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Abstract 

 

Background: Staphylococcus aureus is a common cause of bacterial infections worldwide. It is 

most commonly carried in and transmitted from the anterior nares. Hosts are known to vary in 

their proclivity for S. aureus nasal carriage and may be divided into persistent, intermittent, and 

non- carriers depending on duration of carriage. Mathematical models of S. aureus to predict 

outcomes of interventions have however typically assumed that all individuals are equally 

susceptible to being colonized.  

Objective: To characterize biases created by assuming a homogeneous host population in 

estimating efficacy of control interventions 

Design: Mathematical modeling  

Methods: We developed a model of S. aureus carriage in the healthcare setting under the 

homogeneous assumption as well as a heterogeneous model to account for the three types of S. 

aureus carriers. In both models, we calculated the equilibrium carriage prevalence to predict the 

impact of control measures (reducing contact and decolonization). 

Results: The homogeneous model almost always underestimates S. aureus transmissibility and 

overestimates the impact of intervention strategies in lowering carriage prevalence compared to 

the heterogeneous model. This finding is generally consistent regardless of changes in model 

setting to vary the proportions of various carriers in the population and the duration of carriage 

for these carrier types.  

Conclusions: Not accounting for host heterogeneity leads to systematic and substantial biases in 

predictions of the effects of intervention strategies. Further understanding of the clinical impacts 



3	  
	  

of heterogeneity through modeling can help to target control measures and allocate resources 

more efficiently. 
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NOTE: This is the version of the manuscript accepted for publication. However, 
several errors were discovered after acceptance and have been corrected in this 
version, dated December 10, 2015. They are as follows. 
 
Corrections underlined and in bold 
 
Figure legends: 
 
1) Figure 2: Impact of interventions of (a) reducing contact and (b) decolonization 
on S. aureus carriage prevalence under the homogeneous model and 
the heterogeneous model assuming three hosts classes (20% persistent, 
30% intermittent, and 50% non- carriers) and that admission of those 
colonized is the proportion colonized among that host class. Note that in 
both models, 30% carriage prevalence is assumed in absence of any 
interventions. 
 
2) Figure 3: Impact of interventions of (a) reducing contact and (b) decolonization 
on S. aureus carriage prevalence under the homogeneous model and 
the heterogeneous model assuming three hosts classes (20% persistent, 
30% intermittent, and 50% non- carriers) and that only uncolonized individuals 
are admitted into the hospital. Note that in both models, 30% carriage 
prevalence is assumed in absence of any interventions. 
 
Results: The Impact of Varying the Proportion of Carrier Classes in the Host 
Population  
 
3) Third sentence: In scenario A, we compared the results of models with 
different proportions of host classes relative to the homogeneous model as a 
ratio of equilibrium carriage prevalence after a 25% reduction in the β* parameter 
or a decolonization regimen every 6 months (δ=1/180 day−1). 
 
4) Second last sentence: In scenario B, all distributions of heterogeneous 
populations consistently predicted higher equilibrium prevalence compared with 
the simple model for both interventions (Online Figure S1).  
 
Results: The Impact of Varying the Duration of Colonization 
 
5) First sentence: We also examined the impact of varying the duration of 
colonization, and hence potential transmission, among the different classes of 
host assuming that admission of those colonized is the proportion 
colonized among that host class (Scenario A) and using the same intervention 
parameters described above.  
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6) Last sentence: Similarly, the finding that the heterogeneous model predicts 
higher equilibrium carriage prevalence compared with the homogeneous model 
regardless of durations of persistent and intermittent carriage for both 
interventions was also observed in scenario B (Online Figure S2).	
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Introduction 

 

Staphylococcus aureus is a common cause of bacterial infections worldwide 1, causing a range of 

diseases including community-acquired soft tissue infections and nosocomial infections. The 

majority of carriage episodes are asymptomatic, and this is the population responsible for 

transmission 2. While multiple body sites can be colonized, the most frequent carriage site for S. 

aureus is the anterior nares: approximately one-third of healthy individuals asymptomatically 

carry S. aureus in this location at any given point in time 3,4.  

 

Longitudinal studies have shown that the probability and duration of S. aureus nasal carriage 

vary. Typically such studies have classified participants into three host classes: persistent carriers, 

defined as those in whom carriage lasts for many months (about 20% of the adult population); 

intermittent carriers, defined as individuals who harbor S. aureus intermittently (about 30% of 

the adult population); and non-carriers, who almost never carry S. aureus (about 50% of the adult 

population)5–7.  While this classification is somewhat arbitrary (as “persistence” for example, 

will depend on length of follow-up), it is a convenient summary of the observed heterogeneity. 

