derived. Our simulations shows that for Anderson's method the error bounds

are not useful as predictors of the actual error, neither with respect to the dependence

on the truncation order nor with respect to the base constant. A discussion of our

empirical models is given in Section 5.
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o’o
α r1

2r

α =2.51r
α = 2.1r2

Fig. 2.3. A supernode in the fast multipole

method with two{separation.

α
1r

r2
o

o’

α =3.61r
α = 2.8r2

Fig. 2.4. A supernode in the fast multipole

method with three{separation.

2.4. A comparison of multipole{like O(N ) hierarchical methods. Ta-

ble 2.5 summarizes the arithmetic complexities of GR's and Anderson's methods in

three dimensions using the optimal hierarchy depth for the uniform particle distri-

bution. In GR's method, multiplications of translation coe�cients which are inde-

pendent of multipoles can be precomputed. Analogously, for Anderson's method,

translation coe�cients can be precomputed. Note that precomputation requires ex-

tra storage for precomputed data.

A direct comparison of the computational e�ort required by the di�erent hierar-

chical methods for a given level of accuracy is clearly of interest. The lack of good

error estimates for all considered methods unfortunately prevents such a comparison

at this time. For uniform particle distributions, we develop in Section 5 empirical

models for the errors in Anderson's method. Due to the unavailability of codes for

GR's or Zhao's methods for 3{D problems we have not been able at this time to make a

direct comparison of how the parameters of the di�erent methods relate to each other.

The few results we fond in the literature are given in Table 2.4. These results suggest

that for a given desired error, GR's method requires a higher order approximation

than Anderson's method, and therefore potentially more arithmetic operations than

Anderson's method. Assuming the same base constant and p = D=2+ 2 as suggested

by Anderson does not seem to be sensible.

3. Computational elements in Anderson's method. Anderson [1] uses

Poisson's formula for representing solutions of Laplace equation, which results in

computational elements that are simple to translate. Another advantage is that the

computations in two and three dimensions are very similar. Therefore, a code for

three dimensions is easily obtained from a code for two dimensions, or vice versa.

Let g(x; y; z) denote potential values on a sphere of radius a, and 	 denote the

harmonic function external to the sphere with these boundary values. Given a sphere

of radius a and a point ~x with spherical coordinates (r; �; �) outside the sphere, let

~x

p

= (cos(�)sin(�); sin(�)sin(�); cos(�)) be the point on the unit sphere along the

vector from the origin to the point ~x. The potential value at ~x is (equation (14) of
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Table 2.5

The optimum number of arithmetic operations per particle for 3{D hierarchical N{body methods

for uniform particle distributions. SQRT and DIV are normalized as four oating{point operations

[16]. m is the number of particles per leaf{level box that minimizes the total number of arithmetic

operations. The optimal hierarchy depth h is either blog

8

N

m

c or dlog

8

N

m

e, whichever yields a smaller

arithmetic operation count. Only high order terms are included. Thus, the formula are valid for

large N , e.g. N > 100;000. Zhao's method requires much more arithmetic operations than GR's

method and is not listed here. Note that for the same method, di�erent separations yields di�erent

optimal number of particles per leaf{level box, and hence a di�erent optimal number of oating{point

operations per particle.

FFT Precomputation optimalm FLOPs/particle at

N

8

d

= m

GR : 2{Sep

N Y 2:523(p+ 1)

2

6370(p+ 1)

2

N N 2:958(p+ 1)

2

7463(p+ 1)

2

Y Y 7:174p 18105p

Y N 12:5p

p

1 + 0:41log

2

p 31425p

p

1 + 0:41 log

2

p

GR : 2{Sep/superd3

N Y 1:172(p+ 1)

2

2973(p+ 1)

2

N N 1:375(p+ 1)

2

3484(p+ 1)

2

Y Y 3:398p 8613p

Y N 5:84p

p

1 + 0:41log

2

p 14682p

p

1 + 0:41 log

2

p

Anderson : 2{Sep

Y 1.26K 3280K

N 0:893K

p

6M + 8 2245K

p

6M + 8

Anderson : 2{Sep/superd3

Y 0.589K 1590K

N 0:416K

p

6M + 8 1046K

p

6M + 8

Anderson : 1{Sep

Y 1.26K 810K

N 0:887K

p

6M + 8 491K

p

6M + 8

Table 2.6

Comparison of published accuracy results. For p = D=2 + 2 as suggested by Anderson, his

method yields a more accurate result than the multipole{based methods. 2{Sep/superdi denotes that

supernodes are being invoked at level i and successive levels towards the leaves.

Distribution Anderson, D = 14 GR, p = 8 Zhao, p = 9

1-Sep 2-Sep/superd4 1-Sep 2-Sep/superd3

N=1000, uniformly dist. & 1.2e-05 6.1e-06 9.7e-05

charged, RMS force [21]

N=40000, uniformly dist., 5.4e-5 1.6e-05 1.2e-04

random charges in [-1,1],

RMS potential [16]

[1])

	(~x) =

1

4�

Z

S

2

"

1

X

n=0

(2n+ 1)(

a

r

)

n+1

P

n

(~s � ~x

p

)

#

g(a~s)ds;(3.1)

where the integration is carried out over S

2

, the surface of the unit sphere, and P

n

is

the nth Legendre function.

Given a numerical formula for integrating functions on the surface of the sphere

with K integration points ~s

i

and weights w

i

, the following formula (equation (15) of
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(a) Translations TF2F and T L2L
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(b) Translation T F2L

Fig. 3.1. Translations as evaluations of the approximations

[1]) is used to approximate the potential at ~x:

	(~x) �

K

X

i=1

"

M

X

n=0

(2n+ 1)(

a

r

)

n+1

P

n

(~s

i

� ~x

p

)

#

g(a~s

i

)w

i

(3.2)

This approximation is called an outer{sphere approximation. Note that in this

approximation, two approximations are made compared to Equation (3.1): the series

is truncated, and the integral is evaluated with a �nite number of terms.

