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Abstract
The HIV-1 Env spike is the main protein complex that facilitates HIV-1 entry into CD4+ host

cells. HIV-1 entry is a multistep process that is not yet completely understood. This process

involves several protein-protein interactions between HIV-1 Env and a variety of host cell

receptors along with many conformational changes within the spike. HIV-1 Env developed

due to high mutation rates and plasticity escape strategies from immense immune pressure

and entry inhibitors. We applied a coevolution and residue-residue contact detecting

method to identify coevolution patterns within HIV-1 Env protein sequences representing all

group M subtypes. We identified 424 coevolving residue pairs within HIV-1 Env. The major-

ity of predicted pairs are residue-residue contacts and are proximal in 3D structure. Further-

more, many of the detected pairs have functional implications due to contributions in either

CD4 or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions. This

study provides a new dimension of information in HIV research. The identified residue cou-

plings may not only be important in assisting gp120 and gp41 coordinate structure predic-

tion, but also in designing new and effective entry inhibitors that incorporate mutation

patterns of HIV-1 Env.

Introduction
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein complex medi-
ates binding and entry into human host cells. It is a heterodimer composed of a non-covalently
bound exterior surface glycoprotein 120 (gp120) and transmembrane glycoprotein 41 (gp41)
located as trimers at the surface of the viral membrane. The surface of the protein complex is
highly glycosylated, enabling evasion of immune pressure. The entry process involves three
main steps (see Fig 1). The attachment, initiated by the interaction of gp120 and the Cluster of
Differentiation 4 Receptor (CD4), which triggers major conformational changes in gp120,
including the formation of the bridging sheet (BS), spatial approach of inner (ID) and outer
domain (OD) (as defined by Kwong et al. [1]) and the detachment of the variable loop 3 (V3),
resulting in formation and exposure of the chemokine coreceptor binding site [1–5]. Next, the
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coreceptor binding, where gp120 binds in general either C-C Chemokine Receptor 5 (CCR5)
or C-X-C Chemokine Receptor 4 (CXCR4), causing further conformational changes that lead
to re-arrangements of the previously inaccessible gp41 into an intermediate state in which the
fusion peptide of gp41 is embedded into the host cell membrane. The final step is the fusion of
the viral and host cell membranes. Despite that several crystal and cryo-electron microscopy/
tomography structures of gp120 in unliganded state exist [6–25] (as well as in complex with
CD4, CD4 mimics, or various antibodies, and of gp41 in intermediate and post-fusion state), a
comprehensive understanding of structural arrangements and communication within gp120
and gp41 domains during entry is far from complete. Interestingly, even though HIV-1 Env is
target of immense immune pressure, revealed through extensive sequence diversity in the Env
gene, it still maintains the protein complex structure and entry functionality. Hence, detection
of coevolution of important sites in Env sequences may not only point out interesting biologi-
cal interactions, but also highlight functional constraints of protein structure that could help in
decrypting the complexity of function and communication during HIV entry.

The extraction of coevolution patterns out of a multiple sequence alignment (MSA) has
been targeted by numerous studies during the past decades [26–31] (a recent review is provided
by de Juan et al. [32]). For many years such methods required large numbers of homologous
and variable protein sequences, and were not able to distinguish between real direct couplings
and indirect correlations that arise from phylogenetic relationships within the sequences.
Recent methodological improvements, incorporated in methods such as PSICOV [33], DCA

Fig 1. HIV cell entry. Schematic illustration of HIV-1 entry steps attachment and coreceptor binding.

doi:10.1371/journal.pone.0143245.g001
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[34, 35], plmDCA [36] or GREMLIN [37, 38] have overcome the drawbacks and demonstrated
enormous accuracy in predicting real couplings and coevolution.

The majority of previous work, that studied coevolution within HIV-1 Env focused on the
third variable loop (V3) [39–41], applying different sets of sequence subtypes with widely dif-
ferent prediction outcomes. The first coevolution study that considered the complete Env gene
was performed by Travers and co-authors [42], where they included several HIV-1 group M
subtypes (A,B,C,D,F,G,H,J,K) to identify coevolving pairs present among all subtypes. A recent
study by Garimalla et al. [43] applied the coevolution detecting method DCA [35] on clade B
HIV-1 gp120 protein sequences. Two other recent studies by Zhao et al. [44] and Li et al. [45]
applied DCA and an ensemble of coevolution detecting techniques on a set of HIV-1 proteins.