In such a population, an individual observed as a carrier may be either a persistent or an 

intermittent carrier, while a non-carrier at a particular moment may be either a non-carrier or an 

intermittent carrier.  

 

Reduction of S. aureus transmission by interventions including hand hygiene, isolation, and 

decolonization reduces the incidence of nosocomial infections 8,9. To examine the effectiveness 

of these interventions and the transmission dynamics of the pathogen, several mathematical 
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models have been developed 10–18. These models have assumed a homogenous population in 

which all individuals are equally susceptible to colonization. This assumption is clearly incorrect, 

and the failure to discriminate between hosts that are highly resistant to colonization and those 

that may play a disproportionate role in transmission may alter the predicted impact of control 

strategies.  

 

We show here that assuming a homogeneous population causes systematic and substantial biases 

in model outcomes and illustrate how incorporation of a heterogeneous host population changes 

the predictions of the model. In particular, homogeneity assumptions tend to underestimate 

transmissibility and overestimate the impacts of control interventions.  

 

 

Methods 

 

Model Description  

 

We used a deterministic SIS (susceptible-infected-susceptible)-type transmission model of S. 

aureus colonization in the healthcare setting, though we use U (uncolonized) and C (colonized) 

to emphasize that we are tracking colonization not infection (Figure 1).  The proportions of 

colonized and uncolonized patients for any time t, U(t) and C(t), sum to 1. The transmission 

parameter, β, is the rate at which hosts contact each other and transmit per unit time and v is the 

natural rate with which S. aureus is cleared per unit time, both of which in the homogenous case 

are assumed to be the same for all patients. We assumed that the discharge rate, γ, is the same for 
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uncolonized and colonized patients and that the number of patients remains fixed such that the 

admission rate equals the discharge rate. In addition, the probability that an individual is 

colonized at admission is λ. The transmission model in the homogeneous case is then given by 

the following differential equations: 

 

U = 1− λ γU+ γC − βUC+ vC− γU 

C = λ γU+ γC + βUC− vC− γC  or  C = 1− U 

 

For comparison, we analyzed a stratified version of the transmission model that incorporates host 

heterogeneity. Let N1, N2, and N3 be the proportion of the population who are non-carriers, 

intermittent carriers, and persistent carriers. In each of these groups, a proportion U1(t), U2(t), 

U3(t) (of the entire population) is uncolonized at any moment, and proportions  C2(t) and C3(t) 

are the respective proportions colonized (there is no C1 category since this part of the population 

is highly resistant to colonization). Then N1=U1; N2=U2+C2, and N3=U3+C3. We also model 

heterogeneity such that v2 and v3 are the natural rate at which S. aureus is cleared per unit time 

from an intermittent carrier and a persistent carrier, respectively. In addition, λ2 is the probability 

that an intermittent carrier is colonized at admission while λ3 is the probability that a persistent 

carrier is colonized at admission. While studies have shown that persistent carriers have higher 

risk of infection, the colonization rate in different nasal carrier types remains unknown 19,20. 

Given the limited data on the transmission parameter, we assumed that intermittent carriers and 

persistent carriers have the same per capita rate of effective contact; hence the transmission 

parameter β is the same. This model is given by the following system of differential equations: 
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U! = 1− λ! γU! + γC! − βU! C! + C! + v!C! − γU! 

C! = λ! γU! + γC! + βU! C! + C! − v!C! − γC! 

U! = 1− λ! γU! + γC! − βU! C! + C! + v!C! − γU! 

C! = λ! γU! + γC! + βU! C! + C! − v!C! − γC! 

 

Our goal here was to examine the impact of including carriage heterogeneity by comparison with 

a homogeneous model.  

  

Parameter Estimates 

 

We used median S. aureus nasal survival time of 14 days among intermittent carriers and >154 

days among persistent carriers 21 as the average carriage duration to parameterize the clearance 

rates, v2 and v3, in the heterogeneous model (Table 1). We used the average median S. aureus 

nasal survival times for the various carrier types (0.30*14 + 0.20*154 = 35 days) to parameterize 

the clearance rate, v, in the homogeneous model. Furthermore, we used an average length of stay 

of 7 days 13 to parameterize hospital discharge rate. 