The approximation used to represent potentials inside a given region is (equation

(16) of [1])

	(~x) �

K

X

i=1

"

M

X

n=0

(2n+ 1)(

r

a

)

n+1

P

n

(~s

i

� ~x

p

)

#

g(a~s

i

)w

i

(3.3)

and is called an inner{sphere approximation.

The outer{sphere and the inner{sphere approximations de�ne the computational

elements in Anderson's hierarchical method. Clustering is �rst done at the leaf{level,

as in the generic method; outer{sphere approximations are constructed for clusters

of particles in the leaf{level boxes. During the upward pass, outer{sphere approx-

imations of child boxes are combined into a single outer{sphere approximation of

their parent box (T

F2F

). This combining operation is particularly simple to imple-

ment; one simply evaluates the potential induced by the component outer{sphere

approximations at the integration points of the parent outer{sphere approximation,

as shown in Figure 3.1. The situation is similar for the other two translations used

in the method, which are shifting a parent box's inner{sphere approximation to add

to its children's inner{sphere approximations (T

L2L

) and converting the outer{sphere

approximations of a box's interactive{�eld boxes to add to the box's inner{sphere

approximation (T

F2L

).

3.1. Parameters in sphere approximations. The integration order for the

sphere approximations determines the choices of K, M , and a, i.e., the integration

order a�ects the truncation of the series expansion. Table 3.1 lists the relationships

among the parameters and the expected error decay rate in the approximation of a

single element in Anderson's method, as given in [1].

A suitable value for K depends upon the choice of integration method, and re-

quired accuracy. The traditional integration methods based on a product grid, which

typically use trapezoidal integration in the � direction and Gaussian quadrature in

the � direction, are ine�cient since the integration points are crowded near the poles.
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Table 3.1

Parameter selections and expected and veri�ed errors of outer/inner sphere approximations in

Anderson's method. � is the side length of a box.

Order of K M �

0

=

a

outer

�



0

=

�

a

inner

Expected error Avg. error

integration D (� D/2) decay rate (M+2) decay rate

5 12 2 10 2 4 3.95

7 24 3 7 2 5 5.68

9 32 4 5 2 6 8.85

11 50 5 2.5 2 7 7.32

14 72 7 2 2 9 8.90

Anderson chose to use integration formulas from a non{product family, as described

in [15]. The 5th, 7th, 9th, 11th, and 14th order integration formulas require 12, 24,

32, 50, 72 integration points, respectively.

A suitable choice of M is related to the choice of the order of the integration

method. In fact, aliasing occurs if there are more terms in the series expansion than

can be resolved by the sampling points used in the integration. Anderson showed

that if an integration formula for the sphere of degree D is used, then an appropriate

choice for M is M �

D

2

. The reason is that for a function on the sphere comprised of

spherical harmonics of degree m, the spherical expansion coe�cients of this function

can be determined exactly by an integration formula with accuracy of degree 2m.

Finally, a, the radius of the sphere of integration for each computational element

must be determined. If the particles are centered within a sphere of radius �, we

can choose any radius a � � for the sphere of integration for computational elements

representing outer{sphere approximations. For the outer{sphere potential approxi-

mation of the �elds of a collection of particles inside a sphere of radius �, the error at

distance r > � from the center of the sphere is O(

�

r

)

M+2

. The expected error decay

rate M + 2 and the actual error decay rate of single sphere approximation observed

by Anderson in his sequential code are listed in Table 3.1. The larger the value of a,

the smoother the potential values at the integration points, and the smaller the error

in the evaluation of outer{sphere approximations. On the other hand, for very large

values of a the fact that oating{point accuracy is of limited precision could result

in loss of numerical accuracy in accumulating terms. Anderson suggested that the

proper choice of a for the outer{sphere approximations is a = 2�, and that for the

inner{sphere approximations a = �=2 shall be used. In our simulations, unless stated

otherwise, we use the outer sphere radii listed in Table 3.1.

3.2. Translations as matrix{vector multiplications. The translations in

Anderson's method can be performed as matrix{vector multiplications. A �eld ap-

proximation (equation (3.2) or (3.3)) can be rewritten as

�( ~x

j

) �

K

X

i=1

f(~s

i

; ~x

j

) � g(a~s

i

); j = 1;K;(3.4)

where f(~s

i

; ~x

j

) represents the inner summation in the original approximation. f(~s

i

; ~x

j

)

is a function of the vector ~s

i

from the origin of the source sphere to its ith integration

point and the vector ~x

j

from the origin of the source sphere to the jth integration

point on the destination sphere. The evaluation of the �eld at an integration point on

the destination sphere due to the �eld values at all integration points on the source

spheres is an inner{product computation. Hence, the evaluation of the �eld at all
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Fig. 3.2. Supernodes in Anderson's method.

integration points on the destination sphere due to the �eld values at all the inte-

gration points of the source sphere constitutes a matrix{vector multiplication, where

the matrix is of shape K �K. We refer to this matrix as a translation matrix. The

entries of the translation matrix only depends on the relative locations of the source

and destination spheres. Thus, for each translation operator, the set of translation

matrices at di�erent levels of the hierarchy are all the same. Many translation ma-

trices within a given level are also identical. Hence, they can be precomputed. Each

translation can be performed as a matrix{vector multiplication requiring 2K

2

oper-

ations. Furthermore, translations for boxes at the same level can be aggregated and

performed as collections of matrix{matrix multiplications (multiple{instance matrix{

matrix multiplication) for higher e�ciency (see [10] for details.)