In this study, we used the GREMLIN (Generative REgularized ModeLs of proteINs)
approach, the most accurate method currently available for detecting coevolving residue pairs
out of MSAs, and predicted 424 coevolving residue pairs within Env. The majority are real resi-
due-residue contacts and are proximal in one of the gp120 or gp41 coordinate structures. Fur-
thermore, we detected many coevolving pairs that have functional implications, such as CD4
or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions.

This new information should be considered in future coordinate structure predictions, but
also when designing new and effective entry inhibitors to account for possible resistance muta-
tions. To date, only two inhibitors have been approved; Maraviroc, a CCR5 antagonist that pre-
vents the interaction between gp120 and CCR5 by blocking the transmembrane coreceptor
cavity within the coreceptor, and T-20, a fusion inhibitor that prevents the fusion of the viral
and host cell membranes by binding to gp41.

Materials and Methods

Dataset and Alignment
The input MSA was obtained from the HIV sequence database (http://www.hiv.lanl.gov/). We
downloaded the filtered web alignment consisting of all group M subtype sequences including
recombinants from the year 2013. The filtered web alignment represents a pre-cleaned align-
ment, excluding sequences with large insertions, high content of ambiguity codes, and multiple
frame shifts. We subsequently applied several filtering steps. Initially we removed all sequences
that contain non-standard amino acids or a gap. Next, we applied the pre-processing protocol
suggested by the GREMLIN developers, which is composed of three additional steps. In the
first step, we extracted all sequences from the MSA that have more than 25% gaps, followed by
the removal of all columns with more than 25% gaps. The final filtering step was processed
using HHfilter, a part of HHsuite (version: 2.0.15) [46], to generate a non-redundant MSA at
90% sequence identity. The final input MSA is available in (S1 File).

Protein coordinate structures
The Protein Data Bank [47] (http://www.rcsb.org) was accessed to obtain seven HIV-1 Env
crystal coordinate structures to evaluate the residue-residue contact predictions. We applied
crystal structures representing gp120 in complex with CD4 and neutralising antibodies (PDB
ID: 1GC1 [1], PDB ID: 2B4C [11], PDB ID: 2QAD [12]), gp120 in complex with antibody
VRC01 (PDB ID: 3NGB [17]), gp120 including a gp41-interactive region (PDB ID: 3JWD
[16]), stabilised HIV-1 Env in complex with antibodies PGT122 and 35O22 (PDB ID: 4TVP
[48]), and the first stabilised trimeric structure of HIV-1 Env in complex with PGT122 (PDB
ID: 4NCO [49]). A residue-residue contact prediction was considered true if the two coevolv-
ing amino acids are proximal in one of the seven 3D coordinate structures, in particular, if
their Cβ-Cβ (Cα-Cα in the case of glycine) distance is less than 8 Ångström (Å) or their
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minimum atomic distance is less than 6 Å. This approach has been applied by Jones and coau-
thors [33].

GREMLIN
GREMLIN [37, 38] is a method to learn a statistical model that simultaneously captures con-
servation and coevolution in a MSA applying a pseudo-likelihood approach. It constructs a
global statistical model of the paired alignment, assigning a probability to every amino acid
sequence by optimising a regularised pseudo-likelihood objective fitness function in a statisti-
cally consistent method to estimate two parameters: position-specific amino acid propensities
and amino acid coupling between positions. Previous approaches estimated those two parame-
ters using an approximate moment matching approach by inverting a generalised covariance
matrix [33, 35]. These rely on a Gaussian-like approximation to the global partition function.
Unlike these approaches, estimation via the pseudo-likelihood avoids this approximation rely-
ing instead on local partition functions [36, 37]. The resulting general regularised structure
learning is equivalent to an optimisation problem that is efficiently solved using standard con-
vex optimisation techniques and provides estimates for both parameters.