 

Empirical observations show a 30% prevalence of S. aureus carriage in multiple settings 22. We 

used this to find the transmission parameter, β, for both models under two extreme scenarios: 

Scenario A in which the proportion colonized at admission is the same as the proportion of that 

host class colonized in the inpatient population (λi =Ci/(Ui+Ci)) and Scenario B in which all 

individuals are uncolonized at admission (λi=0). Scenario B can be thought of as an extreme case 
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in which all transmission is limited to the hospital, and the Scenario A as the alternate extreme 

where either transmission is equally intense outside and inside the hospital or where individuals 

are very rapidly readmitted after discharge. Alternatively, Scenario A can also be thought of as a 

model for a community in which the population of hosts does not appreciably change over the 

time scale that would be considered in an intervention study (months to a few years).  

 

Modeling Interventions 

 

We considered two classes of control measures. The first aims to reduce the contact rate and thus 

the transmission parameter β through isolation of carriers or other infection control measures 

such as handwashing. The second class of control measures is targeted at decolonizing carriers, 

such as through intranasal application of mupirocin alone or with antiseptic soaps or 

antimicrobial agents. This is modeled through the parameter δ, the rate of successful 

decolonization. In both the homogeneous and heterogeneous model, we calculated the new 

equilibrium carriage prevalence after the implementation of control measures (reducing β or 

varying δ). We examined the impact of interventions on carriage prevalence when varying the 

proportions of carrier types and the durations of persistent and intermittent carriage. All 

equilibrium prevalence predictions were calculated analytically and graphed using R.  

 

 

Results 

 

Heterogeneous carriage reduces the expected impact of interventions 
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In Scenario A where those colonized at admission is the same as the proportion colonized among 

that host class (λi=Ci/(Ui+Ci)), the homogeneous model predicts that even a modest reduction in 

β through interventions aimed at contact rates has a marked impact on carriage prevalence 

(Figure 2a). A 30% reduction in β is expected to eliminate S. aureus from the population. In 

contrast in the heterogeneous model, elimination requires reducing β by more than 80%. 

Similarly, the homogeneous model predicts that decolonization every 120 days or so will almost 

eliminate carriage, whereas the same regime applied to the heterogeneous population will have 

very little effect (Figure 2b). 

 

In Scenario B where all individuals are uncolonized at admission (λi=0), the homogeneous model 

consistently overestimates the prevalence of overall carriage for both types of interventions, but 

to a lesser degree than Scenario A. Reducing β by approximately 30% is expected to eliminate S. 

aureus in the homogeneous model while the same outcome in the heterogeneous model requires 

reducing β by approximately 60% (Figure 3a). Under this scenario, decolonization strategies 

have little impact on reducing S. aureus carriage in both models, and in the heterogeneous model, 

it becomes almost impossible to eliminate carriage.  

 

The impact of varying the proportion of carrier classes in the host population 

 

The exact proportions of persistent, intermittent, and non- carriers have been studied in only a 

few populations 5,22 and may vary in different settings. We hence examined how varying the 

population composition impacts carriage prevalence. In Scenario A, we compared the results of 
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models with different proportions of host classes relative to the homogeneous model as a ratio of 

equilibrium carriage prevalence after a 25% reduction in the β* parameter or a decolonization 

regime every 6 months (δ = 1/180 day-1). For interventions targeting transmission, all 

distributions of heterogeneous populations resulted in higher equilibrium prevalence compared 

with the homogeneous model with the largest proportions of non-carriers giving the highest ratio 

of roughly 4.25 (Figure 4a). For intervention based on decolonization, the carriage prevalence in 

the heterogeneous model was at worst 3-fold higher compared to the homogeneous model 

(Figure 4b). An exception to the otherwise general finding that incorporating heterogeneity 

reduces the predicted impact of interventions is found in populations where 40-45% are 

persistent carriers (the contour line with ratio=1 in Figure 4b). Here, decolonization in the 

heterogeneous model is more effective compared to the homogeneous model and the effect is 

markedly increased as the proportion of persistent carriers increases beyond this threshold. In 

Scenario B, all distributions of heterogeneous populations consistently predicted higher 

equilibrium prevalence compared with the simple model for both interventions (Figure S1). For 

both scenarios, the distributions of hosts that we predict will have the largest negative impact on 

the effectiveness of both interventions was close to the range of proportions of different host 

classes reported in longitudinal studies 5,6,22.  