3.3. Supernodes in Anderson's method. The fact that translations in An-

derson's method, e.g., T

F2L

, are evaluations of the sphere approximations leads to a

di�erent way of using supernodes. The error in evaluating an outer{sphere approxima-

tion (equation (3.2)) with the series expansion truncated after M terms is O(

�

r

)

M+2

,

where � is the radius of the sphere containing the particles and r is the distance of

the evaluation point from the center of the sphere [1]. Therefore, it is desirable to

perform the conversion from a small sphere to a large sphere. Speci�cally, if a box in

the interactive{�eld is common to all sibling nodes of a parent, then the conversion

is made with the parent box as a target instead of the sibling boxes, as shown in

Figure 3.2. The converted local{�eld is added to the local{�eld of the parent. When

all such conversions have been made, the local{�eld is passed to each of the children

through the eight translation operations T

L2L

, and the local{�eld conversions from

the remaining interactive{�eld boxes are added. This way of using supernodes is dual

to the supernodes in multipole{based methods, and the reduction in N

int

remains the

same.

4. Simulation environment and error de�nitions. The empirical evaluation

in this paper were performed on the Connection Machine system CM{5E using our

data{parallel implementation of a nonadaptive version of Anderson's method [10].

The code is written in Connection Machine Fortran (CMF) [18] with subroutine calls

to the Connection Machine Scienti�c Software Library (CMSSL) [19] for nodal BLAS
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operations. Detailed descriptions of the performance of the implementation can be

found in [10]. We measure the error of Anderson's method relative to a parallel

implementation of the direct method. This code is also written in CMF and uses

cyclic shift operations to perform all{to{all communication. It exploits symmetry in

the potential/force evaluation from Newton's third law. Both codes perform oating{

point operations in 64{bit precision. All the simulation results presented are collected

on a 32 node CM{5E con�guration unless otherwise stated.

Characteristics common to many simulations were as follows:

� Uniform particle distribution: there are an equal number of particles uni-

formly and randomly distributed in each leaf{level box, unless otherwise spec-

i�ed. The particle coordinates are r

i

= (x

i

; y

i

; z

i

); 1 � i � N .

� Uniform charges: the particles are assigned equal charges of the same sign,

and the total charge is made 1, i.e. q

i

= 1:0=N; 1 � i � N .

The code computes the Coulombic potential and the force �eld at each particle

location.

�

i

=

j 6=i

X

j=1;N

q

j

kr

i

� r

j

k

f

i

=

j 6=i

X

j=1;N

q

j

(r

i

� r

j

)

kr

i

� r

j

k

3

The actual potential energy and force for particle i are �

i

� q

i

and f

i

� q

i

, respectively.

The relative errors in computing the potential and the force �eld are the same as

those in computing the potential energy and the force.

Let �

c

i

; f

c

i

denote the computed values using Anderson's method, and �

r

i

; f

r

i

denote

the computed values using the direct method.

We use Newton's third law to assess the error in the force calculation using the

direct method. This error gives a rough measure of the round{o� errors. For the

entire range of number of particles simulated, the sum of all the force �elds is smaller

than 5� 10

�14

.

The error in the potential and force �elds in the simulations are determined using

the following quantities, where jj jj denotes the l

2

{norm,

�

i

= j

�

r

i

� �

c

i

�

r

i

j



i

=

kf

r

i

� f

c

i

k

kf

r

i

k

�

rms rel pot

=

v

u

u

t

1

n

n

X

i=1

�

2

i

�

rms rel for

=

v

u

u

t

1

n

n

X

i=1



2

i

�

rms rel pot

and �

rms rel for

are the root{mean{square relative errors of potential and

force �elds, respectively.

5. Accuracy{cost tradeo�s. As discussed in Section 2, in addition to the

parameters of a given particle system (the number of particles, the particle coordinates
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and charge distributions), the parameters of a multipole{like hierarchical O(N ) N{

body method (the approximation order, the degree of separation in the near{�eld,

the use of supernodes, and the hierarchy depth) also a�ect the accuracy (�) and the

execution time per particle (T=N ), i.e.,

� = f(N; charge; distribution; approximation order;

hierarchy depth h; separation; supernode)

T=N = g(N; charge; distribution; approximation order;

hierarchy depth h; separation; supernode)

An important issue in using these approximateN{body methods is how to choose

the parameters of the methods so that the code performs the potential or force eval-

uation in the shortest time while satisfying a prescribed accuracy requirement.

We �rst consider uniform distributions for which the accuracy and execution time

per particle can be expressed as

� = f

1

(N; approximation order; hierarchy depth h; separation; supernode)

T=N = g

1

(N; approximation order; hierarchy depth h; separation; supernode)

The numerical simulations discussed in Section 5.2 show that for systems of up to

one million uniformly distributed particles, the accuracy is independent of the number

of particles and the hierarchy depth, i.e.,

� = f

2

(approximation order; separation; supernode)

Since the error is independent of the hierarchy depth, we choose the hierarchy

depth such that it minimizes the total number of arithmetic operations, i.e., the

FLOP count. Using an optimal hierarchy depth, the FLOP count per particle is

independent of the number of particles (see Table 2.3), i.e.,

T=N = g

2

(approximation order; separation; supernode)

Since the optimal hierarchy depth balances the two computation{dominant stages

{ the hierarchy traversal and the direct evaluation in the near{�eld, and the e�ciency

of the two stages are similar in our implementation of Anderson's method, the FLOP

count per particle is an accurate estimate of the execution time. Model equations for

the prediction of the execution time is discussed in Section 5.3.