Results
The first and most critical step during coevolution analysis is the construction of the protein
MSA. Hence, we obtained the filtered pre-made web HIV-1 Env alignment from the HIV
sequence database to ensure the quality of the alignment. We restricted the analysis to the top
L/2 predictions (in our case 424), with L as the number of columns in the MSA (in our case
L = 847). This number of top predictions has previously been applied by many research groups
to benchmark their coevolution and residue-residue contact detecting methods, including the
GREMLIN [38] developers. Further, Michel et al. [50] showed in their structure prediction
application, applying Rosettas ab initio folding tool [51], that the consideration of L/2 predicted
couplings as distance constraints, showed the best performances in the case of PSICOV [33]
and plmDCA [36]. We identified coevolving pairs of amino acids in all gp120 and gp41
domains (see Table 1 and S1 Table). It is striking that a large number of coevolving residue
pairs (in detail 54) are predicted within the first variable loop (V1), considering that the loop is
composed of only 24 amino acids. In general, it was noteworthy that the variable loops in
gp120 account for more than 30% of the coevolving pairs, despite that the fraction of amino
acids is only around 17% of the total HIV-1 Env length. Furthermore, they identified more
interdomain coevolving pairs.

To evaluate the performance of the coevolution predictions we applied seven gp120 coordi-
nate structures (see Materials and Methods). A prediction was considered true if the coevolving
residues had a Cβ-Cβ (Cα-Cα in the case of glycine) distance less than 8 Å or a minimum atomic
distance less than 6 Å in at least one of the seven structures. The structural analysis revealed
that the majority of predicted crystallised coevolving pairs are in contact; 84% of the predic-
tions are true positive (TP). However, we also identified long-distance coevolving residue pairs
that may play important roles as interdomain, alternative conformation or binding-partner
contacts.

Predicted coevolving pairs in V3
V3, a highly sequence- and structure-variable loop within gp120, is of essential functional,
immunological and structural importance during the entry of HIV into human host cells. Pre-
vious coevolution studies in HIV-1 Env mainly focused on V3 and identified several coevolving
amino acid pairs [39–42]. In our study, we identified 24 coevolving pairs within V3 (see Fig 2B
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and S2 Table), of which only four are false positive (FP). We mapped the predicted residue
pairs on the HIV-1 gp120 coordinate structure solved by Huang et al. [11] and highlighted
them as connected coloured bonds (TP shown in green and FP in red) in Fig 2B (all figures
were generated using PyMOL software [52]). To compare our results with previous work [42],
we mapped their predictions on the same coordinate structure shown in Fig 2A and detected
that only nine out of 24 coevolution predictions are TP. Interestingly, all FP predicted contacts
in our study involve residues that are either coreceptor binding (Thr303, Arg306, Ile323) or
coreceptor specific sites (Asn302, Thr303, Arg306, Asp322, Ile323), according to Korber and
Gnanakaran [53] (residue numbering is according to the HXB2 reference sequence, Uniprot
[54] ID: P04578). The predicted coevolution between these residues is most likely mediated
through their interaction with one of the chemokine receptors, either CCR5 or CXCR4, and,
hence, a typical example for an interaction partner mediated coevolution.

Next to coevolving pairs within V3, we also identified eleven coevolving residues located in
V3 and other structural regions in the HIV-1 Env glycoprotein complex (see Fig 3A and S3
Table), with two of the residue pairs predicted as FP, in particular the pairs Glu293-Thr297
and His330-Ser334. The interaction between these two coevolving pairs is also mediated
through a binding partner, N-linked glycans (see Fig 3B). Among the eleven predictions we
identified three coevolving residue pairs located in V1 and the second variable loop (V2), and
V3 respectively, in particular Ile154-Asn300, Glu172-Lys305 and Tyr173-Lys305 (see Fig 3C).
The three missing coevolving pairs (out of the eleven) are Thr303-Ser440, Asn325-Arg419 and
His330-Thr415. The first two pairs are binding mediated coevolving pairs. The third pair,
His330-Thr415, might represent an interesting coevolution pair, with His330 reported as core-
ceptor binding [53] and Thr415, located at the end of variable loop 4 (V4), adjacent to critical
residues that maintain gp160 processing and maturation [55].

The plentitude and composition of intra- and inter-coevolution of V3 residues reflects the
functional and structural importance of V3 during the entry into host cells. Further, this coevo-
lution suggests extensive communication across the whole protein complex.

Table 1. Count of coevolving residue pairs within and between specific HIV-1 Env regions.