  

The impact of varying the duration of colonization  

 

We also examined the impact of varying the duration of colonization, and hence potential 

transmission, among the different classes of host assuming that admission of those colonized 

is the proportion colonized among that host class (Scenario A) using the same intervention 
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parameters as above. Again the homogeneous model is consistently overoptimistic. As shown in 

Figure 5a, the heterogeneous model predicted carriage prevalence roughly 4 times that of the 

homogeneous model and this is robust to the durations of intermittent and persistent carriage. 

Similarly as shown in Figure 5b, decolonizing individuals every six months was more effective 

in reducing the prevalence of overall carriage as predicted in the homogeneous model compared 

to that of the heterogeneous model, regardless of the durations of carriage assumed. Similarly, 

the finding that the heterogeneous model predicts higher equilibrium carriage prevalence 

compared to the homogeneous model regardless of durations of persistent and intermittent 

carriage for both interventions is also observed in Scenario B (Figure S2). 

 

 

Discussion 

 

Mathematical models of S. aureus transmission can quantitatively predict outcomes of 

interventions and guide decision-making 13–18,23,24. These models have made the assumption that 

all individuals have the same probability and duration of carriage. This is often supported by the 

notion that variation in susceptibility is considered to result in smaller outbreaks 25 and therefore 

models assuming equal susceptibility are considered the worst-case scenario in the sense of the 

extent of transmission they produce 26. However, this perception does not account for the fact 

that a model ignoring heterogeneity in the population will be "fooled" by the overall low 

prevalence of colonization into underestimating the transmissibility of the pathogen. In turn, the 

lower estimate of transmissibility can lead to an overestimate of the estimated impact of 

interventions. 
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We have examined two scenarios that represent two extremes of time between hospital 

admissions. Scenario B where only uncolonized individuals are admitted simulates a very long, 

or even infinite, time between admissions while Scenario A where newly admitted patients are 

assumed to be colonized in the proportion that would be expected for hosts of that class 

simulates a feedback loop in which people are frequently readmitted. Mathematically, the latter 

scenario is equivalent to a model of community-acquired S. aureus. In both scenarios, the 

homogeneous assumption consistently overestimates the effectiveness of control strategies. 

Moreover, this observation was robust to the proportions of carrier types and the carriage 

duration for each type. The exception was when persistent carriers make up 40-45% of the 

population or more, the heterogeneous model made the opposite prediction: decolonization 

would reduce carriage more than one would assume from the homogeneous model. This reflects 

the disproportionate contribution of the persistent carriers to transmission as a result of being 

colonized for a longer period. 

 

Other studies have considered the effects of heterogeneity on the spread of sexually-transmitted 

27 and vector-borne 28 infections. These studies have in common the idea that the existence of 

particularly high-risk hosts contributes disproportionately to transmission. The key issue in both 

cases is that such hosts are simultaneously more likely to become infected and to transmit 

infection, as the same activity (being bitten or sex) is necessary for both. In these settings, the 

basic reproductive number (R0) is proportional to the sum of the mean and the variance/mean 

ratio for sexual activity or rate of being bitten in simple models of heterogeneous host 

populations. We have considered and analyzed a different phenomenon here. In our model, hosts 
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differ in their durations of carriage, which affects transmission but not acquisition rate (and we 

assume that all hosts are equally likely to become colonized, though some may have effectively 

zero duration). In this setting, the R0 is a simple average of the transmission from the different 

types of hosts, weighted by the frequency of each host type and the carriage duration in that host 

type. In our heterogeneous model, the non-carriers are not capable of transmitting, and persistent 

or intermittent carriers are colonized at a faster rate and naturally decolonize at a slower rate. The 

consequence of this is an increase of R0. Thus ignoring heterogeneity leads us to underestimate 

transmissibility and overestimate an intervention’s effectiveness.  

 

Our models do not take into account factors such as antibiotic resistance, compliance with 

interventions, environmental or healthcare related transmission. We developed our models to 

demonstrate the biases created by the failure to incorporate heterogeneity in carriage types. Our 

analysis is deliberately focused on variation arising from susceptibility and duration of carriage, 

but this is only one possible source of heterogeneity. Alternatively, hosts may be equally 

susceptible, but vary in their ability to transmit. This has been experimentally observed in finger-

finger transmission of enterococci 29. Host susceptibility may be a general issue in nosocomial 

epidemiology across different bacteria species and colonization sites.  