Based on our error and execution time models, we present in Section 5.4 a proce-

dure for selecting parameters that minimizes the execution time for a given accuracy

for uniform particle distributions.

5.1. Controlled use of supernodes. Our simulations show that during the

downward traversal of the hierarchy, delaying the use of supernodes until further

away from the root improves the accuracy of the code signi�cantly, compared to using

supernodes at all possible levels. Figure 5.1 shows that using supernodes starting at

level four (with root being level zero) improves the accuracy by up to a factor of �ve

compare to starting at level three for a seven{level hierarchy, and another factor of

�ve is observed if the use of supernodes is delayed until level �ve.

To understand why delaying the use of supernodes to levels four or �ve improves

the accuracy of the method dramatically, we consider the relative contributions and

accuracies of the potentials from the interactive{�elds at di�erent levels. For any
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multipole{like hierarchical O(N ) method, the potential evaluation at each particle

using a hierarchy of depth h can be decomposed as

� = �

d=2

I

+ �

d=3

I

+ :::+ �

d=h

I

+ �

d=h

N

;

where �

d=i

N

, �

d=i

I

denote the potential due to particles in the near{�eld and interactive{

�eld at level i, respectively. The error from every �

d=2

I

contributes to the total error.

�

d=h

N

is computed using the direct method. Table 5.1 lists the total potential and

the di�erent contributions for 2{Sep, 2{Sep/superd3 and 1{Sep. The weights are de-

�ned as the ratio obtained by dividing the potential (computed by the direct method)

contributed from a subregion by the total potential, averaged over all particles. For

a separateness of two, the potential contributions from the interactive{�elds at level

two, three, and four, i.e. �

d=2

I

; �

d=3

I

; �

d=4

I

, carry large weights. Therefore, their accu-

racies dominate the accuracy of the total potential. This explains the improvement

of the error o�ered by delaying the use of supernodes till level four and �ve, as seen

in Figure 5.1.

Delaying the use of supernodes until after a few levels close to the root adds little

to the total execution time, compared to the use of supernodes at all levels. For

simulations with a large number of particles, the optimal hierarchy depth is deep.

For such simulations, the amount of computation close to the root is insigni�cant

compared to the computations close to the leaf{level. Second, the use of supernodes

in parallel implementations of Anderson's method o�ers little gain in execution time

close{to{root. This fact can be understood through the following consideration. In

Anderson's method, for a separateness of two, using supernodes at level i turns 875

interactive{�eld neighbor interactions per box at level i into 91 neighbor interactions

per box at level i and 784 neighbor interactions per box at level i� 1. Since our code

only exploits parallelism among same{pair boxes at the same level, and sequentialize

the interactive{�eld neighbor interactions [11], each neighbor interaction at levels close

to the root where there are fewer boxes than processing nodes take about the same

time. Thus, e.g., 875 neighbor interactions at level i takes about the same time as 91

neighbor interactions at level i and 784 interactions at level i� 1, if levels i� 1 and i

are su�ciently close to the root that the computations are fully parallel. Therefore,

neighbor interactions with or without supernodes at these levels take about the same

time. For example, on a 32 node CM{5, at level three, the neighbor interactions

using supernodes is only 24% faster than without supernodes. In addition, the cost
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Table 5.1

Potential contributions from the interactive{�elds at di�erent levels for 1M particles and a

depth seven hierarchy.

Potential Weight RMS potential error

D = 5 D = 7 D = 9 D = 11 D = 14

2{Sep, � 1.00e+00 1.3e-04 3.3e-05 3.0e-06 3.7e-07 1.8e-08

�

d=2

int

2.11e-01 5.7e-04 9.3e-05 8.7e-06 1.1e-06 3.5e-08

�

d=3

int

4.74e-01 1.0e-04 3.0e-05 2.2e-06 2.3e-07 1.7e-08

�

d=4

int

2.16e-01 5.5e-05 2.1e-05 1.2e-06 1.2e-07 1.5e-08

�

d=5

int

7.12e-02 3.4e-05 1.6e-05 6.7e-07 9.0e-08 1.3e-08

�

d=6

int

2.04e-02 4.5e-05 1.5e-05 8.4e-07 1.5e-07 1.4e-08

�

d=7

int

4.68e-03 3.9e-05 1.1e-05 7.5e-07 1.2e-07 8.8e-09

2{Sep/superd3, � 1.00e+00 3.5e-04 1.4e-04 2.0e-05 3.0e-06 2.7e-07

�

d=2

int

2.11e-01 5.7e-04 9.3e-05 8.7e-06 1.1e-06 3.5e-08

�

d=3

int

4.74e-01 6.2e-04 2.3e-04 3.8e-05 6.3e-06 5.9e-07

�

d=4

int

2.16e-01 3.5e-04 1.7e-04 2.1e-05 3.7e-06 3.5e-07

�

d=5

int

7.12e-02 2.2e-04 1.3e-04 1.2e-05 2.4e-06 2.1e-07

�

d=6

int

2.04e-02 1.5e-04 1.1e-04 8.3e-06 1.9e-06 2.2e-07

�

d=7

int

4.68e-03 2.6e-04 1.3e-04 1.7e-05 6.8e-06 1.0e-06

1{Sep, � 1.00e+00 3.7e-04 1.8e-04 2.0e-05 3.0e-06 3.4e-07

�

d=2

int

5.76e-01 6.1e-04 2.5e-04 2.8e-05 4.3e-06 5.2e-07

�

d=3

int

2.87e-01 3.4e-04 1.8e-04 1.6e-05 2.5e-06 3.8e-07

�

d=4

int

9.77e-02 2.2e-04 1.4e-04 9.3e-06 1.8e-06 2.9e-07

�

d=5

int

2.84e-02 1.6e-04 1.1e-04 8.0e-06 2.9e-06 3.8e-07

�

d=6

int

7.67e-03 3.4e-04 1.2e-04 2.0e-05 7.3e-06 1.0e-06

�

d=7

int

2.43e-03 1.1e-03 7.0e-04 1.2e-04 5.0e-05 8.6e-06

for neighbor interactions at level three for 2{Sep/superd3 is less than 5% of the total

execution time for the hierarchy traversal for a depth six hierarchy. Since the 2{

Sep/superd4 improves the accuracy by a factor of �ve compared to 2{Sep/superd3,

it is more accuracy{cost e�cient than the later one.

