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Abstract

Summary: Robust conversion between microarray platforms is needed to leverage the wide var-

iety of microarray expression studies that have been conducted to date. Currently available conver-

sion methods rely on manufacturer annotations, which are often incomplete, or on direct align-

ment of probes from different platforms, which often fail to yield acceptable genewise correlation.

Here, we describe aRrayLasso, which uses the Lasso-penalized generalized linear model to model

the relationships between individual probes in different probe sets. We have implemented

aRrayLasso in a set of five open-source R functions that allow the user to acquire data from public

sources such as Gene Expression Omnibus, train a set of Lasso models on that data and directly

map one microarray platform to another. aRrayLasso significantly predicts expression levels with

similar fidelity to technical replicates of the same RNA pool, demonstrating its utility in the integra-

tion of datasets from different platforms.

Availability and implementation: All functions are available, along with descriptions, at https://

github.com/adam-sam-brown/aRrayLasso.

Contact: chirag_patel@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A pressing issue in translational biology is the ability to reference and

utilize historical microarray datasets for large-scale discovery pro-

grams (Tsiliki et al., 2014). The appeal of using historical datasets in-

cludes capturing previous investment to construct larger cohorts.

Despite interest in both industry and academia (Tsiliki et al., 2014;

Yengi, 2005), few groups have attempted to tackle the problem of

platform integration. Current approaches primarily rely upon passing

different microarray platforms through a common identifier system,

such as EntrezGene IDs, using specially designed packages (Alibes

et al., 2007; Mohammad et al., 2012) or online tools (Huang et al.,

2009). While these systems work well in cases where manufacturers

have maintained annotations of their microarray databases, ID-based

conversion methods fail for deprecated and undermaintained micro-

array platforms. Another approach to convert between platforms is

sequenced-based, wherein each sequence tag is aligned to the genome

or transcriptome and annotated (Fumagalli et al., 2014; Liu et al.,

2007). Unfortunately, it is often the case that de novo annotations do

not capture the complexity of the transcriptome (e.g. for genes with

alternative splice variants Gambino et al., 2015).

To address the shortcomings of both annotation- and sequence-

based conversion methods, we have developed aRrayLasso, a Lasso-

regression based network model. Our method directly predicts the

probe expression levels of the target platform. To demonstrate the

accuracy of our method, we show that predictions made using

aRrayLasso are of similar accuracy to technical replicates from the 6

same mRNA pool. Our methodology allows users to utilize cur-

rently available methodologies for integrating cross-experiment

microarray datasets (Tsiliki et al., 2014) and allow for the construc-

tion of large-cohort retrospective studies.
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2 Methods

To convert from a source to a target microarray platform, we chose

to model each individual sequence tag in the target platform as a lin-

ear combination of all sequence tags from the source platform (see

Fig. 1 and Supplementary Methods). Because microarrays have

greater than 10 000 individual probes, we chose to use the Lasso al-

gorithm for generalized linear regression (Friedman et al., 2010).

The Lasso algorithm allows the resulting linear model to be ‘sparse’

in that only the most relevant and robust (by cross-validation) pre-

dictors are assigned non-zero values. This optimization allows the

model to outperform similar models that require all predictors to be

assigned non-zero coefficients (Tibshirani et al., 2010). Lasso is im-

plemented in the R package ‘glmnet,’ allowing for ease of use

(Friedman et al., 2010).

We first generate a list of lasso models for each sequence tag in

the target microarray platform. Our implementation can take as in-

put a variety of data formats, including expression matrices, R

expressionSet objects and Gene Expression Omnibus accession

numbers (Edgar et al., 2002). Once the full list of models has been

computed, we provide functions that allow either the straightfor-

ward prediction of sequence tag values or the validation of the

model list by calculation of Pearson product-moment correlation

coefficients.

To demonstrate the utility of our methodology, we utilized three

datasets: (i) GSE6313, containing C57/B6 adult mouse retina cDNA

profiles (Liu et al., 2007), (ii) GSE7785, containing PANC-1 derived

cDNA profiles (Tan et al., 2003) and (iii) GSE4854, containing

mouse cortex expression profiles (Kuo et al., 2006). Each dataset is

composed of multiple technical replicates for several distinct micro-

array platforms (see Supplementary Table S1). For both datasets, we

used aRrayLasso to first train models to intraconvert between each

individual platform and then predicted intraconversions between

each pair of platforms for all technical replicates. To assess the ac-

curacy of our conversions, we calculated the average Pearson’s r

between the predicted values and actual experimental values for each

platform and replicate. We also calculated the average inter-replicate

Pearson’s r for each platform (see Supplementary Table S2).

3 Results

To explore the performance of aRrayLasso, we began by comparing

our method’s ability to predict expression to the biological variation

between replicates on the same platform. We assessed the degree to

which aRrayLasso could accurately predict platform interconver-

sions in three datasets, representative of different experimental sys-

tems, organisms and platforms. For the five platforms tested,

aRrayLasso predictions are within the technical variation of each

microarray platform when compared with technical replicates from

the same cDNA pool, even when subjected to multiple sequential

conversions (Supplementary Table S2). In addition, once built,

aRrayLasso models can be used between experimental conditions:

using the models built on GSE6313, we predicted expression levels

in GSE4854 with no significant loss of signal (Pearsons product-mo-

ment correlation, P<0.38). While the results presented here do not

guarantee similar results for all training and testing datasets, these

analyses serve as a promising proof of concept. Furthermore, our

success with a relatively small dataset suggests that aRrayLasso may

reach even higher levels of performance as the size of the datasets

involved increases.

4 Discussion

Implementation: In this investigation, we propose a data-driven

method for integrating across high-throughput genomic measure-

ment modalities that avoids the use of annotation- or sequence

alignment-based tools. We have implemented a Lasso regression-

based modeling approach to model the expression level of each

sequence tag in a target microarray as a linear combination of all

sequence tags in a source microarray. Our implementation repre-

sents a straightforward, easy-to-use and open-source methodology

for conversion between microarray platforms.

Limitations: One drawback of our method is the need for ex-

tant or newly generated matched samples in the source and target

platforms. In our experience, however, there are a large number

of datasets available that have matched samples with replicates

for a number of popular microarray platforms. A second limita-

tion to our method is in conversion which lack overlap in gene

coverage. In these cases, as with currently available methodolo-

gies, our method will fail to provide meaningful conversions.

Lastly, while we have shown in one case that interexperiment

conversions are feasible, we caution that systematic technical

error in a single experiment may lead to the creation of a biased

model. In general, however, when coupled with one of several

cross-experiment dataset integration tools, aRrayLasso will en-

able mining of the remarkable and untapped historical pool of

microarray datasets for large-scale metastudies for well-powered

discovery.
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