SP C1 V1 V2 C2 V3 C3 V4 C4 V5 C5 FP Ecto TM Endo

SP 29 2 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 6 1 0 7 0 1 0 1 0 0 0 1 0 0

V1 54 0 0 1 0 0 0 0 0 0 0 0 0

V2 24 1 2 0 0 2 0 0 0 0 0 0

C2 34 2 10 0 4 1 4 0 1 0 0

V3 24 2 1 3 0 0 0 0 0 0

C3 34 4 0 2 0 0 0 0 0

V4 37 0 0 0 0 0 0 0

C4 8 3 0 0 0 0 0

V5 6 1 0 0 0 0

C5 2 0 2 0 0

FP 5 0 0 0

Ecto 40 0 0

TM 0 2

Endo 58

HIV-1 Env regions: signal peptide (SP), conserved regions (C1–C5), variable loops (V1–V5), fusion peptide (FP), ectodomain (Ecto), transmembrane

domain (TM) and endodomain (Endo).

doi:10.1371/journal.pone.0143245.t001
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Predicted coevolving pairs in V1V2
As previously mentioned, it has been reported that the V1V2 domain is important in shielding
the coreceptor binding site and in conformational control of gp120 structure [22]. In our
study, we identified 85 coevolving residue pairs that include at least one residue from the V1V2
region (see S1 Table). Out of the 59 intra-domain pairs, 47 are TP and 12 FP. Interestingly, we
identified only coevolving pairs between residues either within V1 or V2, but no residue coevo-
lution between the two loops. In Fig 4A we highlighted the 59 predicted residue pairs as green
and red bonds. V1 is coloured skyblue and V2 pink, while V3 is indicated in the background in
orange and the BS is shown in dark blue. The FP predicted residue pairs within V1 have mini-
mum atomic distances between 6.29 Å for amino acid pair Glu150-Ile154 and 11.42 Å for
Met149-Ile154. We presume that the FP predicted pairs may be TP in other conformations,
since previous studies reported that the V1V2 region is in motion upon interaction with CD4
and the coreceptors. In fact, the recently published work by Munro et al. [56] showed that the
unliganded HIV-1 Env is intrinsically dynamic, by transitioning between three distinct confor-
mations. Hence, the predicted residue pairs may be TP in one of the three characterised

Fig 2. Predicted coevolving residue pairs within V3. TP predicted coevolving pairs are connected with a green dash and the FP ones are shown as red
bonds. Amino acid numbering is according the HXB2 reference sequence and the V3 coordinate structure solved by Huang et al. [11] is applied for
visualisation. (A) Travers and co-authors [42] identified 24 coevolving pairs of which the majority is FP. (B) Coevolution predictions made by GREMLIN
identified almost exclusively TP.

doi:10.1371/journal.pone.0143245.g002
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Fig 3. Predicted coevolving pairs between amino acids located in V3 and other structural regions of HIV-1 Env.Gp120 is shown in cartoon
representation, with V1 coloured in blue, V2 in pink and V3 in orange. (A) All inter V3 coevolving pairs are highlighted with green (TP) or red (FP) coloured
dashes. (B) Coevolving amino acid pairs Glu293-Asn295, Glu293-Thr297, His330-Asn332 and His330-Ser334 (shown in sticks representation) are mediated
by N-linked glycans (shown as black lines). (C) Predicted contacts between amino acids located in V1V2 and V3. The involved amino acids are highlighted
as coloured sticks.

doi:10.1371/journal.pone.0143245.g003
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Fig 4. Coevolving pairs between amino acids in V1V2 and other structural HIV-1 Env domains. V1, V2 and V3 are shown in skyblue, pink and orange
coloured cartoon illustration. (A) 59 predicted and in [49] crystallised coevolving residue pairs; with TP illustrated as green and FP as red dashes. (B) Two
long-distance coevolving amino acids are quite likely mediated by a N-linked glycan. The involved amino acids are shown in stick representation. (C) Three
long-distance residue pairs (Ile165-Lys192, Gly167-Lys192, and Gly167-Met426) are presumably inter gp120 contacts. The intra- and inter-gp120 distances
are shown as coloured (orange,light green and yellow) bonds. The inter-gp120 distances are in all cases smaller than the intra-gp120 ones.

doi:10.1371/journal.pone.0143245.g004
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conformations. Furthermore, we identified N-linked glycan mediated long-distance coevolving
pairs within V2, similar to V3. The involved pairs are Ile161-Lys192 and Gly167-Lys192, with
Ile161 adjacent to a glycan binding asparagine amino acid, Asn160, which was recently shown
to be among the essential N-linked glycosylation sites that interfere in the interaction with
monoclonal antibodies such as 2G12 [57].