Since 2{Sep/superd3 yields errors similar to 1{Sep, but requires more arith-

metic operations, and similarly, 2{Sep/superd5 yields errors similar to 2{Sep and

2{Sep/superdi for i � 5, but requires fewer arithmetic operations, we only consider

1{Sep, 2{Sep/superd4, and 2{Sep/superd5 in this Section. Figure 5.2 plots the ex-

ecution time on a 256 node CM{5E as a function of accuracy for the six methods

using optimal hierarchy depths. 1{Sep and 2{Sep/superd5 yields the lowest execu-

tion time for a given accuracy, while 2{Sep/superd4 is more cost e�cient than 2{Sep

and 2{Sep/superd6 for low accuracy and about the same as the latter two for high

accuracy.

5.2. Error models. Our simulations show that the accuracy is independent of

the number of particles and the hierarchy depth. Figures 5.3{ 5.6 plot the RMS error

in the potential as a function of the number of particles for di�erent hierarchy depths,

integration order and di�erent separateness and use of supernodes. Note that for a

small number of particles, the accuracy in all cases become worse as the hierarchy

depth increases. The reason is that as the hierarchy depth increases, for a relatively

small number of particles, there is an increased number of empty leaf{level boxes.

Thus, the particle distribution relative to the nonleaf boxes is less balanced, which

results in larger integration errors in traversing the hierarchy.

Similarly, the RMS error in the force �elds is also independent of the number of

particles and the hierarchy depth.

Figures 5.7{5.8 plot the the RMS error of potential and force �eld as a function
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Fig. 5.6. The RMS error of the potential

for 2{Sep at depth 3,4,5,6

of the integration order D. The RMS error of the force �eld is about two orders

of magnitude larger than that of the potential �eld. We focus on the RMS potential

error in the rest of the paper since the code always computes the potential (the sphere

approximations evaluate the potentials), while the forces are computed either via nu-

merical di�erentiation based on the potential or by calling additional subroutines for

analytical di�erentiation. The error in the force �eld is very sensitive to the normal-

ization used. We use a local normalization whereas several other studies reporting

smaller force �eld errors use a global normalization (for example, see [14]).

Assuming the error in the potential can be modeled by c

1

� c

�p

, we can determine

either the decay rate or the base constant from our simulations assuming the other

is known. If we assume the error decay p = D=2 + 2, then the constants c and c

1

for 1{Sep, 2{Sep/superd4, 2{Sep/superd5 can be computed using a �rst{order least{

squares{�t (LSF) as in Table 5.2. If we instead assume the base constant c is known

and has the value given in Table 2.4, then the decay rate p and the constant c

1

for the

�ve integration orders can be computed using a �rst{order LSF as in Table 5.3. Both

the decay rate and the base constant thus determined di�er signi�cantly from the

values from single outer{sphere approximations veri�ed by Anderson [1]. The rather

large base constants in Table 5.2 suggests that for computational elements of similar

decay rates, Anderson's method is more accurate than GR's or Zhao's methods, for

which the base constants are about two [21].

Attempting to verify the base constant and error decay rate from our simulations
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Table 5.2

Base constant and proportionality factor de-

termined from simulations assuming an error de-

cay rate p = D=2 + 2.

Separation c c

1

LSE =

P

i

�

2

i

1{Sep 4.44 0.173 1.4e-1

2{Sep/superd4 5.08 0.117 1.3e-1

2{Sep/superd5 6.19 0.214 9.1e-2

Table 5.3

Error decay rate and proportionality fac-

tor determined from simulations assuming a

base constant c = ((2d+ 2)=3

1

2

� 1)

�p

.

Integration p c

1

LSE =

order D

P

i

�

2

i

5 1.66 5.59e-04 2.2e-3

7 2.52 3.58e-04 2.5e-3

9 2.84 4.31e-05 2.2e-3

11 3.09 7.03e-06 7.3e-3

14 4.44 1.18e-06 4.8e-2

as above gives rise to some concern over the accuracy of the analytic models. Since

the accuracy is independent of the number of particles and the hierarchy depth, we

only need to model the error as a function of integration order for each combination

of separation and use of supernodes. Using second{order LSF, let

log

10

(�) = C

1

�D

2

+C

2

�D + C

3

(5.1)

The �tted constants are given in Table 5.4.

Given an error �, we can compute the required integration order D using equation

(5.1). Since the integration orders are discrete and take values in f5,7,9,11,14g, the

computed D is rounded up to the nearest available integration order. As veri�ed

through simulations shown in Table 5.5, predicting the integration order for a given

accuracy using equation (5.1) is quite accurate.