 

Improved understanding of host heterogeneity in carriage through modeling may significantly 

change ways in which dynamics of colonization and disease are characterized, as well as the 

approaches for implementing control measures. In a randomized clinical trial 30, findings of 

limited reduction in methicillin-resistant S. aureus carriage despite decolonization with 

mupirocin may be explained in part by our analysis, which predicts the effort required to achieve 
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control is greater than expected. We also note that strategies that might be particularly effective 

in one setting may not directly translate to another setting where the population may have a 

different distribution of carrier types. Future work to understand the mechanisms underlying the 

heterogeneity in S. aureus carriage will aid in targeted interventions that ensure optimal 

allocation of resources.  
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Figure Legends 

 

Figure 1: Transmission models of S. aureus colonization for (a) the homogeneous model and (b) 

the heterogeneous model. The diagram shows the inflow and outflow of uncolonized and 

colonized patients (U, C). Subscripts indicate each of the three host classes (non-carriers, 

intermittent carriers, and persistent carriers). 

 

Figure 2: Impact of interventions of (a) reducing contact and (b) decolonization on S. aureus 

carriage prevalence under the homogeneous model and the heterogeneous model assuming three 

hosts classes (20% persistent, 30% intermittent, and 50% non- carriers) and that admission of 

those colonized is the proportion colonized among that host class. In both models, 30% carriage 

prevalence is assumed in absence of any interventions.  

 

Figure 3: Impact of interventions of (a) reducing contact and (b) decolonization on S. aureus 

carriage prevalence under the homogeneous model and the heterogeneous model assuming three 

hosts classes (20% persistent, 30% intermittent, and 50% non- carriers) and that only 

uncolonized individuals are admitted into the hospital. In both models, 30% carriage prevalence 

is assumed in absence of any interventions.  

 

Figure 4: A heat-map of the ratios of carriage prevalence in the heterogeneous model to the 

homogeneous model when varying proportions of carrier classes under Scenario A (admission of 

those colonized is the proportion colonized among that host class) with intervention of (a) 

reducing β* parameter (see Table 1) by 25% and (b) setting δ parameter to 1/180 day-1. The ratio 
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represents the magnitude of difference between the models, with >1 indicating that the 

heterogeneous model predicts higher carriage prevalence compared to the homogeneous model. 

The dotted lines enclose all possible combinations of the proportions of persistent, intermittent, 

and non- carriers. Complete elimination of S. aureus carriage in the heterogeneous model is 

shown in grey. The red dot represents assumed proportions of each carrier type for the initial 

analysis. 

 

Figure 5: A heat-map of the ratios of carriage prevalence in the heterogeneous model to the 

homogeneous model when varying persistent and intermittent carriage durations under Scenario 

A (admission of those colonized is the proportion colonized among that host class) with 

intervention of (a) reducing β* parameter (see Table 1) by 25% and (b) setting δ parameter to 

1/180 day-1. The ratio represents the magnitude of difference between the models, with >1 

indicating that the heterogeneous model predicts higher carriage prevalence compared to the 

homogeneous model. The red dot represents assumed carriage durations of each carrier type for 

the initial analysis. 

 

 

 

 

 

 

 

  



21	  
	  

Tables 

Table 1: Description of model parameters for the homogeneous and heterogeneous models of S. 

aureus carriage 

Model Parameter Value Description 

H
om

og
en

eo
us

 β 
λ = !

!!!
: 0.028 day-1 

λ = 0: 0.232 day-1 
Transmission parameter 

v ln(2)/35 day-1 Natural clearance rate 

γ 7 days-1 Discharge rate  

H
et

er
og

en
eo

us
 

β 
λ! =

!!
!!!!!

: 0.115 day-1 

λ! = 0: 0.866 day-1 

Transmission parameter 

assuming 20% persistent, 30% 

intermittent, and 50% non- 

carriers (Figure 2) 

β∗ 

λ! =
!!

!!!!!
:   !!!∗

!.!!∗!!!
+ !!!∗

!.!!∗!!!
  

λ! = 0: 1 = !!!∗

!.!!∗!!!!!
+ !!!∗

!.!!∗!!!!!
 