The coevolving pair Arg166-Lys169 may also have an effect on the glycan binding by con-
tributing with Lys169 as direct binding partner of the glycan (see Fig 4B). The coevolving pair
Gly167-Lys192 might also be an inter-gp120 contact within the Env trimeric complex (see Fig
4C), with a smaller atomic distance to the neighbouring gp120 than the intra-gp120. The same
applies for two other pairs, Ile165-Lys192 and Gly167-Met426. In particular, the two long-dis-
tance coevolving pairs, Gly167-Lys192 and Gly167-Met426, might represent interesting com-
munication sites between functionally important regions, such as Met426 as a CD4 binding
residue located adjacent to the Phe43 cavity, and Gly167 as adjacent to coreceptor specific and
N-linked glycan binding site.

Predicted coevolving pairs including CD4 binding residues
HIV entry into host immune cells is initiated by the interaction of gp120 and CD4, which trig-
gers conformational change in the Env protein complex. We investigated coevolving residue
pairs, including residues that directly bind CD4 and residues that coevolve, but are not direct
binding partners of CD4 (see Fig 5). Among the 27 coevolving pairs, only seven are FP. Four of
these FP coevolving pairs are present in a subnetwork located above the Phe43 cavity of gp120,
at the nexus of the bridging sheet (BS), inner domain (ID) and outer domain (OD). The
remaining three long-distance coevolving pairs are located in the BS and V2 and might play
key roles in inter-gp120 domain interaction, intra-gp120 communication connecting impor-
tant CD4 binding residues located at the BS with residues adjacent to N-linked glycan binding
and coreceptor specific sites, or different conformational arrangements of gp120 since it is well
documented in previous work that conformational change is triggered following CD4 binding.
Furthermore, it is worth mentioning that the residues within this CD4 coevolution network are
located in different regions of gp120, in particular the BS, OD, V2, V4, as well as V5.

Inter gp120-gp41 coevolving residue pairs
We identified four coevolving pairs between residues located in gp120 and gp41 (see Table 2).
Two of the pairs are proximal in the coordinate structure solved by Pancera et al. [48], although
separated by more than 100 amino acids in the sequence. The coevolving pair Val84-Ala578,
although predicted as FP, involves two important residues, with Val84 adjacent to Val85,
which has been previously reported as gp41 interacting [16], and Ala578, recently showed [58],
that when mutated, influences the sensitivity of HI viruses to fusion/entry inhibitors T-20 and
C34, by reduced anti-HIV-1 activity and decreased α-helicity of the gp41 N-terminal heptad-
repeat.

The last pair within this subset, Pro238-Glu630, might be coevolving within a subnetwork
that affects gp120-gp41 interaction. Pro238 is further coevolving with residues Gln92 and
Thr236, and Glu630 with Arg633 (see Fig 6). The coevolving partners of Pro238 (Gln92) and
Glu630 (Arg633) have a minimum atomic distance of 7.83 Å. Also, Gln92 and Pro238 are
reported to be gp41 interface contacts.

Intra gp41 coevolving residue pairs
Among our 424 predictions, we identified 105 coevolving residue pairs within gp41 (see S1
Table). However, due to the lack of a complete gp41 coordinate structure that comprises all
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functional regions, we were not able to judge all coevolving pairs according to structural prox-
imity. Nevertheless, we applied the 3D-structure solved by Pancera et al. [48] and evaluated the
coevolving pairs whose residues are crystallised, by splitting the predicted intra-gp41 pairs into
two subsets. In the first subset we included residue pairs adjacent in sequence with a maximum
distance of five. The majority of predicted coevolving pairs, 76, are adjacent in sequence and
within the first subset. The residues of 20 out of the 76 pairs are structurally solved and all of
them are TP. We assume that the remaining pairs are also proximal in structure and TP due to
the adjacency in sequence. More than half of the residue pairs, 44 out of 76, are located in the
endodomain of gp41 with 7 pairs coevolving between residues located in the highly immuno-
genic region, known as the Kennedy epitope.