5.3. Timing models. In the early papers on the fast multipole method, the

hierarchy depth is chosen such that there is roughly one particle in each leaf{level box

(for example, see [6, 7, 9, 16, 21]), or there are a predetermined number of particles

per leaf{level box [4]. Later, the issue of using an optimal hierarchy depth to minimize

the total number of arithmetic operations and hopefully also the execution time of

the code was raised [22]. In [1], Anderson proposed a performance model based

on the FLOP count for predicting the absolute execution time of di�erent stages of

the method on uniprocessors for any given particle distribution and hierarchy depth.

Based on the performance model, he proposed a parameter selection procedure that

selects the optimal hierarchy depth through a \dry run" of the method with variable

hierarchy depth.
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Table 5.4

Second{order LSF of the RMS potential error as a function of the integration order (see equation

(13).)

Method C

1

C

2

C

3

LSE =

P

i

�

2

i

1{Sep -4.42e-03 -.274 -1.84 8.8e-02

2{Sep/superd4 -4.69e-03 -.301 -2.10 7.6e-02

2{Sep/superd5 -5.88e-03 -.325 -2.04 4.7e-02

Table 5.5

Predicted and measured integration orders required for a given RMS error of the potential.

For the mispredicted case

"

, using the mispredicted integration order would give an RMS error of

1.8e-04.

RMS Predicted D Measured D

error 1{Sep 2{Sep/superd4 2{Sep/superd5 1{Sep 2{Sep/superd4 2{Sep/superd5

1.0e-02 5 5 5 5 5 5

5.0e-03 5 5 5 5 5 5

1.0e-03 5 5 5 5 5 5

5.0e-04 5 5 5 5 5 5

1.0e-04 7

"

7 5 9 7 5

5.0e-05 9 7 7 9 7 7

1.0e-05 11 9 9 11 9 9

5.0e-06 11 9 9 11 9 9

1.0e-06 14 11 11 14 11 11

5.0e-07 14 14 11 14 14 11

For a parallel implementation of a hierarchical method, the optimal hierarchy

depth has to take into account the communication needs of the implementation and

the communication e�ciency of the underlying parallel machine. For our implemen-

tation of Anderson's method on the CM{5/5E, the FLOP count gives rather accurate

prediction on the relative execution time. First, the optimal hierarchy depth balances

the two computation{dominant stages { the downward pass and the direct evaluation

in the near{�eld (see Table 2.3.) As reported in [10], for problems with reasonably

large sizes relative to the machine size, the two time{dominant stages achieve similar

e�ciencies, and therefore the FLOP count is a good predictor of the optimal hierar-

chy depth with respect to execution time for both methods. Second, the e�ciencies

for di�erent separations and use of supernodes, e.g. 1{Sep, 2{Sep/superd4 and 2{

Sep/superd5, are almost the same for the same hierarchy depth. Thus, it is expected

that the FLOP count for Anderson's method predicts the parallel execution time well

for all combinations of separations, use of supernodes, and hierarchy depths.

Since all simulations were performed on the CM{5/5E, all FLOP counts used in

this section uses CM{5 normalized FLOP counts, i.e., DIV and SQRT are counted as

�ve and eight FLOPs, respectively. This count accurately reects the actual number

of (oating{point) cycles they take on the Vector Units of CM{5/5E.

Table 5.6 lists the predicted and measured optimal hierarchy depths for the three

methods. The prediction is based solely on the FLOP counts. For the miss{predicted

cases, the running time using the miss{predicted depth and the measured optimal

depth di�er by at most 20%.

Figures 5.9{5.12 plot the FLOP ratio as a function of the number of particles

for di�erent degrees of separations and di�erent use of supernodes. In general, since

the hierarchy depth is always an integer, the FLOP counts and consequently the

ratios between the di�erent computational approximations is expected to oscillate
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Table 5.6

Predicted and measured optimal hierarchy depth.

N 1{Sep 2{Sep/superd4 2{Sep/superd5

D 5 7 9 11 14 5 7 9 11 14 5 7 9 11 14

measured

16k 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

32k 4 3 3 3 3 4 4 3 3 3 4 3 3 3 3

64k 4 4 4 3 3 4 4 4 4 3 4 4 4 3 3

128k 4 4 4 4 4 5 5 4 4 4 5 5 4 4 4

256k 5 4 4 4 4 5 5 5 5 4 5 5 5 5 4

512k 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5

1024k 6 5 5 5 5 6 6 5 5 5 6 6 5 5 5

predicted - measured

16k 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

32k 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

64k 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

128k 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0

256k 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0

512k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1024k -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0

since the optimal depth is not necessarily the same for the di�erent approximations.

For each approximation, the FLOP count per particle exhibits a period for each factor

of eight increase in the number of particles. The use of supernodes, and delayed use

of such nodes, alters this simple explanation. For instance, for 2{Sep/superd4 and

2{Sep/superd5 the FLOP counts per particle di�er before and after starting the use

of supernodes. In Figure 5.9, the optimal depth is less than four for a small number

of particles, and supernodes are not used for 2{Sep/superd4. The ratio therefore is

about four (see Table 2.4.) For large number of particles, the optimal hierarchy depth

is beyond four, and supernodes are used. The ratio then decreases to around two.

Similar trends are seen in Figure 5.10, except that the decrease in the ratio occurs for

a larger number of particles since the level at which supernodes are used is delayed

to �ve. For the ratio FC

2�Sep=superd5

=FC

2�Sep=superd4

in Figure 5.11, the ratios are

around one for small and large numbers of particles, since both approximations plotted

use or do not use supernodes at levels close to the leaf{level, where the arithmetic

operations dominate the hierarchy traversal. For a number of particles for which

the optimal hierarchy depth is four, the ratio is around two as 2{Sep/superd4 uses

supernodes at level four and 2{Sep/superd5 does not. Figure 5.12 plots the FLOP

count ratios as a function of the integration order D.