(x! and x! are the proportions of 

intermittent and persistent carriers) 

Transmission parameter for 

30% overall carriage prevalence 

in populations with varying 

proportions of carrier classes 

(Figure 3) 

v2 ln(2)/14 day-1 
Natural clearance rate for 

intermittent carriers 

v3 ln(2)/154 day-1 
Natural clearance rate for 

persistent carriers 

γ 7 days-1 Discharge rate  



22	  
	  

 



U3 C3 

β(C2+C3) 

v3 

U2 C2 

β(C2+C3) 

v2 

U1 

U C 
βC 

v 

U3 C3 
β(C2+C3) 

v3 

U2 C2 
β(C2+C3) 

v2 

U1 

γγ

(1-λ)(γU+γC) λ(γU+γC) (1-λ2)(γU2+γC2) λ2(γU2+γC2) 

γγ

(1-λ3)(γU3+γC3) λ3(γU3+γC3) 

γγ



0 20 40 60 80 100

0
5

10
15

20
25

30

% Reduction in Beta

P
re

va
le

nc
e 

of
 C

ar
ria

ge
 (

%
)

homogeneous
heterogeneous

a

0 50 100 150 200

0
5

10
15

20
25

30

Frequency of Decolonization (1/days)
P

re
va

le
nc

e 
of

 C
ar

ria
ge

 (
%

)

homogeneous
heterogeneous

b



0 20 40 60 80 100

0
5

10
15

20
25

30

% Reduction in Beta

P
re

va
le

nc
e 

of
 C

ar
ria

ge
 (

%
)

homogeneous
heterogeneous

a

0 50 100 150 200

0
5

10
15

20
25

30

Frequency of Decolonization (1/days)
P

re
va

le
nc

e 
of

 C
ar

ria
ge

 (
%

)

homogeneous
heterogeneous

b



0 20 40 60 80 100

0
20

40
60

80
10

0

Persistent Carriers (%)

In
te

rm
itt

en
t C

ar
rie

rs
 (

%
)

 1.25 

 1
.5

 

 1.5 

 1.75 

 2
 

 2 

 2
.2

5 

 2.25 

 2
.5

 

 2.5 

 2
.7

5 

 2.75 

 3 

 3 

 3.25 

 3.5 

 3.75 

 4 

 4.25 

●

a

0 20 40 60 80 100

0
20

40
60

80
10

0

Persistent Carriers (%)
In

te
rm

itt
en

t C
ar

rie
rs

 (
%

)

 0.25 
 0.5 

 0.75 
 1 

 1.25 

 1.5 
 1.75 

 2 

 2.25 

 2.5 

 2.75 
 3 

●

b



Persistent Carriage Duration (days)

In
te

rm
itt

en
t C

ar
ria

ge
 D

ur
at

io
n 

(d
ay

s)

150 180 210 240 270 300 330 360

1
5

9
13

17
21

25
29

 3
.8

 

 3.85 
 3.9 

 3.95 

 4 

 4.05 

 4.1 

●

a

Persistent Carriage Duration (days)
In

te
rm

itt
en

t C
ar

ria
ge

 D
ur

at
io

n 
(d

ay
s)

150 180 210 240 270 300 330 360

1
5

9
13

17
21

25
29  1.9 

 2 

 2.1 

 2.2 

 2.3 

 2.4 

 2.5 

 2.6 

 2.7 

 2.8 

●

b



	  
	  
Figure S1: A heat-map of the ratios of carriage prevalence in the heterogeneous model to 

the homogeneous model when varying proportions of carrier classes under Scenario B 

(all individuals are uncolonized at admission) and intervention of (a) reducing β* 

parameter (see Table 1) by 25% and (b) setting δ parameter to 1/21 day-1. The ratio 

represents the magnitude of difference between the models, with >1 indicating that the 

heterogeneous model predicts higher carriage prevalence compared to the homogeneous 

model. The dotted lines enclose all possible combinations of the proportions of persistent, 

intermittent, and non- carriers. The red dot represents assumed proportions of each carrier 

type for the initial analysis. 

	  



	  
	  
Figure S2: A heat-map of the ratios of carriage prevalence in the heterogeneous model to 

the homogeneous model when varying persistent and intermittent carriage durations 

under Scenario B (all individuals are uncolonized at admission) and intervention of (a) 

reducing β* parameter (see Table 1) by 25% and (b) setting δ parameter to 1/21 day-1. 

The ratio represents the magnitude of difference between the models, with >1 indicating 

that the heterogeneous model predicts higher carriage prevalence compared to the 

homogeneous model. The red dot represents assumed carriage durations of each carrier 

type for the initial analysis. 
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