The second subset is composed of 29 coevolving pairs, with five residue pairs crystallised in
the coordinate structure solved by Pancera and co-authors [48]. Only one out of five pairs is
TP. However, the remaining four residue pairs are also structurally proximal with minimum
distances between 8.22 Å and 11.8 Å. Out of 29 coevolving pairs, 16 are predicted between resi-
dues located in the endodomain of gp41, which is C-terminal to the viral membrane-spanning
domain.

Fig 5. CD4 coevolution network. The coevolution network is composed of residues that directly bind CD4,
highlighted as cyan coloured sticks and labeled in black. Detected coevolving pairs are shown as green (TP)
or red bonds (FP).

doi:10.1371/journal.pone.0143245.g005

Table 2. Predicted coevolving pairs between residues located in gp120 and gp41.

Pos i Pos j GREMLIN score TP

17 502 C5 607 gp41 0.72 1

184 500 C5 619 gp41 0.33 1

317 84 C1 578 gp41 0.16 0

416 238 C2 630 gp41 0.23 0

doi:10.1371/journal.pone.0143245.t002
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Discussion
In this study, we successfully predicted coevolving pairs of residues within Env across all HIV-
1 group M subtypes. We also identified residues of high biological interest, whose evolution is
under functional, structural and interactional constraints. Previous coevolution studies within
Env, mainly focussed on V3 and detected subtype specific coevolution [39–41]. Travers et al.
[42] were the first that considered the complete Env gene in their analysis applying a coevolu-
tion detecting method based on substitution correlations [59]. Recent methodological
improvements that establish a global statistical model from the MSA and infer direct contacts
that disentangle directly from indirectly coupled positions, are more suitable in this context.
Therefore, we applied the GREMLIN approach, the most accurate method currently available,
for detecting coevolving residue pairs out of MSAs.

Within the top L/2 predicted pairs (424 pairs), we detected that the variable loops in gp120
account for more than 30% of the coevolving pairs. Such a concentration of coevolving pairs
within the variable loops is not surprising, considering that coevolution detecting methods
require variations at the sequence level. Travers and co-authors [42] identified more coevolving
pairs in the conserved rather than in the variable regions of gp120. Remarkably, 54 coevolving
pairs have been observed within V1, a small loop composed of only 24 amino acids. Despite
this, V1 and V2 are highly sequence flexible due to immense immune pressure, but still main-
tain functionality in shielding the coreceptor binding site from antibodies and are involved in
glycosylation.

HIV-1 V3 plays a crucial role in coreceptor binding and is the main determinant of corecep-
tor usage. Previous studies suggested a two-fold interaction of V3 with the coreceptor, pin-
pointing the interaction of the tip with the coreceptor’s binding pocket and the base with the
coreceptor’s N-terminus. We predicted coevolving pairs within and between residues in V3
and other Env domains. The identified intra-V3 pairs turned out to be almost exclusively TP,
applying a structural performance criterion that evaluates structural proximity. Applying the

Fig 6. Coevolution network of the inter gp120-gp41 coevolving pair Pro238-Glu630. This pair may affect
the gp120-gp41 interaction, although their are not proximal, through their intra-domain coevolving residue
partners.