To verify the accuracy of using the FLOP count to predict the relative execution

times of the di�erent approximation methods, we plot the ratios of the measured

execution times of the three methods in Figures 5.13{5.16. The plots di�er somewhat

from the FC ratio plots in Figures 5.9{5.12. In general, the execution time ratios are

lower than the FLOP count ratios, since for the same integration order, 2{Sep/superd4

and 2{Sep/superd5 often has an optimal hierarchy depth that is one larger than

that of 1{Sep, and therefore achieve a better e�ciency. Also note that for a small

number of particles, there is little computation and the relatively high overhead (e.g.

precomputation of translation matrices) hides the FLOP count di�erence among the

approximation methods.

5.4. Accuracy{cost tradeo�s for Anderson's method. Based on the error

models and timing models developed above, the selection of the degree of separation

for the near{�eld, the use of supernodes, and the hierarchy depth that minimizes
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the execution time of the method for uniformly distributed particles for a speci�ed

accuracy can be determined as follows:

1. For each combination of degree of separation and use of supernodes, �nd the

required integration order D

i

using equation (5.1). Look up the number of

integration points K required.

2. Use the FLOP count to predict the optimal hierarchy depth, and calculate

the total FLOP count at the predicted optimal hierarchy depth. The total

FLOP count is a good predictor of the execution time.

3. Choose the method that has the smallest total FLOP count.

Using the above procedure, we compare 1{Sep with 2{Sep/superd4 and 2{Sep/superd5.

Figure 5.17 plots the ratios of the FLOP counts of the three candidate methods as

a function of desired error. Figure 5.18 plots the ratios of the execution times of

the three candidate methods as a function of desired error. The two plots conform

reasonably well, and suggest that the proposed parameter selection procedure works

well. Similar to the FLOP count and time ratio comparison in Figures 5.9{5.16, the

execution time ratio is again closer to one than the FLOP count ratio.

A surprising outcome of our simulations is that 1{Sep is almost always more

cost{e�cient than 2{Sep/super for any prespeci�ed error, as shown in the two plots
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above. The few cases when the ratios are larger than one is when 1{Sep has D = 7

and depth four, and 2{Sep/superd4 and 2{Sep/superd5 have D = 5 and depth �ve,

and the former is more costly. A close look at the two methods tells us that the

tradeo�s between them is mainly determined by the cost{accuracy tradeo�s of the

integration formulas used in the outer/inner approximations in Anderson's method.

As described in [1], the integration formulas, taken from [15], are highly e�cient in

the sense that they use minimum number of integration points to achieve a certain

degree of integration accuracy. (The exact de�nition of the e�ciency of an integration

formula is de�ned in [15].) To achieve a given error, 1{Sep often requires one order

higher integration order than that required by 2{Sep/superd4 and 2{Sep/superd5, i.e.

FC

1�Sep

(D

i+1

) = C

1

�K

i+1

�N;

FC

2�Sep=superd5

(D

i

) = FC

2�Sep=superd4

(D

i

) = C

2

�K

i

�N

where C

1

and C

2

are the constants of proportionality of the three methods, as listed

in the last column of Table 2.5 (2{Sep/superd4 and 2{Sep/superd5 have about the

same FLOP count as 2{Sep/superd3 for a hierarchy with more than four levels.) We

observe that C

2

=C

1

is close to two while K

i+1

=K

i

is often less than two. Therefore

1{Sep often has a smaller execution time than 2{Sep/superd4 or 2{Sep/superd5 for
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the same prespeci�ed error.

Figures 5.19{5.20 show the tradeo�s between computational cost and the accu-

racy achieved using optimal parameters. The computation cost is represented by

cycles/particle, and therefore relatively independent of the type and the size of the

parallel machine. Figure 5.19 shows that for Anderson's method, higher accuracies

can be achieved at increased computational cost. For small numbers of particles, the

hierarchies are shallower and there are fewer boxes in the hierarchy. Therefore, the

degree of parallelism is lower, the code becomes less e�cient, and the cost per particle

becomes higher. Figure 5.20 shows that for three digits of accuracy the method is

competitive with direct N{body solvers at about 8,000 particles for three{dimensional

problems, while for six digits of accuracy the break{even point is at about 35,000 par-

ticles.

6. On the choice of sphere radii in Anderson's method and impact of

nonuniform distributions. In this section we investigate the impact of the choice

of sphere radii on the accuracy in Anderson's method. We also study the impact of

the particle distributions on the accuracy. All particle charges are assumed the same.
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6.1. Uniform particle distribution. Anderson [1] suggested the radii of outer

sphere and inner sphere listed in Table 3.1, and veri�ed the parameters through

evaluating a single sphere approximation. We verify the optimality of the parameters

with respect to the accuracy of the complete method. All the simulations in this

section are performed on a 64 node CM{5E.

Figure 6.1 plots the RMS error of the potential as a function of the scaling factor

�

0

(de�ned in Table 3.1) for one{separation and two{separation with supernodes. It

can be seen that for integration orders 5, 7, 9, and 11, the accuracy is invariant with

respect to the outer sphere radius for the scaling factor ranging from one to ten. For

integration order 14, the accuracy stays high when the scaling factor ranges from 0.8

to 3, but decreases outside this range. Figure 6.2 shows the RMS error of the potential

as a function of the scaling factor 

0

(de�ned in Table 3.1) for one{separation and

two{separation with supernodes. Again, for integration orders 5, 7, 9, and 11, the

accuracy of the method stays almost the same for 

0

ranging from 1.2 to 8.0, while

for integration order 14, the error is minimized for 

0

between 2.0 and 3.0 for one{

separation, and 2.0 and 2.5 for two{separation with supernodes. The range of optimal

outer and inner sphere radii cover the values suggested in [1]. The unique behavior for

integration order 14 could be attributed to limited oating{point precision. However,

the same behavior is exhibited in 128{bit precision, which was experimentally veri�ed

using a Fortran{90 version of the code on DEC alphastations.

6.2. Error sensitivity to particle distributions. The accuracy of the hierar-

chical methods depend on the distributions of particles. For instance, if in Anderson's

method the particles inside an outer sphere is clustered in one corner, then the magni-

tude of their projections to the integration points may vary signi�cantly. In evaluating

the outer sphere approximations, it is expected that the integration be less smooth

and a relatively large numerical error may occur in summing up values of di�erent

magnitudes. On the other hand, the more clustered in the center of a leaf{level box

the particles are, the more accurate the approximation o�ered by the computational

element will be. The same arguments are true for GR' and Zhao's methods. In [4],

Carrier et. al. found that with the same number of terms in the multipole expan-

sions, the accuracy for di�erent nonuniform distributions may vary up to an order of

magnitude.

In this section, we investigate how the accuracy of Anderson's method with one{

separation varies with small variations in the particle distributions. Speci�cally, for
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Fig. 6.3. Particle distributions used to study the impact of particle distribution on the accuracy

of Anderson's method.

a given number of particles we �rst compute the optimal hierarchy depth as if the

particle distribution was uniform. We then vary the relative locations of the particles

inside each leaf{level box and study the error behavior. Since the number of particles

in the leaf{level boxes remains unchanged, the optimal hierarchy depth stays the

same. The four distributions we considered are shown in Figure 6.3:

� Center distribution, where the particles are uniformly distributed within a

box of side length L centered at the center of the original leaf{level box;

� Corner distribution, where the particles are uniformly distributed within a

box of side length L at one of the eight corners of the original leaf{level box;

� Edge distribution, where the particles are uniformly distributed within boxes

of side length L located along one edge of the original leaf{level box;

� Diagonal distribution, where the particles are uniformly distributed within

boxes of side length L located along one diagonal of the original leaf{level

box.

Note that the smaller the imbalance factor L, the more imbalanced the distribution

appears with respect to the uniform distribution. For L = 1, all four distributions

degenerate to the uniform distribution. For any L and each of the four distributions,

the distributions within leaf{level boxes are the same. Though the four distributions

clearly are synthetic, they o�er a controlled way of studying the impact of the particle

distribution on the accuracy.

Figure 6.4 shows that the accuracy of the Center distribution is improved slightly

if the particles are clustered to the center of the boxes. Figure 6.5 shows that changing

the outer sphere radius has no impact for integration orders 5, 7, 9, and 11. But for

integration order 14, it a�ects the accuracy of the center distribution in the same way

it a�ects that of the uniform distribution. The same is true in changing the inner

sphere radius as shown in Figure 6.6. Therefore, varying the outer and inner sphere

radii does not a�ect the accuracy for the Center distribution in any other way than

for the uniform distribution.

Figure 6.7 shows that the accuracy of the Corner distribution becomes worse as

the particles are more and more clustered to a corner, especially for high integration
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orders. Again, changing the outer and inner sphere radii has almost no impact on the

accuracy for integration orders 5, 7, 9, and 11. But for integration order 14, increasing

the outer sphere radius improves the accuracy for L=1/8, as shown in Figure 6.8. In

general, a large outer sphere smoothes the integration, but makes the coe�cients

of integration small in magnitude, which also may lead to accuracy problems due

to round{o� error. A good balance between the two e�ects are required for high

accuracy. Increasing the outer sphere radius improves this balance for the Corner

distribution. Similarly, decreasing inner sphere radius has the e�ect of smoothing

the integration as the inner sphere is drawn away from the conner of particles, and

therefore improves the accuracy for 

0

� 3:5, as shown in Figure 6.9.

The Edge and Diagonal distributions are more balanced than the Corner distri-

bution. It can be seen from Figures 6.10{6.11 that their accuracies are better than

that for the Corner distribution for small L's. Figures 6.12{6.13 show the accuracies

of the distributions as a function of the imbalance factor L. As expected, the Center

distribution gives the best accuracy, followed by the Diagonal and Edge distributions.

The Conner distribution yields the lowest accuracy. Only the errors for the 11th

and 14th integration orders are shown, since the di�erence is much smaller for small

integration orders.
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7. Conclusions. Using our nonadaptive parallel implementation of Anderson's

method, we have studied its accuracy{cost tradeo�s. Our studies show that in three{

dimensions, using a near{�eld consisting of only nearest{neighbor boxes almost always

minimizes the FLOP count required for a given accuracy, when the optimal hierarchy

is used.

Our empirical study of the error sensitivity with respect to particle distributions

shows that signi�cant impact can be expected. For instance, by concentrating the

particles uniformly into subdomain of size (

1

8

)

3

in a corner of the leaf{level boxes, the

error may increase by a factor of six or more. For highly nonuniform distributions

enlarging the outer spheres and shrinking inner spheres may improve the accuracy

for high integration orders. Such changes have the potential of better balancing

the integration error (smoother function) with roundo� errors in small in magnitude

coe�cients.

Our study of the accuracy{cost tradeo� for hierarchical O(N ) N{body methods

focused on Anderson's method. Empirical studies of Greengard{Rokhlin's method

similar to ours would allow a more direct comparison of the computational e�orts of

the two methods for a given accuracy. We believe it to be very feasible to develop

error and execution time models similar to ours for Greengard{Rokhlin's method. A

direct comparison would be most interesting.
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