doi:10.1371/journal.pone.0143245.g006
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same performance criteria on Travers et al. [42] intra-V3 predictions, we identified that the
majority are FP (see Fig 2). Nevertheless, we also observed four FP within our intra-V3 subset
that may hint at a binding-partner mediated coevolution between the residues, since the
involved amino acids are known to be either coreceptor binding (Thr303, Arg306, Ile323) or
coreceptor specific sites (Asn302, Thr303, Arg306, Asp322, Ile323). The FP-predicted coevolv-
ing pairs might also present a critical intra-V3 communication, since it has been shown that
Arg306, among other residues located at the tip of V3, is an important amino acid involved in
the interaction of V3 with the chemokine receptor binding pocket, whereas its coevolving
residue partners (Asn302, Thr303, Asp322, Ile323) are required in the interaction with the N-
terminal part of the receptors [12, 60]. Beyond that, we identified coevolving pairs between res-
idues located in V3 and other Env domains, amongst others a binding-partner mediated coevo-
lution, the N-glycan mediated coevolution between amino acid residue pairs Glu293-Thr297
and His330-Ser334, and a coevolution between residues in V1V2 and V3 (see Fig 3). The
important interaction between V1V2 and V3 has already been reported and emphasised by
several groups [61–67], describing it as a mechanism of HIV to shield the coreceptor binding
site, located around the stem of V3, from antibodies. However, in most of the previous studies
they inferred the interactions between V1V2 and V3 from low-resolution electron-microscopy
structures. In this study, we pinpoint the interacting amino acid pairs, which are in particular
Ile154-Asn300, Glu172-Lys305 and Tyr173-Lys305. The first coevolving pair Ile154-Asn300 is
a critical V1V2—V3 communication, since this is the only coevolving residue pair including a
residue located in V1 and another Env domain. In addition, Asn300, located next to a critical
glycan binding site and involved in coreceptor binding, has the coevolving residue partner
Gln442 (see Fig 3A), which also performs interaction with the coreceptor. The other two
remaining coevolving pairs, Glu172-Lys305 and Tyr173-Lys305, include Lys305 located in V3,
which according to Schnur et al. [60] is also involved in coreceptor binding. One of the two
coevolving partners is Tyr173, which was recently highlighted as one of two tyrosines (sulfa-
tated form) in V2 that mediate and stabilise intramolecular interaction between V2 and V3 by
mimicking the sulfated tyrosines in chemokine receptor CCR5 and antibodies such as 412d
[65]. The second coevolving partner of Lys305 is the neighbouring Glu172. This residue has
other coevolving partners (see S1 Table), such as the residue Tyr198, located in the BS. Tyr198
is an interesting residue within the BS, because it is not only adjacent to a glycan binding site,
but also a CD4 contact residue and coreceptor specific [17, 53].

Furthermore, we have emphasised many coevolving pairs that are located in other Env
regions, such as V1, V2 or the ID and OD, and that are also binding-partner mediated, either
by N-glycans or CD4. We illustrated a CD4 network including residues that directly bind CD4
and their coevolving residue partners (see Fig 5). Within this network we identified coevolving
pairs that might be involved in intra- or inter-protein communication, especially the pairs
Asp167-Met426 and Arg192-Met426. Previous studies [1, 3] showed that upon CD4 binding
major conformational re-arrangements take place, including the detachment of V3. The
identified coevolving residues might be part of functionally important locations that maintain
overall protein functionality effecting conformation and communication within the HIV-1 Env
trimer.

In addition, we identified many coevolving residues within gp41. Most of the detected pairs
are adjacent in sequence and, hence, most likely proximal in structure. Due to the lack of com-
plete coordinate structures of gp41 in different states during HIV entry, we were not able to
assign biological meanings to all pairs. Nevertheless, Travers et al. [42] identified coevolving
pairs that support the model suggested by Hollier and Dimmock [68] that the C-terminal part
of gp41 consists of 3 membrane-spanning domains and 2 ectodomains, a major and a minor.
However, evidence against the suggested model has been presented by Postler and co-authors
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[69]. Their experiments point to the conventional model composed of one membrane span-
ning domain without any extracellular loops. Within our identified endodomain set of coevolv-
ing residues, we were not able to identify coevolving residues that specifically support one of
the two models.

Despite that we assigned biological explanations to the majority of identified coevolving
pairs, some of the residue couplings might be due to intra- or inter-protein communication to
conserve Env functionality during the process of entry into host cells. However, some might
just be real FP, although the GREMLIN approach proved to be very sensitive, especially when
considering only the top L/2 predictions.

This coevolution study adds a new dimension of information to consider in HIV research.
The most interesting coevolving residue pairs, for instance those located in the variable loops,
may be evaluated for their importance in future mutagenesis studies. Newly-designed entry
inhibitors or antibodies, including attachment inhibitors targeting gp120, coreceptor antago-
nists, or fusion inhibitors targeting gp41 should account for coevolution information to antici-
pate possible resistance mutations that may emerge within coevolving networks of the targeted
residues.
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